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Section 1: Introduction 

During the manufacture of integrated circuits, a process called atomic layer deposition (ALD) is 
used to deposit a uniform seed layer of solid material on the surface of a silicon wafer. ALD 
consists of several steps in one cycle, with each cycle repeated thousands of times, involving 
reactions between two gaseous species, which adsorb, desorb, and react at the wafer surface. 
Depending on the gases chosen, however, the process may have unintended results, necessitating 
a computer simulation to understand the effects. ALD can be modeled on the molecular level by 
a system of linear Boltzmann equations as transport model, coupled with a general, non-linear 
surface reaction model, together called the kinetic transport and reaction model (KTRM) [3, 4]. 
 
The Boltzmann equations in the KTRM are transient, linear integro-partial differential equations. 
Characteristic of a kinetic model, their unknown kinetic densities of all reactive chemical species 
have to be computed as functions of position vector, velocity vector, and time as independent 
variables. To affect a numerical solution, each linear Boltzmann equation is approximated by 
discretizing the velocity space, giving a system of transient hyperbolic conservation laws that 
only involve the position vector and time as independent variables. The latter system can be 
posed in standard form, allowing for the solution by a program, DG, which implements the 
discontinuous Galerkin method [8]. 
 
Because of the large number of equations and time steps involved, solving this type of problem, 
even on a modern personal computer, would take an exorbitant amount of time, in the realm of 
hundreds of hours. Depending on the size of the problem, it may not even be able to run on a 
single computer due to insufficient memory. To reduce the amount of computation time needed, 
we utilize the power of parallel computing, which involves distributing the work done from one 
processor to multiple processors which communicate with one another during the solution. 
 
This paper specifically performs a parallel performance study on the cluster hpc in the UMBC 
High Performance Computing Facility (www.umbc.edu/hpcf). This distributed-memory cluster, 
purchased in 2008 by UMBC, has 32 computational nodes, each with two dual-core AMD 
Opteron processors (2.6 GHz, 1 MB cache per core) and 13 GB of memory. These nodes are 
connected via a state-of-the-art high performance InfiniBand interconnect network. The code DG 
offers an excellent test of the capabilities of the cluster, as it involves both point-to-point and 
collective communications at every time step, allowing for thorough testing of the interconnect 
network. Though using all 4 available cores on all 32 nodes yields the greatest raw processing 
power, it may not be the most efficient way to run the code, as memory limitations and bus and 
network bandwidth bottlenecks might adversely impact its overall performance. Moreover, the 
most effective use of a cluster that is shared by many users is for each user to use all cores on as 
few computational nodes as possible, so that other users have as many nodes available as 
possible. Thus, the results of this study will teach us how to run this code most efficiently and 
how to utilize the cluster most effectively, by studying, whether to run one, two, or four 
processes per node. 
 



Section 2 below specifies the reaction model used for our particular application, and Section 3 
states the transport model in more detail and explains the numerical method used to solve it. 
Section 4 collects a set of representative results for the application problem as well as presents 
the parallel performance study on the cluster hpc. Section 5 draws the conclusions from the 
studies. 
 
 
Section 2: The Reaction Model 
 
The goal of atomic layer deposition (ALD) is to deposit a uniform layer of solid material onto 
the surface of the wafer through reactions between a pre-cursor gas, denoted by A, and a reactant 
gas, denoted by B. The intended reaction pathway calls for A to adsorb to the solid surface and in 
a next step for B to react with the adsorbed A to form one uniform monolayer of solid on the 
wafer surface. This is expressed by the surface reaction model 
 

A + v ↔ Av,      (2.1a) 
B + Av → solid + by-product + v,   (2.1b) 
 

where v denotes a vacant site on the surface and Av denotes A attached to a site on the surface 
[4]. However, if hydrogen radicals H are used for the reactant B, two additional reactions may 
occur: some H may adsorb to the surface, blocking A from adsorbing and preventing the layer of 
solid from forming at that site; and some gaseous H may interact with an Hv that has adsorbed to 
the surface, resulting in a gaseous H2 molecule and making the H unavailable for reaction on the 
surface. The reaction model for A and H is then 
 

A + v ↔ Av,      (2.2a) 
H + Av → solid + by-product + v,   (2.2b) 
H + v ↔ Hv,      (2.2c) 
H + Hv → H2 + v.     (2.2d) 
 

The dimensionless forward reaction coefficient for the kth equation is given by f
kγ for each of the 

four reactions, and the backward reaction coefficient by b
kγ  for each of the two reversible 

reactions. 
 
The ultimate goal of this project is to analyze the inhibiting effect of the use of hydrogen radicals 
as reactant. For purposes of this paper that focuses on the performance of the parallel code used 
in the future studies, we only consider the adsorption step of ALD. In the adsorption step, there is 
no initial quantity of A or H in the feature, and only A is being fed into the top of the feature. 
Thus, while we are dealing with a two-species model, A is the only species of interest when we 
look at the results. We also only look at the model on the feature scale, so the domain of our 
problem is the gaseous area inside and just above a cross-section of one individual feature on the 
wafer surface. Such a domain is shown in Figure 1 (a) with feature width L and feature aspect 
ratio A (the ratio of depth over width of the feature). The solid wafer surface is indicated by the 
hash marks, and its top surface is located at x2 = 0. The pre-cursor species A is fed into the 
domain from x2 = L.  In our studies, we use a width L = 0.25 μm and an aspect ratio A = 3. 
 



 
 
Figure 1: (a) Cross-section of a feature and domain for the mathematical model with feature 
width L = 0.25 μm and feature aspect ratio A = 3. (b) Sample domain mesh used for the 
numerical method with uniform mesh spacing h = 1/16 = 0.0625 μm. 
 
Section 3: The Transport Model 
 
After making the appropriate simplifications to the equations used to model these reactions, we 
attain a system of dimensionless Boltzmann equations for the kinetic densities ),,()( tf i vx  of the 
ns reactive species 
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where )( )(i

i fQ is an operator that factors in the collisions between the reactive species and the 
inert background gas, and Kn is the Knudsen number, a physical parameter of the system [3]. We 

only deal with a 2-D/2-D kinetic model in this paper, so the position x = (x1, x2)T  Ω  2 and 
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for each species i with carefully chosen basis functions of velocity space )(vlϕ results in a 
system of K transient linear first-order hyperbolic transport equations 
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in space x = (x1, x2)T and time t for the vector of K coefficient functions 
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ii xxx −= K  The KK × matrices )()2()1(  and ,, iBAA are constant due to 
the linearity of (3.1); moreover, due to the choice of basis functions, )1(A and )2(A are also 
diagonal [5]. Using the diagonality of these matrices, the system (3.2) can be re-formulated in the 
standard form of hyperbolic conservation laws, suitable for the solution by the discontinuous 
Galerkin method. We use the implementation in the code DG [8], a C++ program that uses MPI 
(the Message Passing Interface) as the library for the communications between the parallel 
processes. We use the MVAPICH2 implementation of MPI for the studies here. 
 
An important aspect of our numerical testing is to recognize the complexity of the problem with 
which we are working. The degrees of freedom (DOF) of the problem denote the number of 
unknowns that must be computed at every time step. In this paper, we look only at the case of a 
domain mesh with 1,280 quadrilateral spatial elements with uniform mesh spacing h = 1/64 = 
0.015625 and a velocity mesh with resolution of 2561616 =×=K  discrete velocities; this is 
Case 4 in the studies in [6]. Figure 1 (b) shows an example of a domain mesh with the coarser 
spacing of h = 1/16 for clearer visibility. The DOF of the computational problem can be 
calculated by multiplying the four local degrees of freedom of the discontinuous bi-linear finite 
elements on each quadrilateral spatial element, the number of spatial elements, the size of the 
velocity mesh, and the number of reactive species. This yields a value of (4)(1,280)(256)(2) = 
2,621,440; this means that over 2.6 million solution components have to be computed at each 
time step. For our study, we set a final time 10final =t  nanoseconds. The constant time step used, 
calculated to be the largest possible while still guaranteeing stability, is 4103 −⋅≈Δt , resulting in 
a total of 31,829 time steps. 
 
Section 4: Results 
 
Application Results: We first look at plots of the concentration of species A during the 
adsorption step of ALD, shown in Figure 2 for times t = 0, 2, 4, 6, 8, 10 nanoseconds (ns). For 
this model, we set our dimensionless reaction coefficients 
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1 ====== −−− fbffbf γγγγγγ  and the Knudsen number Kn = 100. Because 
of this high value of the Knudsen number, the discrete numerical velocities interact only 
insignificantly, which explains the appearance of distinct plateaus in the concentration plots of 
the figure. The small unphysical undershoot of values in the plot for 0 ns is typical for methods 
with discontinuous finite elements. From Figure 2, we can see that the concentration of A 
quickly fills the area near the top of the feature, but it takes much longer for the concentration at 
the bottom of the feature to increase. 
 



 

 

 
 
 
Figure 2: Concentration plot of species A at times (a) 0 ns, (b) 2 ns, (c) 4 ns, (d) 6 ns, (e) 8 ns, 
and (f) 10 ns. 
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Table 1: Wall clock time in HH:MM:SS for the code DG on hpc using MVAPICH2, with h = 
1/64, K = 16 ×  16, and tfinal = 10. 
 
 1 process per node 2 processes per node 4 processes per node 
p = 1 136:43:01 N/A N/A 
p = 2 68:41:39 68:53:33 N/A 
p = 4 34:53:16 34:42:25 35:34:47 
p = 8 17:38:10 17:41:56 18:35:31 
p = 16 08:54:06 08:50:45 08:51:48 
p = 32 04:27:59 04:30:56 04:28:49 
p = 64 N/A 02:31:02 02:29:47 
p = 128 N/A N/A 01:26:25 
 
Parallel Performance Study: To study the parallel performance of the code on the cluster hpc 
described in Section 1, we vary both the number of nodes used and the number of parallel 
processes run on each node through all possible combinations of their values. The numbers of 
nodes used are 1, 2, 4, 8, 16, and 32. On each node, either one, two, or four processes are run; if 
a node does not use all four processes, the unused cores are kept idle. The product of nodes used 
and processes per node then gives the number p of parallel MPI processes of the run. The wall 
clock times in units of hours:minutes:seconds (HH:MM:SS) for these runs are shown in Table 1 
with N/A marking those cases where the combination of nodes and processes does not exist on 
the system. Reading along each column in the table, we see that the run times approximately 
halve for each doubling of the number of parallel processes; this is the ideal behavior of parallel 
code: Running code with twice as many parallel processes should be twice as fast. Reading along 
each row, we see that the run times for any number p is independent of the number of processes 
run per node; to understand the significance of this observation, consider the example of a run 
that uses p = 32 parallel MPI processes: If we run only one process per node, we need to use all 
32 nodes of the cluster, and thus no other user can run any code on the machine. But if we run 
two processes per node, our run only requires 16 nodes. Or with four processes per node, we 
only need 8 nodes. Thus, many other users can still run their jobs simultaneously to our job. To 
justify the usage policy of the cluster that is designed in this way, it is important for the users that 
their jobs do not suffer any significant performance degradation from running more than one 
process per node. 
 
We measure parallel performance by the speedup and efficiency of the results. If )(NTp  is 
defined as the wall clock time for a problem of fixed size N using p processes as listed in Table 1, 
the speedup of the code from 1 to p processes is defined as )(/)(1 NTNTS pp = . Since ideally a 
run on p processes is p times as fast as the run on 1 process, the optimal value for Sp is p. The 
efficiency is then defined as pSE pp /= , and thus has an optimal value of 1 [2, 5].  As a visual 
representation of the results of Table 1, speedup and efficiency plots are shown in Figure 3, with 
markers distinguishing the three cases of number of processes per node. We notice that the 
markers overlie each other for the value of parallel processes p, for which data exists. This is an 
excellent result, which confirms that the scalability of the code is independent of the number of 
processes run per node. Notice in the efficiency plot that the performance only degrades slightly 
with the increasing number of parallel processes all the way up to p = 128; the efficiency plot 



indicates only slightly less than 80% efficiency at p = 128. These are excellent results for a real-
life application code! 

 
 
 
Figure 3: Comparison of (a) observed speedup and (b) observed efficiency when running one, 
two, or four processes per node. 
 
Section 5: Conclusions 
 
The excellent performance results presented in the previous section for the cluster hpc with 32 
nodes and InfiniBand interconnect [6] confirm corresponding studies on a cluster with 32 nodes 
and Myrinet interconnect [7] as well as a study with an earlier version of the code using 8 nodes 
connected by a departmental ethernet connection [1].  
 
Most importantly, we can conclude from the presented results that there is no downside for the 
users to running more than one process per node, as evidenced by the plots for one, two, and four 
processes per node being essentially identical. Therefore, one should run as many parallel 
processes per node as possible in order to run the code in the smallest amount of time as well as 
to allow as many users as possible to run code simultaneously on the system. 
 
For these performance test runs, a smaller final time of 10 ns was used; in actual ALD 
simulations, the final times might be approximately 40 ns [5], or four times longer than the runs 
presented here. We can extrapolate from the results here that if we were to use only one process, 
a 40 ns final time would take over 540 hours to simulate; however, if we utilize all 128 processes 
possible, the time taken will be a much more reasonable 6 hours. This illustrates both the power 
and necessity of parallel computing in modeling ALD or similar processes. 
 
The cluster hpc, on which the results of this paper were obtained, is currently being replaced the 
new cluster tara. The new cluster has computational nodes with two quad-core Intel Nehalem 
processors. Since these nodes have twice as many cores per node than hpc, the results of this 
paper are more important already and will become even more relevant for future systems with 
even more cores per node. 
 
 

(a)  (b) 
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