
Intel Concurrent Collections as a Method for Parallel
Programming

Richard Adjogah*, Randal Mckissack*, Ekene Sibeudu*, Undergraduate Researchers
Andrew M. Raim**, Graduate Assistant
Matthias K. Gobbert**, Faculty Mentor

Loring Craymer***, Client

*Department of Computer Science and Electrical Engineering,
University of Maryland, Baltimore County

**Department of Mathematics and Statistics, University of Maryland, Baltimore County
***Department of Defense: Center for Exceptional Computing

Technical Report HPCF–2011–14, www.umbc.edu/hpcf > Publications

Abstract

Computer hardware has become parallel in order to run faster and more efficient.
One of the current standard parallel coding libraries is MPI (Message Passing Inter-
face). The Intel Corporation is developing a new parallel software and translator called
CnC (Concurrent Collections) to make programming in parallel easier. When using
MPI, the user has to explicitly send and receive messages to and from different pro-
cesses with multiple function calls. These functions have numerous arguments that
need to be passed in; this can be error-prone and a hassle. CnC uses a system of
collections comprised of steps, items, and tags to create a graph representation of the
algorithm that defines the parallelizable code segments and their dependencies. Instead
of manually assigning work to processes like MPI, the user specifies the work to be done
and CnC automatically handles parallelization. This, in theory, reduces the amount of
work the programmer has to do. Our research evaluates if this new software is efficient
and usable when creating parallel code and converting serial code to parallel.

To test the difference between the two methods, we used benchmark codes with
both MPI and CnC and compared the results. We started with a prime number
generator provided by Intel as sample code that familiarizes programmers with CnC.
Then we moved on to a π approximation, for which we used a MPI sample code that
uses integration to approximate π. We ran it in MPI first, then stripped it of all MPI,
ported it to C++, and added our own CnC code. We then ran performance studies to
compare the two. Our last two tests involved doing parameter studies on a variation of
the Poisson equation using the finite difference method and a DNA entropy calculating
project. We used existing serial code for the two problems and were easily able to
create a couple of new files to run the studies using CnC. The studies ran multiple
calls to the problem functions in parallel with varying parameters. These last two
tests showcase a clear advantage CnC has over MPI in parallelization of these types
of problems. Both the Poisson and the DNA problems showed how useful techniques
from parallel computing and using an intuitive tool such as CnC can be for helping
application researchers.

1

1 Introduction

The current standard for parallel coding, MPI, requires the programmer to explicitly declare
what data gets sent and received by what process. MPI also provides methods to determine
how many processes the code will run on and a designating number of the current process
that is executing code. When coding, one must identify which parts of the code to divide
up between processors (parallelize) and manually divide them up. This involves calls to
very complicated C/Fortran function that have multiple arguments. This adds another
unwelcome layer of complexity to parallel programming, which already requires a significant
amount of thought for algorithm design. More details on the MPI method of parallelization
can be found here [5].

Intel’s Concurrent Collections1 changes the way the user thinks about parallelizing pro-
grams. Instead of explicitly sending messages to processes the way MPI does, CnC uses a
system of collections comprised of steps, items, and tags [3]. A user specifies the work to be
done but CnC automatically sends to the work out to the processes. This in theory reduces
the amount of coding the user has to do, allowing them to spend more time improving their
algorithms. Our goal in research is to see if this new software is more efficient and concise
when trying to create parallel code or when converting serial code to parallel.

In order to automatically determine which code can run parallel, CnC uses a graph
system. This graph system is what the programmer uses to design their algorithms. Unlike
MPI, in which the programmer defines what data gets passed to what process, in CnC a list
of independent, parallelizable code segments identified by step collections is created. Each
code segment (step) gets assigned to an item in a tag collection, which controls when and on
which process the code gets executed at runtime. The final collection in the graph system is
an item collection, which can hold any user defined data and gets send to and from steps.
In addition to defining various collections, the user also defines the relationships between
the collections in the graph. This set of collections and relationships represents the graph
for the users’ program. It is worth noting that unlike MPI, there is no way to find out the
number of processes CnC has access to unless it is explicitly set by the user beforehand.

After designing their algorithm using a graph, the graph must be translated into Intel’s
textual notation. A special CnC translator simply called cnc compiles this notation into a
C++ [2,4,7] header file which the user includes in their code. The translator also generates
a text file which contains hints for implementing the header file in code. In CnC, the place
where each task runs on is called a thread as opposed to being called a process in MPI.

Through our research, we have found CnC to be a useful method for parallel comput-
ing. By making the parallelization process as abstract as possible, the amount of coding a
programmer has to do is reduced and task distribution can be done as effectively as pos-
sible at runtime. While the graph concept of how CnC works is a very different way of
thinking than how parallelization is done in MPI, it is easy to follow once understood. The
nature of CnC’s parallelization makes operations that require accessing parallel elements in
order counter productive and time costly. However, CnC excels at parameter studies where
multiple runs of a method each may vary in memory and run-time in unknown ways.

1http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc/

2

The remainder of this report is organized as follows: Section 2 documents how to use
CnC on the cluster tara in the UMBC High Performance Computing Facility (HPCF). The
following four sections present results from studies for four sample problems: Section 3 on
the primes program that comes with the CnC installation, Section 4 on the pi program
distributed with most MPI installations, and Sections 5 and 6 on two parameter studies.
The report ends with our conclusions in Section 7.

The required codes for our tests in Sections 3, 4, and 5 are posted along with a PDF
version of this report itself at the HPCF webpage www.umbc.edu/hpcf under Publica-
tions. The files are bundled in the tar ball REU2011Team4_code.tgz, which expands into a
REU2011Team4_code directory with sub-directories for each example.

2 Using CnC on Tara at UMBC

The UMBC High Performance Computing Facility (HPCF) is the community-based, interdis-
ciplinary core facility for high performance computing available to all researchers at UMBC.
Started in 2008 by more than 20 researchers from more than ten departments and research
centers from all three colleges, it is supported by faculty contributions, federal grants, and
the UMBC administration. More information on HPCF is available at www.umbc.edu/hpcf.
Installed in Fall 2009, HPCF has an 86-node distributed-memory cluster, consisting of 82
compute nodes, 2 development nodes, 1 user node, and 1 management node. Each node
has two quad-core Intel Nehalem X5550 processors (2.66 GHz, 8192 kB cache) and 24 GB of
memory. All components are connected by a state-of-the-art InfiniBand (QDR) interconnect.

In order to use CnC on tara, several commands must first be executed.

[user@tara -fe1 ~]$ module load tbb
[user@tara -fe1 ~]$ module load intel -cnc
[user@tara -fe1 ~]$ source $CNC_INSTALL_DIR/bin/intel64/cncvars.sh

The first command loads the library tbb (Intel Thread Building Blocks), the second loads
CnC, and the third sets the user’s environment for use with CnC. These commands should
be issued once in the user’s SSH session in order to compile and run CnC programs. The
library tbb is used directly, for example, when timing CnC code. Here the tbb::tick_count
function should be used rather than through usual C++ calls.

3

3 Prime Number Generator

The first program we worked with was primes. The original version of this code is an
example that comes bundled in the CnC installation. This code takes a value n and returns
the number of primes between 1 and n. We analyzed the code and made slight changes to
it to ensure that it is working in parallel on tara. The code for this example is provided in
the files:

• code/primes/primes.cpp

• code/primes/FindPrimes.cnc

• code/primes/Makefile

• code/primes/run.slurm

In the primes.cpp file, the first function is the compute step. This is where CnC does the par-
allelization process. A number t, provided in the main function, and a parallel context c, the
FindPrimes.cnc file, are the parameters. Inside the compute step, the number t is checked
to see if it is prime and then placed inside of c.primes if it is. c.primes is the collection of
values holding the output. At the end of the compute step, return CnC::CNC_Success is
written to acknowledge the successful termination of the parallel computation. In the main
method, the parallel context (FindPrimes_context c) is the first CnC piece of code that
has to be written in main. The name must match the .cnc file. Afterwards, a for loop
places all the odd numbers to be tested as primes as tags into the c.oddNums tag collection.
As soon as tags are placed into the collection, the compute step runs, although there is no
explicit call to start the parallel computing process. Rather, as soon as the tag collection
begins to fill, CnC automatically runs the parallel code from the compute step on each tag,
if a computational resource (thread) is available for it. The c.wait() command is used to
synchronize the rest of the program with CnC. It ensures that all parallel processes finish
before moving forward with the code in main.

Looking at the FindPrimes.cnc file, the graph system for the parallel parts of the code
is written out. The first two items are collections that hold the odd numbers as tags and
prime numbers as outputs, respectively. The next line specifies that the compute step is
ran for each value in the tag collection. Following that is the step execution which shows
that the compute step may return a prime number output that would belong in the primes
collection. Finally, the tag collection is identified as an input coming from the main method
in primes.cpp and the primes collection is identified as an output to the main in primes.cpp.

During our work on primes, we discovered differences between running CnC and MPI
programs. When scheduling a run of CnC code on tara using a slurm file, the number of nodes
does not need to be specified as the standard CnC version only runs on one node. There exists
a distributed version of CnC that runs on more than one node, but we have not been able to
make it function on tara. Though the number of processes does not need to be specified to the
program, it can be manually set using the command cnc::debug::set_num_threads(np),
where np is the number of processes. We noticed that any given np above 8 defaults to 8.
Unfortunately, when the cnc::debug::set_num_threads(np) command is not used, there
is no way to control many processes CnC is using and it will default to 8 threads.

4

Table 3.1: Wall clock time in seconds using CnC for generating prime numbers for increasing
values of n using 1, 2, 4, and 8 threads.

num threads n = 104 n = 105 n = 106 n = 107

1 0.0208 0.8612 68.29 5824.60
2 0.0130 0.4395 34.23 2931.77
4 0.0114 0.2349 17.35 1457.80
8 0.0070 0.1427 9.01 753.92

Table 3.1 shows the results of a timing study on primes. The columns represent four
settings of n at increasing orders of magnitude, and the rows represent 1, 2, 4, and 8 processes
per node (i.e., the number of threads). The entries themselves are the elapsed wall clock
times in seconds to execute the primes program. We can see that for n ≥ 105, the run times
are roughly halved when the thread count is doubled, so that CnC is effectively parallelizing
the program.

4 Pi Calculation

Next we consider a pi program which approximates the value of the number π. The original
version of this code is an example that comes bundled in most MPI installations. This code
is based on the mathematical observation that tan(π/4) = 1 and hence π = 4 arctan(1).
Using the fact that ∫ 1

0

1

1 + x2
dx = arctan(1),

we have thus that π is given by an integral:

π =

∫ 1

0

4

1 + x2
dx.

In turn, this integral is approximated numerically using the midpoint rule, splitting the
integration domain 0 ≤ x ≤ 1 into n subintervals. Thus, the code returns better and better
approximations for increasing values of the integer n.

We started by obtaining this well known sample code written in C, and using MPI for
parallel processing. We converted this code to CnC for comparison purposes. We first
removed all the MPI calls and changed the needed syntax. Then we used tbb to do all of
the timing for the code. We tested this now serial code and it functioned correctly. Our
next step was to add in the needed code to make it work in parallel using CnC. Namely,
we worked on the sets, tags, and collections needed for parallelization in CnC. We used a
function called compute to create a collection called fvalues that held the height of each
subinterval that was calculated by the compute step. Our tags were values from 1 to n. We
calculated π by summing up all the values in fvalues in a for loop. The code for the pi

MPI program is available in the following files:

5

• code/pi/mpi/cpi.c

• code/pi/mpi/cpi.h

• code/pi/mpi/cpilog.c

• code/pi/mpi/cpilog_pack.c

• code/pi/mpi/Makefile

• code/pi/mpi/run.slurm

and the CnC version is available in the files:

• code/pi/cnc/parallel2.cnc

• code/pi/cnc/cpi2.cpp

• code/pi/cnc/cpi2.h

• code/pi/cnc/Makefile

• code/pi/cnc/run.slurm

The CnC pi code is structured identically to the primes code when looking at the parallel
elements. In the cpi2.cpp file, the compute step takes in some value to be operated on and
a parallel context. In this example, the number t is the x-value of the center of one of
the trapezoids from the trapezoids tag collection. The integral function value f(x) for that
x-value is put in the c.fvalues collection. In the main method, the parallel process begins
as soon as values are placed in the c.trapezoids tag collection inside of the for loop. In the
parallel2.cnc file, the collections are created first. Then the specifications for the compute
step are given. Finally, the main program sums up all f(x) values and computes the integral
approximation.

It can be noted that these series of steps are common to all CnC problems of this type.
It is possible to vary the details of the CnC graph and have different .cnc and .cpp files,
but these two benchmarks shown follow the same structure.

Tables 4.1 (a) and (b) show the results of a performance study using the MPI and CnC
code, respectively. Both codes were run with 1, 2, 4, and 8 processes per node on a single
node, since as mentioned earlier we are using a non-distributed version of CnC. We chose
86 = 262,144, 88 = 16,777,216, and 810 = 1,073,741,824 for n because the numbers are both
large and divisible by 8. For the MPI code, as the number of processes per node increase the
time is halved, which follows a predictable and correct pattern. For CnC, our results showed

Table 4.1: Wall clock time in seconds using the midpoint rule for increasing values of n using
1, 2, 4, and 8 threads. The dashes indicate a failed job due to lack of memory.

num threads n = 86 n = 88 n = 810

1 0.0101 0.2936 18.32
2 0.0048 0.1553 9.18
4 0.0025 0.0791 4.84
8 0.0006 0.0369 2.34

num threads n = 86 n = 88 n = 810

1 .2202 16.15 —
2 .2708 19.45 —
4 .2423 17.29 —
8 .2187 27.14 —

(a) Using MPI (b) Using CnC

6

that the code was correctly calculating π, but that the timing was severely off. Our times
were significantly longer than when using MPI. We formulated that the issues we had with
our timing was caused by the for loop that calculated π because it was done serially. In order
to check that this was in fact the issue we tested the code without the for loop. We found
out that in fact it did increase our time, but that was not the only issue with timing. Our
times for the code did not decrease as the number of processes per node increased as it did
when running the MPI version. The reason for CnC taking an unreasonable amount of time
for this code is the fact that it distributes all the data to threads individually. Therefore,
the data is only available in isolation on each thread and no partial sums of several function
values can be computed, which is what makes the MPI code effective for this problem. The
partial sums also avoid the need to collect all function values in the main program on one
thread. Also note that there was insufficient memory to run the n = 810 case in CnC. This
is partially caused both by the need to collect all function values in the main program;
the other contributing factor to the memory problems is the need to store all tag values
simultaneously, instead of computing them on the fly.

We conclude from the experience with this code that CnC should perform well if the
compute step contains a serial function that requires significant run time and whose tag is
independent of any other tag.

5 Poisson Equation

This example provides a parameter study where the execute method requires a substantial
amount of work which may vary from one task to the next. Parameter studies have variables,
answers, amount of work, and run times that can vary in unknown ways. Because of this,
parallelizing multiple runs of such a code can be difficult due to the fact that it is unknown
how long any task will take, making it impossible to evenly divide up the work evenly before
run-time. Fixing this requires using a master-slave system where the master process sends
tasks to the other processes after they finish the task they are currently working on. In
MPI, coding this is very involved and can lead to logical errors. In addition, the master
process normally only handles the coordination of the program, so it is not used in the
actual computational work. In contrast, this type of parameter study is easily done in CnC
because CnC divides up the tasks among the threads by itself at run-time. CnC’s advantage
over MPI is that it only needs to know what code and data are independent, and then
handles the distribution itself when the program is run. With MPI, the programmer would
need to decide how to do this and do so beforehand.

For this parameter study, we solved the partial differential equation (PDE)

−∆u(x, y) + a u(x, y) = f(x, y) for (x, y) ∈ Ω

for the equation u(x, y) using several values of the parameter a ≥ 0. This problem generalizes
the Poisson equation −∆u = f solved in [6]. That report discretizes the PDE by the
finite difference method and uses the iterative conjugate gradient (CG) method to solve the
resulting linear system. Our implementation uses the same methodology, with an additional

7

variable a. Setting a = 0 obtains the same results as the original Poisson equation described
in [6]. As a grows larger, the system matrix becomes more diagonally dominant and the CG
method will require fewer iterations to compute the results, which in turn decreases the run
time.

We created a serial version of the above Poisson function and had CnC parallelize multiple
calls to the function. In the code, inside the compute step we have a call to our Possion
function and the resulting iteration count and error calculation data is placed into two
collections. The a value that gets passed into the Poisson function was determined using a
random number generator that ranged from 0 to 1000. We put timers in the compute step
to find the time for each compute step as well as a timer for the entire program. Our tests
aimed to see if CnC could successfully allocate different executions of the Poisson code to
different processes and minimize running time. CnC is fit for this because when one process
finishes its Poisson calculation, it starts the next one and does not depend on the previous
one to do its work. In this way, all calculations of Poisson are parallel and CnC can optimally
distribute the work. The code for the poisson CnC program is available in the following
files:

• code/poisson/parallel.cnc

• code/poisson/main.cpp

• code/poisson/main.h

• code/poisson/p2.cpp

• code/poisson/p2.h

• code/poisson/Makefile

• code/poisson/run.slurm

The fundamental structure of the main.cpp and parallel.cnc files are the same as the
previous two sections with one exception. This Poisson code is more akin to what a CnC
code would look like for someone who is working with an existing serial, stand-alone code.
We took this serial code (p2.cpp) and modified it so that input parameters could be given
and the outputs are returned by its main method. The parallel.cnc and the main method
from the main.cpp file follow the format described in the primes and pi sections. The tag
collection for this problem is the collection of all a values, and the compute step in main.cpp

just calls the serial Poisson function from the existing p2.cpp file.
This is worth noting because it means that the CnC related files that the programmer

creates can remain as separate as possible from the code that ’solves the problem’. In
this parameter study example, the programmer already has working code that solves their
problem, CnC is just a tool to run it with varying parameters as efficiently as possible in
parallel. Therefore, limiting the need to know the intricities of the computational program
allows for the code to be parallelized easily by people who might not know the details of how
the code works (see Section 6).

First we give results from running this Poisson code with eight different a values, on an
N × N mesh with N = 512, using a single thread. This is output captured directly from
stdout after running the program:

8

a error iter time
486.90 9.794116e-07 369 1.09
135.44 2.569999e-06 594 1.72
274.75 1.489192e-06 477 1.38
916.46 5.078839e-07 287 0.86
561.38 8.260621e-07 367 1.08
700.98 5.619581e-07 330 0.97
840.19 5.165500e-07 300 0.89
840.19 5.165500e-07 300 0.89
Total time = 8.88

The a column shows the value of the parameter a for each call to the Poisson function. error
represents the maximum error between the true and computed solutions on the N ×N mesh
and iter represents the number of iterations required by the CG method to solve the problem
for this a. The values in the column time in each row with an a value show the wall clock
time in seconds as measured in the compute step, and the last row shows the total wall clock
time in seconds as measured in the main function. It can be seen that as a increases, the
number of iterations and time decrease. The errors are all small and within the tolerance
we gave the function, showing that our output is correct. The total time for this essentially
serial run is just the addition of all of the individual Poisson calculation run times. Also, by
printing directly to the screen, it is shown that the calculations are done and printed out in
a random order based on a seed in the program, as seen by the a values.

Next, we ran the same eight a values (generated by the random number generator using
the same seed) on 8 threads:

a error iter time
916.46 5.078839e-07 287 1.95
840.19 5.165500e-07 300 2.02
840.19 5.165500e-07 300 2.02
700.98 5.619581e-07 330 2.20
561.38 8.260621e-07 367 2.26
486.90 9.794116e-07 369 2.35
274.75 1.489192e-06 477 2.65
135.44 2.569999e-06 594 2.97
Total time = 2.98

Upon inspection it can be seen that the error and iter for each a are identical to the
corresponding case in the previous output. But the values of a appear ordered now; this
reflects the fact that stdout printed faster from those threads that completed faster, which
are those for the largest a values, since then iteration count and wall clock time are lowest.
It is noticable that there is an overhead associated with using CnC on several threads, since
each individual time for the Poisson function is larger than when using only one thread. But
it is also apparent that the total wall clock time is only slightly longer than the time from
the longest process. This shows that the parallelization was effective in decreasing the total
run time to as small as possible, namely controlled by the slowest thread.

The tests above used 8 values of a as a small example with clear structure to show
that actual run time screen output can confirm that CnC works. The value of parallel

9

Table 5.1: Poisson runs for increasing values of M where M is number of runs. The mean
time is the average time it took for each run. The estimated time is the expected time if
perfectly parallel.

M num threads max time worst case mean time best time actual time
8 8 2.97 2.97 2.30 2.30 2.98

64 8 4.63 31.75 2.54 20.33 21.19
256 8 4.98 137.82 2.71 86.84 88.44

1024 8 5.03 556.18 2.75 351.91 352.63

computing lies in applying CnC to much larger numbers of a values, of course. Therefore,
we ran the code with M random a values (selected uniformly between 0 and 1000) on
8 threads. Table 5.1 shows the results of such a study, using 8, 64, 256, and 1024 for
levels of M . The column “max time” represents the wall time of the longest of the M
cases, and “mean time” represents the average time among the M cases. The column
“worst time” = M × “max time”, which gives some idea of the worst case run time for the
scenario. The column “best time” = M × “mean time”, which gives an idea of the average
case run time for the scenario. Finally, the column “actual time” gives the observed time to
run the scenario.

In theory, the total run time should be the average run time of each Poisson call, multi-
plied by the number of Poisson calls (M), divided by the number of threads (eight). Notice
for the case of M = 1024 that the average run time was 2.75 seconds. The perfectly paral-
lelized run-time would be 351.91 seconds and our actual total time was 352.63 seconds. This
clearly shows how readily capable CnC is at running parameter studies for heavy computa-
tion problems.

We noted in the tests with 8 values of a on 1 and 8 threads on a N × N mesh with
N = 512 that there was a signficant overhead for each case associated with using multiple
threads. To analyze this further, we repeat these studies with N = 1024 and N = 2048,
which increases the wall clock time for each a value significantly. Here is the screen output
using mesh size N = 1024 and a single thread:

a error iter time
486.90 3.061169e-07 735 14.74
135.44 6.426513e-07 1204 18.23
274.75 3.722823e-07 974 14.82
916.46 1.327366e-07 591 9.12
561.38 2.321447e-07 732 11.18
700.98 1.620323e-07 683 10.46
840.19 1.330215e-07 618 9.47
840.19 1.330215e-07 618 9.50
Total time = 97.52

Next with eight threads:

10

916.46 1.327366e-07 591 14.46
561.38 2.321447e-07 732 17.77
840.19 1.330215e-07 618 18.15
700.98 1.620323e-07 683 19.59
486.90 3.061169e-07 735 20.67
274.75 3.722823e-07 974 24.36
840.19 1.330215e-07 618 25.34
135.44 6.426513e-07 1204 26.19
Total time = 26.20

And finally, using mesh size N = 2048. First with one thread:

486.90 1.386914e-07 1464 97.27
135.44 1.599581e-07 2443 149.05
274.75 9.086264e-08 1991 121.64
916.46 7.561528e-08 1214 74.54
561.38 8.433994e-08 1461 89.63
700.98 1.296888e-07 1414 86.66
840.19 7.705277e-08 1271 77.96
840.19 7.705277e-08 1271 77.93
Total time = 774.67

Next with eight threads:

840.19 7.705277e-08 1271 121.31
916.46 7.561528e-08 1214 179.06
840.19 7.705277e-08 1271 180.02
700.98 1.296888e-07 1414 193.27
486.90 1.386914e-07 1464 196.49
135.44 1.599581e-07 2443 214.99
561.38 8.433994e-08 1461 220.41
274.75 9.086264e-08 1991 229.87
Total time = 229.87

We find that parallelizing from 1 thread to 8 creates overhead that causes the individual
Poisson calculations on 8 threads to take a noticable amount of time longer than the Poisson
calculations on 1 thread. This overhead is not constant and scales up with each increase in
the mesh size.

11

6 DNA

This CnC test applies the same tools and style of code as the previous Poisson problem on a
current biological problem. At the REU Site: Interdisciplinary Program in High Performance
Computing (www.umbc.edu/hpcreu) where this research took place, another team attempted
to create an algorithm to solve a DNA related problem. The full report on their problem can
be found here [1]. Their research produced serial code written in C that required a parameter
study with n different values. To parallelize their parameter study, we changed the file type
from C (.c) to C++ (.cpp), created a CnC file for the item and tag collections, and created
a main program, similar to the previous Poisson example. While the significance of this
code is explained in their report in terms of this research, we emphasize here how simple it
is to use CnC to parallelize pre-existing serial code for a parameter study. We were able to
parallelize this DNA problem parameter study in less than 1 hour by just editing the main
and .cnc files from our Poisson problem. The only knowledge we had about the project
was the parameters and returns of their function should be set to and which parameters
needed parallelization. From there, we changed our tag and item collections to reflect this
and edited a few parts of the compute step. In MPI, parallelization would require more lines
of code and knowledge of the given problem, making CnC a better choice for this type of
task. Table 6.1 shows that CnC parallelizes the code and makes parameter studies even for
the largest required value of n feasible within reasonable amount of time.

Table 6.1: Wall clock time in seconds for calculating DNA entropy for all sample sizes from
1 to n using 1, 2, 4, and 8 threads.

num threads n = 32 n = 64 n = 128 n = 256 n = 512
1 0.075 0.910 13.704 219.137 3531.563
2 0.044 0.506 7.530 118.186 1847.807
4 0.029 0.292 4.201 68.140 1094.142
8 0.026 0.228 3.252 48.577 771.015

7 Conclusions

CnC is definitely a viable option for parallel computing. Constraints on what can be par-
allelized in the code is explicitly stated, but the actual distribution of the parallel code is
done automatically at runtime. In this way, the computer can distribute parallel tasks as
efficiently as possible, as demonstrated by our Poisson and DNA problems. The nature
of CnC’s parallelization makes operations that require accessing parallel elements in order
counter productive and time costly, shown in our Pi example. Also, based on the amount of
computation work a problem contains, overhead may be created that effects runtime. The
type of parallel problem where we found that CnC excels at are parameter studies where
multiple runs of a method each may vary in memory and run-time in unknown ways. Both

12

the Poisson and the DNA problems showed how useful both techniques from parallel com-
puting, and using an intuitive tool, such as CnC, can be for helping application researchers
in their research.

Acknowledgments

This research was conducted during Summer 2011 in the REU Site: Interdisciplinary Pro-
gram in High Performance Computing (www.umbc.edu/hpcreu) in the UMBC Department
of Mathematics and Statistics. This program is also supported by UMBC, the Department
of Mathematics and Statistics, the Center for Interdisciplinary Research and Consulting
(CIRC), and the UMBC High Performance Computing Facility (HPCF). The co-authors
Adjogah, Mckissack, and Sibeudu were supported, in part, by a grant to UMBC from the Na-
tional Security Agency (NSA). The computational hardware in HPCF (www.umbc.edu/hpcf)
is partially funded by the National Science Foundation through the MRI program (grant no.
CNS–0821258) and the SCREMS program (grant no. DMS–0821311), with additional sub-
stantial support from UMBC.

References

[1] A. Coates, A. Ilchenko, M. K. Gobbert, N. K. Neerchal, P. O’Neill, and
I. Erill, Optimization of computations used in information theory applied to base pair
analysis, Tech. Rep. HPCF–2011–13, UMBC High Performance Computing Facility, Uni-
versity of Maryland, Baltimore County, 2011.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall,
second ed., 1988.

[3] K. Knobe, M. Blower, C.-P. Chen, L. Treggiari, S. Rose, and
R. Newton, Intel Concurrent Collections for C++ 0.6 for Windows and
Linux. http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc, ac-
cessed July 11, 2011.

[4] R. McGregor, Using C++, Que Corporation, 1999.

[5] P. Pacheco, Parallel Programming with MPI, Morgan Kaufmann, 1997.

[6] A. M. Raim and M. K. Gobbert, Parallel performance studies for an elliptic test
problem on the cluster tara, Tech. Rep. HPCF–2010–2, UMBC High Performance Com-
puting Facility, University of Maryland, Baltimore County, 2010.

[7] W. Savitch, Absolute C++, Pearson Education, 2002.

13

