
Parallel Performance Studies for an Elliptic Test problem on the
Cluster maya 2013; Using 1-D and 2-D domain subdivisions

Kourosh M. Kalayeh, kourosh2@umbc.edu,

Department of Mechanical Engineering, University of Maryland, Baltimore County

Technical Report HPCF–2014–25, www.umbc.edu/hpcf > Publications

Abstract

One of the most important aspects of parallel computing is the communication between processes
since it has tremendous impact on overall performance of this method of computing. Consequently, it is
important to implement the parallel code in a way that communications between processes are taking
place in a most efficient way. In this study we want to investigate the effect of domain subdivision, 1-D
or 2-D, on performance of parallel computing. In this regard, the Poisson equation is solved as a test
problem using finite difference method with both 1-D and 2-D domain subdivisions. Both aforementioned
methods show good speedup. Although in most cases the grid-structured communication show slightly
better performance, the overall performance of 2-D domain subdivision does not indicate the superiority
of this method.

Key words. Parallel Computing, MPI, Finite Difference, Poisson Equation, 2-D Domain Subdivision,
Grid Topology

1 Introduction

1.1 HPCF

The UMBC High Performance Computing Facility (HPCF) is the community-based, interdisciplinary core
facility for scientific computing and research on parallel algorithms at UMBC. Started in 2008 by more than
20 researchers from ten academic departments and research centers from all three colleges, it is supported
by faculty contributions, federal grants, and the UMBC administration. The facility is open to UMBC
researchers at no charge. Researchers can contribute funding for long-term priority access. System admin-
istration is provided by the UMBC Division of Information Technology, and users have access to consulting
support provided by dedicated full-time graduate assistants. See www.umbc.edu/hpcf for more information
on HPCF and the projects using its resources.

Released in Summer 2014, the current machine in HPCF is the 240-node distributed-memory cluster
maya. The newest components of the cluster are the 72 nodes with two eight-core 2.6 GHz Intel E5-2650v2
Ivy Bridge CPUs and 64 GB memory that include 19 hybrid nodes with two state-of-the-art NVIDIA K20
GPUs (graphics processing units) designed for scientific computing and 19 hybrid nodes with two cutting-
edge 60-core Intel Phi 5110P accelerators. These new nodes are connected along with the 84 nodes with two
quad-core 2.6 GHz Intel Nehalem X5550 CPUs and 24 GB memory by a high-speed quad-data rate (QDR)
InfiniBand network for research on parallel algorithms. The remaining 84 nodes with two quad-core 2.8 GHz
Intel Nehalem X5560 CPUs and 24 GB memory are designed for fastest number crunching and connected
by a dual-data rate (DDR) InfiniBand network. All nodes are connected via InfiniBand to a central storage
of more than 750 TB.

The studies in this report use default Intel C compiler version 14.0 (compiler options -std=c99 -Wall -03)
with Intel MPI version 4.1. All results in this report use dedicated nodes with remaining cores idling using
the --exclusive option in the SLURM submission script. The default is to use --shared, which allocates
all processes to cores on one CPU, while --exclusive allocates tasks to cores on both CPUs. There is no
significant advantage to --shared for production runs, that is, performance studies are the only time that
this option should be used.

This report is an update to the technical report [1], which considers the same problem on the cluster
maya using one-dimensional domain subdivision with blocking communications. In this study, we expand

1



aforementioned report by studying the parallel performance of the same problem 1) using one-dimensional
domain subdivision with nonblocking communication and 2) using two-dimensional domain subdivision.

Consistent with technical report [1], Poisson equation with homogeneous Dirichlet boundary conditions
on a unit square domain in two spatial dimensions is solved as a test problem. The problem is solved
using finite difference method [2]. Discretizing the spatial derivatives by finite difference yields a system
of linear equations with a large, sparse, highly structured, symmetric, positive definite system matrix. As
mentioned in [1], this linear system is a classical test problem for iterative solvers. The parallel, matrix-
free implementation of the conjugate gradient method as appropriate iterative linear solver for this linear
system involves necessarily communications both collectively among all parallel processes and between pairs
of processes in every iteration. Therefore, this method provides an excellent test problem for the overall,
real-life performance of a parallel computer [1].

The outline of the remaining parts of this report can be categorized as follows; in Sec. 2 the test
problem along with numerical method used for solving it, will be explained briefly. In the same section,
the correctness of the numerical method will be checked using Matlab by plotting numerical solution along
with numerical error of the method. This section will be followed by Sec. 3, in which the Matlab code will
be transformed to C-code and the convergence of method will be investigated. Sec. 4, will be started by
implementing the parallel code of serial C-code which was developed in former chapter, using one-dimensional
domain subdivision with blocking and nonblocking communications, this chapter will be continued with two
dimensional domain subdivision with grid topology and row/column communicators. In the next chapter,
we will present and discuss the results for all three methods of communications. And finally, the conclusion
section summarizes and compares the results.

In this report, wherever any code is presented we implicitly assumed that the used variables has been
declared accordingly.

2 The Elliptic Test Problem; Poisson Equation

In this report, the Poisson equation with Dirichlet boundary condition as stated in Eq. (2.1) is considered
for test problem;

−∆u = f in Ω

u = 0 on ∂Ω
(2.1)

In which Ω = (0, 1) × (0, 1) ⊂ R2 is the unit square domain, ∂Ω is the boundary of the domain Ω and

Laplace operator defined as ∆u = ∂2u
∂x2 + ∂2u

∂y2 . The right hand side of Eq. (2.1), f , is chosen to be a function

in the form of Eq. (2.2). This choice enables us to solve the partial differential equation (PDE) stated in
(2.1) analytically and have the true solution as Eq. (2.3), this is important since it enables us to check our
numerical solution.

f(x, y) = −2π2 cos(2πx) sin2(πy)− 2π2 sin2(πx) cos(2πy) (2.2)

u(x, y) = sin2(πx) sin2(πy) (2.3)

The numerical method which has been chosen to be used for solving the above PDE is finite difference
method [2, 3].

2.1 Finite Difference Discretization

A grid of N + 2 mesh points in each spatial dimension, Ωh = {(xi, yj) = (ih, jh), i, j = 0, . . . , N + 1} with
uniform mesh width h = 1/(N + 1) is defined on the domain Ω. By applying second-order finite difference

2



approximation to the x and y derivative one can obtain

∂2u

∂x2
(xi, yj) ≈

u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj)

h2
(2.4)

∂2u

∂y2
(xi, yj) ≈

u(xi, yj−1)− 2u(xi, yj) + u(xi, yj+1)

h2
(2.5)

By applying (2.4) and (2.5) to (2.1) we can get

− u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj)

h2

− u(xi, yj−1)− 2u(xi, yj) + u(xi, yj+1)

h2
≈ f(xi, yj)

(2.6)

for convenience lets introduce uij as an approximation to u(xi, yj) i.e. uij ≈ u(xi, yj), thus we will have

−ui−1j − 2uij + ui+1j + uij−1 − 2uij + uij+1

h2
= f (2.7)

and by further simplification we will have

−ui−1j − ui+1j + 4uij − uij−1 − uij+1 = fh2 (2.8)

Eq. (2.8) is system of N2 linear equations with N2 unknown for interior points of the domain and it can be

written in standard form of Au = b with A ∈ RN2×N2

, and u, b ∈ RN2

. The system matrix A can be defined
recursively as tri-diagonal matrix with N ×N blocks of size N ×N each. As a result, we will have

A =


S T
T S T

. . .
. . .

. . .

T S T
T S

 (2.9)

with matrix S =tridiag (−1, 4,−1) ∈ RN×N and matrix T = −I ∈ RN×N . For the meshes with large
N , iterative methods such as the conjugate gradient (CG) method are appropriate for solving this linear
system.The system matrix A is known to be symmetric positive definite and thus method is guaranteed
to converge for this problem. In each iteration, the CG method needs exactly two inner products between
vectors, three vector updates, and one matrix-vector product involving the system matrix A. An important
observation that can be made here is, this matrix-vector product is only place that matrix A plays a role
in the algorithm, and as a result matrix-free implementation of the CG method is possible which results
in avoiding setting up any matrix. In order to be able to make use of this observation, one has to write a
function to carry out this matrix-vector product explicitly.

In light of the above and Eq. (2.8), the Ax.c function has been written to calculate v=Au in which v and
u are vectors with N2×1 dimension and A is a matrix with N2×N2 dimension. The C-interface of the used
algorithm to calculate the vector v is

for (j = 0; j < N; j++) {

for (i = 0; i < N; i++) {

temp = 4.0*u[i+N*j];

if (j > 0) temp -= u[i+N*(j-1)];

if (i > 0) temp -= u[i-1+N*j];

if (i < N-1) temp -= u[i+1+N*j];

if (j < N-1) temp -= u[i+N*(j+1)];

v[i+N*j]=temp;

}

}

3



It is noteworthy to mention that although C has row major ordering, by using v[i+N*j] we are using
1-D column major ordering to store vectors u and v as a 2-D N ×N array. This holds true for all vectors
and matrices presented in this study.

2.2 MATLAB Code

As earlier stated, we start solving the problem using Matlab version of the code in order to make sure that
algorithm is working. Fig. 2.1 shows numerical solution uh(x1, x2) and numerical error of the method with
33× 33 mesh points i.e. N=32 and h = 1/32, using this code. Clearly, the shape of the solution is consistent
with true solution of the problem. Also the maximum error occurred at the center of the domain and it is
in the order of 10−3 which is again consistent with theoretical predicted error h2 ≈ 10−3 for finite difference
method [2].

(a) (b)

Figure 2.1: mesh plots of (a) the numerical solution uh, of PDE stated in (2.1) vs. (x1, x2) (b)the numerical
error ‖u− uh‖∞ vs. (x1, x2) for mesh resolution N = 32

3 C-Code; Convergence study for the model problem

Based on Matlab code, we write the serial C-code. As already mentioned, we make use of an important
observation from numerical method used to solve this problem, specifically, matrix-free implementation of
the CG method. As a result we don’t build any matrix, instead we write Ax.c function to carry out the
matrix-vector product needed in this method. We study the convergence of finite difference method in
solving Eq. (2.1) using serial C-code. The CG method was started with zero vector as initial guess and the
solution is accepted as converged when the Euclidean vector norm of the residual is reduced to the fraction
10−6 of the initial residual. The summary of convergence study of finite difference method on this problem
is presented in Table 3.1 for sequence of progressively finer meshes. The true solution of the problem, u, as
stated in Eq. (2.3) is used for estimation the error of the numerical method.

The total dimension of the linear system (DOF), the norm of finite difference error ‖u− uh‖∞ , the ratio of
consecutive errors ‖u− u2h‖/‖u− uh‖, the number of CG iterations #iter, and wall clock time in HH:MM:SS

and seconds has been tabulated for each mesh resolution, N , in Table 3.1. As shown in the mentioned table,
the finite difference method converge as expected for this problem. The ratio of consecutive errors is always
around 4 which is consistent with theoretical predicted value.

4



Table 3.1: Convergence study of finite difference method for solving (2.1) using serial C-code.

N DOF ‖u− uh‖∞ Ratio #iter Wall clock time
Seconds HH:MM:SS

32 1024 3.01E-03 N/A 48 <0.01 <00:00:01
64 4096 7.78E-04 3.87 96 <0.01 <00:00:01

128 16384 1.98E-04 3.94 192 0.01 00:00:01
256 65536 4.98E-05 3.97 387 0.01 00:00:01
512 262144 1.25E-05 3.99 783 0.9 00:00:01

1024 1048576 3.13E-06 4.00 1581 10.01 00:00:10
2048 4194304 7.80E-07 4.01 3192 97.96 00:01:38
4096 16777216 1.94E-07 4.03 6452 782.66 00:13:03
8192 67108864 4.74E-08 4.09 13033 6301.73 01:45:02

16384 268435456 1.16E-08 4.10 26316 51120.88 14:12:01

Table 4.1: Summary of information needed to be received by process id from adjacent processes in order to
be able calculate l_v on process id in blocking and nonblocking method of communication

i l_j Needed information Process to be sent from
0≤i<N 0<l_j<l_N-1 - -
0≤i<N l_j = 0 l_u[i+N*(l_N-1)] idleft

0≤i<N l_j = l_N-1 l_u[i+N*(0)] right

4 Performance Studies on maya 2013

4.1 One-Dimensional Domain Subdivision

Clearly first step for studying the performance of parallel computing in solving Poisson equation (2.1) is to
parallelize the serial C-code developed in former section. In doing so, we implicitly assume that the mesh
resolution, N , is devisable by total number of processes, np. In one-dimensional parallel implementation of
CG method the domain and consequently each vector is split into as many blocks as parallel processes are
available and one block distributed to each process. That is, each parallel process possesses its own block
of each vector, and normally no vector is ever assembled in full on any process. In light of the above, Ax.c
function is the major issue in parallelizing the code.

We start parallelizing the serial code by some simple steps like defining l_N = N/np as a local mesh
resolution on each process, and changing vectors u and v to l_u and l_v, respectively with size of l_n = n/np

with n = N*N. Consequently, the total size of problem on each process also would be changed to l_n. Since we
are splitting domain in 1-D, the subscripts of the domain on each process would be 0≤i<N and 0≤l_j<l_N.

For illustrative purposes, Fig. 4.1 is showing the block of l_u’s stored in np = 3 processes, both in the
domain of the problem and in matrix format. By looking at Eq. (2.8) and Fig. 4.1 one can conclude that, the
update for l vi0 depends on l ui−10, l ui+10, l ui1 on process “id” and on l uil N−1 on process “id-1”. Thus, in
serial “Ax.c” we can calculate l_v[i+N*l_j]for all 0≤i<N and 1≤l_j<l_N-1 locally. But for l_v[i+N*l_j]
for 0≤i<N and l_j =0 we need the l_u[i+N*(l_N-1)] to be sent from process “idleft” i.e. “id-1” (we call
this vector gl). Analogously, l_v[i+N*l_j]for 0≤i<N and l_j=l_N -1, needs l_u[i+N*0]from process
“idright” i.e. “id+1” (we call this vector gr). Table 4.1 summarizes the information needed to be sent from
processes idright and idleft in order to calculate l_v on process id.

In light of the above, the parallel Ax.c function consists of three blocks of code; block A, B, D. Commu-
nications take place in block A, while calculations take place in blocks B and D. More specifically, in block B
local calculations are carried out, and in block C calculations which need information from other processes
are taken care of.

5



(a) (b)

Figure 4.1: (a) Schematic of the unit square domain (b) matrix format of problem (2.1) split one dimension-
ally into np=3 processes results in N*l_N elements on each process

For implementing the code using blocking communications, in order to avoid “deadlock” which is typical
error in parallel algorithms using these kind of communications, the following efficient way for communicating
data between processes is used; processes with even ranks receive first and then send information, and
processes with odd ranks send first and then receive the information. This has been accomplished by an
“if-else” statement. Below is the actual code used for communicating gl and gr in Ax.c function using
blocking communication.

/*Block A*/

if ((id%2) == 0){

MPI_Recv(gl, N, MPI_DOUBLE, idleft, 1, MPI_COMM_WORLD, &status);

MPI_Recv(gr, N, MPI_DOUBLE, idright, 2, MPI_COMM_WORLD, &status);

MPI_Send(&l_u[0+N*(l_N-1)], N, MPI_DOUBLE, idright, 1, MPI_COMM_WORLD);

MPI_Send(&l_u[0], N, MPI_DOUBLE, idleft, 2, MPI_COMM_WORLD);

}else{

MPI_Send(&l_u[0+N*(l_N-1)], N, MPI_DOUBLE, idright, 1, MPI_COMM_WORLD);

MPI_Send(&l_u[0], N, MPI_DOUBLE, idleft, 2, MPI_COMM_WORLD);

MPI_Recv(gl, N, MPI_DOUBLE, idleft, 1, MPI_COMM_WORLD, &status);

MPI_Recv(gr, N, MPI_DOUBLE, idright, 2, MPI_COMM_WORLD, &status);

}

It is noteworthy to mention that in calculation blocks in Ax.c function, special cautious should be taken
to avoid hitting boundaries of the domain. This can be accomplished by using several simple if statements.

Table 5.1 shows the wall clock time of solving test problem (2.1) with 3 different mesh resolutions;
4096 × 4096, 8192 × 8192, and 16384 × 16384 using one dimensional domain subdivision with blocking
communications up to 32 nodes with 1, 2, 4, 8, and 16 processes per node.

Also Table 5.4 is showing the parallel performance of solving the problem using 1-D domain subdivision
with blocking communications with total processes p =1, 2, 4, 8, 16, 32, 64, 128, and 256 with 8 processes
per node (whenever possible), while Table 5.5 is showing the performance study with the same total number
of processes but with 16 processes per node (whenever possible). More specifically 8 ppn case uses 1, 2, and
4 processes per node for p = 1, p = 2, and p = 4 respectively and 8 processes per node in all other situations
and 16 ppn case uses 1, 2, 4, 8, processes per node for p = 1, p = 2, p = 4, and p = 8 respectively and 16
processes per node for all other situations.

6



Parallel code for one dimensional domain subdivision with nonblocking communications is implemented
just by replacing the “MPI_Send” and “MPI_Receive”, with the nonblocking send and receive commands i.e.
“MPI_Isend” and “MPI_Ireceive” respectively and modifying some of the arguments of those two functions
like “Requests” and “Statuses” [4].

Table 5.2 is showing the wall clock time on maya for solving (2.1) using 1-D domain split with nonblocking
communications. Consistent with above explanation, Tables 5.6 and 5.7 are also showing the performance
of parallel computing using 1-D domain split with nonblocking communications with 8 processes per node
and 16 processes per node whenever possible respectively.

4.2 Two-Dimensional Domain Subdivision; Grid Topology

In MPI, a topology is mechanism for associating different addressing schemes with the processes belonging
to a group [4]. In this study, we want to identify the processes in MPI_COMM_WORLD with the coordinates of
a square grid and each row and each column of grid needs to form its own communicator.

The first assumption that need to be made in this section is that the total number of processes is complete
square i.e. p = q2. Then 2-D processes grid by can be set up using MPI_Cart_create command with following
syntax

MPI_Cart_create(MPI_COMM_WORLD, ndim, dim_size, wrap_around, reorder,

&grid_comm);

in which MPI_COMM_WORLD is the communicator that we wish to make our grid communicator from, ndim is
the number of dimensions in the grid, dim_size is size of each dimension, wrap_around is the periodicity
of each dimension, and reorder enables the system to optimize the mapping of the grid of processes to the
underlying physical processors by possibly reordering the processes in the group underlying MPI_COMM_WORLD.
In our case, the appropriate values of above arguments are

ndim = 2;

dim_size[0] = dimsize[1] = q;

wrap_around[0] = wrap_around[1] = 1;

reorder = 1;

After making grid-structured communicator, row and column communicators, row_comm and col_comm,
are created for each row and column in the grid using MPI_Cart_sub with following syntax

MPI_Cart_sub(grid_comm, row_free_coords, &row_comm);

MPI_Cart_sub(grid_comm, col_free_coords, &col_comm);

In the above syntax for MPI_Cart_sub, the row_free_coords and col_free_coords are arrays of boolean
and they specify wether each dimension belongs to new communicator or not. Consequently, for our case
they are

row_free_coords[0] = 0;

row_free_coords[1] = 1;

col_free_coords[0] = 1;

col_free_coords[1] = 0;

Fig. 4.2 is showing an schematic of 2-D square grid for np = 42 = 16, with two sample row and column
communicators, the numbers in parentheses are representing two-dimensional Cartesian coordinates of the
each process.

Fig. 4.3 is also showing the unit square domain of the test problem (2.1) with grid structure along with
l_u’s stored in process with coordinates (i, j). Fig . 4.3 (b) is showing the stored l_u’s in interior process
(i, j) in matrix format with its four adjacent processes.

Figs. 4.2 and 4.3 give very useful insights about the structure of this kind of communication. These figures
are also used to determine the data that needed to be sent and received from processes in the grid_comm in
order to calculate l_v.

7



Figure 4.2: Schematic of grid-structured processes with their rank and coordinates for a case 16 = 42. There
are 4 column and 4 row communicators in this particular case and one of each has been shown for illustrative
purposes.

(a) (b)

Figure 4.3: (a)Schematic of unit square domain of test problem (2.1) split two dimensionally into 42 = 16
processes along with l_u’s stored in interior process with coordinates (i, j) (b) l_u’s stored in process (i, j)
in matrix format with its four adjacent processes

As mentioned earlier, in this section unlike Sec. 4.1 the vectors u and v are split into two dimensions, i
and j. Consequently we have l_i and l_j rather than i and l_j that we had in one dimensional split. Thus,
based on Fig. 4.3, in the parallel Ax.c function, we can compute the products for l_v[l_i, l_j], or in
2-D column-major ordering, l_v[l_i+l_N*l_j] for all 0<l_i<l_N-1 locally i.e. those only need information
from l_u on the same process. But for l_v[l_i + l_N*l_j] for 0<l_i<l_N-1 and l_j = 0 we need
l_u[l_i+l_N*(l_N-1)] to be sent from process idleft (see Fig. 4.3). Similarly one can identify l_u’s that
need to be communicated and processes that need to carry out these communications in order or calculate

8



Table 4.2: Summary of information needed to be received by process (i, j) from four adjacent processes in
order to be able calculate l_v in grid-structures communicator

l_i l_j Needed information Process to be sent from
0<l_i<l_N-1 l_j = 0 l_u[l_i+l_N*(l_N-1)] idleft

0<l_i<l_N-1 l_j = l_N-1 l_u[l_i+l_N*(0)] idright

l_i = 0 0<l_j<l_N-1 l_u[l_N-1+l_N*(l_j)] idup

l_i = l_N-1 0<l_j<l_N-1 l_u[0+l_N*(l_j)] iddown

l_i = 0 l_j = 0 l_u[0+l_N*(l_N-1)] idright

l_u[l_N-1+l_N*(0)] idnorth

l_i = 0 l_j = l_N-1 l_u[0+l_N*(0)] idright

l_u[l_N-1+l_N*(l_N-1)] idnorth

l_i = l_N-1 l_j = 0 l_u[l_N-1+l_N*(l_N-1)] idleft

l_u[0+l_N*(0)] iddown

l_i = l_N-1 l_j = l_N-1 l_u[l_N-1+l_N*(0)] idright

l_u[0+l_N*(l_N-1)] iddown

l_v[l_i+l_N*l_j] on process (i, j). Table 4.2 summarizes these information.
The information which has to be sent from idleft and/or idright will be sent using row communicator,

row_comm, and the one that needs to be sent from idup and iddown will be sent using column communicator,
col_comm.

Careful examination of Table. 4.2 reveals that the information to be sent from idleft and idright are
contiguous in the memory however the one that need to be sent from idup and iddown are not contiguous in
the memory and as a result we can not use typical form of MPI_Send and MPI_Recv. The efficient solution to
overcome this problem is using MPI derived datatypes, and then MPI_Send and MPI_Recv with new_mpi_t

as datatype argument, thus we will have

MPI_Type_vector(l_N, 1, l_N, MPI_DOUBLE, &new_mpi_t);

In light of the above, the Ax.c function consists of 5 blocks of codes; block A, block B, block D, block
E, and block F. Block A is for communicating needed information from 4 adjacent processes in order to
construct l_v on process (i, j), we call these arrays gl, gr, gu and gd consistent with Fig. 4.4. Similar
to our blocking code the if-statements are used in order to specify the order of send and receive in row
and column communicators. More specifically, the processes with even j-coordinate will receive first and
processes with odd j-coordinate will send first. So the code will be

/*Block A*/

/* Communicating gl and gr in row_comm */

if ((j_col%2) == 0){

MPI_Recv(gl, l_N, MPI_DOUBLE, idleft, 1, row_comm, &status);

MPI_Recv(gr, l_N, MPI_DOUBLE, idright, 2, row_comm, &status);

MPI_Send(&l_u[0+l_N*(l_N-1)], l_N, MPI_DOUBLE, idright, 1, row_comm);

MPI_Send(&l_u[0], l_N, MPI_DOUBLE, idleft, 2, row_comm);

}else{

MPI_Send(&l_u[0+l_N*(l_N-1)], l_N, MPI_DOUBLE, idright, 1, row_comm);

MPI_Send(&l_u[0], l_N, MPI_DOUBLE, idleft, 2, row_comm);

MPI_Recv(gl, l_N, MPI_DOUBLE, idleft, 1, row_comm, &status);

MPI_Recv(gr, l_N, MPI_DOUBLE, idright, 2, row_comm, &status);

}

Similar explanation hold true for communicating gu and gd in col_comm i.e. processes with even i-
coordinate will receive first and processes with odd i-coordinate will receive first. So we will have

9



Figure 4.4: Schematic of the needed communication for interior process (i, j). Arrays gl and gr are used to
store the information that has been sent from processes (i, j − 1) and (i, j + 1) respectively. And gu and gd

are used to store the information that has been sent from processes (i− 1, j) and (i+ 1, j) respectively

/* Communicating gu and gd in col_comm */

if ((i_row%2) == 0){

MPI_Recv(gu, l_N, MPI_DOUBLE, idup, 3, col_comm, &status);

MPI_Recv(gd, l_N, MPI_DOUBLE, iddown, 4, col_comm, &status);

MPI_Send(&l_u[l_N-1+0*l_N], 1, new_mpi_t, iddown, 3, col_comm);

MPI_Send(&l_u[0], 1, new_mpi_t, idup, 4, col_comm);

}else{

MPI_Send(&l_u[l_N-1+0*l_N], 1, new_mpi_t, iddown, 3, col_comm);

MPI_Send(&l_u[0], 1, new_mpi_t, idup, 4, col_comm);

MPI_Recv(gu, l_N, MPI_DOUBLE, idup, 3, col_comm, &status);

MPI_Recv(gd, l_N, MPI_DOUBLE, iddown, 4, col_comm, &status);

}

Other blocks of the Ax.c function are calculating blocks; in block B, l_v is calculated using local in-
formation, in block D, l_v is calculated for cases 1 and 2 in Table. 4.2. Block E is for cases 3 and 4 in
aforementioned table. And finally, block F is calculating l_v for cases 5, 6, 7, and 8 in Table. 4.2. Also in
blocks D, E, and F we have to be careful about the boundary, we accomplish this with simple if-statements.

5 Results and Discussion

5.1 One Dimensional Domain Subdivision with Blocking Communication

As already mentioned, Table 5.1 collects the results of the performance study for solving Poisson’s equation
(2.1) in parallel using one dimensional domain subdivision with blocking communications, for mesh resolu-
tions of N = 4096, N = 8192, and N = 16384. More specifically, the wall-clock time of each mesh resolution
is reported for every single combination of 2i nodes and 2j processes on each node with i = 0, 1, 2, 3, 4, 5 and
j = 0, 1, 2, 3, 4 to ultimately use the maximum cores on each node. The reported time is in the format of
HH:MM:SS.

As explained earlier Tables 5.4 and 5.5 are reporting the performance of parallel computing using 1-D
domain split with blocking communications for 8 and 16 processes per node respectively. More specifically
in these tables, (a) wall clock time in seconds, (b) wall clock time in HH:MM:SS format, (c) observed speedup
defined as Sp = T1(N)/Tp(N), and (d) observed efficiency defined as Ep = Sp/p are demonstrated.Also
Figs. 5.1 and 5.2 are showing observed speedup and efficiency of the method for 8 and 16 processes per node

10



respectively. As stated in the tables and shown in the aforementioned figures, the performance of the one
with 8 processes per node is significantly better than the one with 16 processes per node.

5.2 One Dimensional Domain Subdivision with nonblocking Communication

Table 5.2 collects the results of the performance study for solving Poisson’s equation (2.1) in parallel using
one dimensional domain subdivision with nonblocking communications, for mesh resolutions of N = 4096,
N = 8192, and N = 16384. More specifically, the wall-clock time of each mesh resolution is reported for
every single combination of 2i nodes and 2j processes on each node with i = 0, 1, 2, 3, 4, 5 and j = 0, 1, 2, 3, 4
to ultimately use the maximum cores on each node. The reported time is in the format of HH:MM:SS.

Analogously, Tables 5.6 and 5.7 are tabulated with wall clock time in (a) seconds, (b) HH:MM::SS format
(c) observed speed up Sp, and (d) observed efficiency Ep for 1-D split with nonblocking communications
using 8 and 16 processes per node in order to investigate the performance of this method of communication.
Figs. 5.3 and 5.4 are showing observed speedup and efficiency of the method for 8 and 16 processes per
node respectively. Performance of parallel computing with nonblocking communications using 8 processes
per node is much higher, which is in line with the data obtained from blocking communications.

Also comparing the results from blocking and nonblocking communications with 8 processes per node
presented in Tables 5.4 and 5.6, Figs. 5.1 and 5.3 reveals that blocking and nonblocking communications
result in identical performance. The efficient way of communication in blocking implementation of the code
is the reason for this behavior. In fact this method of communication enhances the performance of blocking
code to such an extent that the superiority of nonblocking communications diminishes.

As a result of this observation, we carry out the performance study of solving the problem using two-
dimensional domain subdivision with blocking communications only.

5.3 Two-Dimensional Grid-structured Communicator

Table 5.3 is showing the wall-clock time for solving the problem split into two dimensions using grid-structured
communications. As mentioned earlier, for two dimensional split total number of processes should be a
complete square and consequently only some of the combinations of nodes and processes per node can be
used in performance study. For instance, with one node, only 1, 4, and 16 processes per node and similarly
for 2 nodes, only 2, and 8 processes per node can be used. With this logic we tabulate Table 5.3. The NA
in the aforementioned table indicates the combinations that yield to a total number of processes which are
not complete square.

As in Sec. 5.2, the performance study for two-dimensional domain subdivision is carried out with up
to 256 total number of processes with 8 and 16 processes per node (whenever possible). The results are
shown in Tables 5.8 and 5.9 respectively. Also Figs. 5.5 and 5.6 are showing speedup and efficiency of
parallel computing for two-dimensional split with 8 and 16 processes per node respectively. As indicated
in aforementioned tables and figures, consistent with results from one dimensional domain subdivision, the
performance of parallel computing with 16 processes per node decreases dramatically in comparison to 8
processes per node. Also, results from two-dimensional split are suggesting slight improvement with respect
to one dimensional split, although we expect to see much better performance. The reason for this behavior
can be the fact that this cluster, and its network card specifically, is so powerful that brings down the
superiority of two dimensional split.

11



Table 5.1: Wall clock time in HH:MM:SS for solving Eq. (2.1) by finite difference method with parallel
computing on cluster maya 2013 using the Intel compiler with Intel MPI. The results are obtained using
one-dimensional subdomain devision with blocking communication

(a) Mesh resolution N ×N = 4096× 4096
1 node 2 node 4 node 8 node 16 node 32 node

ppn= 1 00:12:23 00:06:22 00:03:14 00:01:43 00:00:42 00:00:17
ppn= 2 00:06:17 00:03:15 00:01:37 00:00:42 00:00:16 00:00:09
ppn= 4 00:03:30 00:01:49 00:00:58 00:00:26 00:00:10 00:00:06
ppn= 8 00:02:40 00:01:22 00:00:43 00:00:19 00:00:06 00:00:04
ppn= 16 00:02:43 00:01:23 00:00:42 00:00:17 00:00:07 00:00:06

(b) Mesh resolution N ×N = 8192× 8192
1 node 2 node 4 node 8 node 16 node 32 node

ppn= 1 01:41:21 00:50:47 00:25:32 00:12:56 00:06:38 00:03:21
ppn= 2 00:51:06 00:25:49 00:13:05 00:05:39 00:03:21 00:01:30
ppn= 4 00:28:43 00:14:31 00:07:20 00:03:48 00:01:58 00:00:54
ppn= 8 00:21:32 00:10:57 00:05:37 00:02:53 00:01:31 00:00:42
ppn= 16 00:21:03 00:10:36 00:05:23 00:02:51 00:01:31 00:00:46

(c) Mesh resolution N ×N = 16384× 16384
1 node 2 node 4 node 8 node 16 node 32 node

ppn= 1 13:54:17 06:57:50 03:29:55 01:45:21 00:53:26 00:27:19
ppn= 2 00:06:17 03:31:58 01:47:03 00:53:59 00:27:29 00:14:14
ppn= 4 03:57:15 02:04:20 01:02:24 00:30:36 00:15:35 00:08:11
ppn= 8 02:57:12 01:29:13 00:44:40 00:22:34 00:11:41 00:06:16
ppn= 16 02:50:22 01:25:24 00:43:11 00:21:49 00:11:29 00:06:19

12



Table 5.2: Wall clock time in HH:MM:SS for solving Eq. (2.1) by finite difference method with parallel
computing on cluster maya 2013 using the Intel compiler with Intel MPI. The results are obtained using
one-dimensional subdomain devision with nonblocking communication

(a) Mesh resolution N ×N = 4096× 4096
1 node 2 node 4 node 8 node 16 node 32 node

ppn= 1 00:12:29 00:06:18 00:03:10 00:01:35 00:00:42 00:00:00
ppn= 2 00:06:18 00:03:12 00:01:37 00:00:42 00:00:16 00:00:00
ppn= 4 00:03:31 00:01:49 00:00:56 00:00:24 00:00:09 00:00:00
ppn= 8 00:02:41 00:01:22 00:00:43 00:00:18 00:00:06 00:00:00
ppn= 16 00:02:42 00:01:22 00:00:42 00:00:17 00:00:06 00:00:00

(b) Mesh resolution N ×N = 8192× 8192
1 node 2 node 4 node 8 node 16 node 32 node

ppn= 1 01:41:20 00:50:44 00:25:30 00:12:56 00:06:33 00:03:18
ppn= 2 00:51:18 00:25:45 00:13:02 00:05:39 00:03:21 00:01:28
ppn= 4 00:28:27 00:14:17 00:07:22 00:03:48 00:01:57 00:00:53
ppn= 8 00:21:30 00:10:51 00:05:29 00:02:53 00:01:30 00:00:42
ppn= 16 00:21:03 00:10:38 00:05:23 00:02:51 00:01:30 00:00:45

(c) Mesh resolution N ×N = 16384× 16384
1 node 2 node 4 node 8 node 16 node 32 node

ppn= 1 13:54:02 06:57:22 03:29:17 01:45:03 00:53:33 00:27:06
ppn= 2 09:44:11 03:31:54 01:46:14 00:53:45 00:27:29 00:14:07
ppn= 4 03:52:55 01:56:16 00:59:40 00:30:22 00:15:36 00:08:09
ppn= 8 02:56:16 01:28:40 00:44:42 00:22:33 00:11:24 00:06:13
ppn= 16 02:50:11 01:25:23 00:43:20 00:21:57 00:11:28 00:06:29

13



Table 5.3: Wall clock time in HH:MM:SS for solving Eq. (2.1) by finite difference method with parallel
computing on cluster maya 2013 using the Intel compiler with Intel MPI. The results are obtained using
two-dimensional subdomain devision with blocking communication. As indicated in the table only combi-
nations of nodes and processes per node which yield to a complete square total number of processes can be
used in grid-structured communication.

(a) Mesh resolution N ×N = 4096× 4096
1 node 2 node 4 node 8 node 16 node 32 node

ppn= 1 00:12:23 NA 00:03:09 NA 00:00:40 NA
ppn= 2 NA 00:03:13 NA 00:00:40 NA 00:00:08
ppn= 4 00:03:38 NA 00:00:55 NA 00:00:09 NA
ppn= 8 NA 00:01:23 NA 00:00:19 NA 00:00:04
ppn= 16 00:02:41 NA 00:00:43 NA 00:00:06 NA

(b) Mesh resolution N ×N = 8192× 8192
1 node 2 node 4 node 8 node 16 node 32 node

ppn= 1 01:41:20 NA 00:25:03 NA 00:06:28 NA
ppn= 2 NA 00:25:35 NA 00:06:35 NA 00:01:24
ppn= 4 00:27:47 NA 00:07:24 NA 00:01:56 NA
ppn= 8 NA 00:10:58 NA 00:02:52 NA 00:00:39
ppn= 16 00:21:18 NA 00:05:27 NA 00:01:34 NA

(c) Mesh resolution N ×N = 16384× 16384
1 node 2 node 4 node 8 node 16 node 32 node

ppn= 1 13:54:03 NA 03:22:52 NA 00:50:36 NA
ppn= 2 NA 03:25:07 NA 00:51:26 NA 00:13:40
ppn= 4 03:47:40 NA 00:58:43 NA 00:15:14 NA
ppn= 8 NA 01:27:29 NA 00:22:29 NA 00:05:55
ppn= 16 02:49:28 NA 00:43:22 NA 00:11:15 NA

14



Table 5.4: Performance study of solving (2.1) on cluster maya 2013 using one-dimensional subdomain
devision with blocking communication. In obtaining these results 8 processes per node are used whenever
possible.

(a) Wall clock time in seconds
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

4096 743.27 377.13 210.23 160.26 82.11 43.15 18.65 6.36 4.23
8192 6081.34 3066.05 1723.06 1292.38 657.42 337.23 173.41 90.81 41.64

16384 50056.87 35051.14 14235.05 10631.79 5353.07 2679.84 1353.6 700.58 375.83

(b) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

4096 00:12:23 00:06:17 00:03:30 00:02:40 00:01:22 00:00:43 00:00:19 00:00:06 00:00:04
8192 01:41:21 00:51:06 00:28:43 00:21:32 00:10:57 00:05:37 00:02:53 00:01:31 00:00:42

16384 13:54:17 09:44:11 03:57:15 02:57:12 01:29:13 00:44:40 00:22:34 00:11:41 00:06:16

(c) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

4096 1.00 1.97 3.54 4.64 9.05 17.23 39.85 116.87 175.71
8192 1.00 1.98 3.53 4.71 9.25 18.03 35.07 66.97 146.05

16384 1.00 1.43 3.52 4.71 9.35 18.68 36.98 71.45 133.19

(d) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

4096 1.00 0.99 0.88 0.58 0.57 0.54 0.62 0.91 0.69
8192 1.00 0.99 0.88 0.59 0.58 0.56 0.55 0.52 0.57

16384 1.00 0.71 0.88 0.59 0.58 0.58 0.58 0.56 0.52

(a) (b)

Figure 5.1: (a) Observed speedup (b)observed efficiency in solving Eq. (2.1) using 1-D sub domain split
with blocking communications. In obtaining these results 8 processes per node were used whenever possible.

15



Table 5.5: Performance study of solving (2.1) on cluster maya 2013 using one-dimensional subdomain
devision with blocking communication. In obtaining these results 16 processes per node are used whenever
possible.

(a) Wall clock time in seconds
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

4096 743.27 377.13 210.23 160.26 162.59 82.5 41.56 17.08 6.77
8192 6081.34 3066.05 1723.06 1292.38 1263.15 636 323.01 171.45 91.49

16384 50056.87 35051.14 14235.05 10631.79 10221.6 5123.9 2590.83 1309.33 688.61

(b) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

4096 00:12:23 00:06:17 00:03:30 00:02:40 00:02:43 00:01:23 00:00:42 00:00:17 00:00:07
8192 01:41:21 00:51:06 00:28:43 00:21:32 00:21:03 00:10:36 00:05:23 00:02:51 00:01:31

16384 13:54:17 09:44:11 03:57:15 02:57:12 02:50:22 01:25:24 00:43:11 00:21:49 00:11:29

(c) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

4096 1.00 1.97 3.54 4.64 4.57 9.01 17.88 43.52 109.79
8192 1.00 1.98 3.53 4.71 4.81 9.56 18.83 35.47 66.47

16384 1.00 1.43 3.52 4.71 4.90 9.77 19.32 38.23 72.69

(d) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

4096 1.00 0.99 0.88 0.58 0.29 0.28 0.28 0.34 0.43
8192 1.00 0.99 0.88 0.59 0.30 0.30 0.29 0.28 0.26

16384 1.00 0.71 0.88 0.59 0.31 0.31 0.30 0.30 0.28

(a) (b)

Figure 5.2: (a) Observed speedup (b)observed efficiency in solving Eq. (2.1) using 1-D subdomain split with
blocking communications. In obtaining these results 16 processes per node are used whenever possible.

16



Table 5.6: Performance study of solving (2.1) on cluster maya 2013 using one-dimensional subdomain division
with nonblocking communication. In obtaining these results 8 processes per node are used whenever possible.

(a) Wall clock time in seconds
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

4096 748.98 378.37 210.62 161 82.49 42.53 18.11 6.27 4.33
8192 6079.61 3078.07 1706.81 1290.05 650.79 329.48 172.06 90.23 42.31

16384 50042.28 35051.14 13974.89 10576.04 5320.06 2682.23 1353.15 684.46 372.95

(b) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

4096 00:12:29 00:06:18 00:03:31 00:02:41 00:01:22 00:00:43 00:00:18 00:00:06 00:00:04
8192 01:41:20 00:51:18 00:28:27 00:21:30 00:10:51 00:05:29 00:02:52 00:01:30 00:00:42

16384 13:54:02 09:44:11 03:52:55 02:56:16 01:28:40 00:44:42 00:22:33 00:11:24 00:06:13

(c) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

4096 1.00 1.98 3.56 4.65 9.08 17.61 41.36 119.45 172.97
8192 1.00 1.98 3.56 4.71 9.34 18.45 35.33 67.38 143.69

16384 1.00 1.43 3.58 4.73 9.41 18.66 36.98 73.11 134.18

(d) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

4096 1.00 0.99 0.89 0.58 0.57 0.55 0.65 0.93 0.68
8192 1.00 0.99 0.89 0.59 0.58 0.58 0.55 0.53 0.56

16384 1.00 0.71 0.90 0.59 0.59 0.58 0.58 0.57 0.52

(a) (b)

Figure 5.3: (a) Observed speedup (b)observed efficiency in solving Eq. (2.1) on cluster maya 2013 using 1-D
subdomain split with nonblocking communications. In obtaining these results 8 processes per node are used
whenever possible.

17



Table 5.7: Performance study of solving (2.1) on cluster maya 2013 using one-dimensional subdomain
devisions with nonblocking communications. In obtaining these results 16 processes per node are used
whenever possible.

(a) Wall clock time in seconds
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

4096 748.98 378.37 210.62 161 161.85 81.98 41.58 17.35 5.99
8192 6079.61 3078.07 1706.81 1290.05 1263.44 638.33 322.7 167.91 90.32

16384 50042.28 35051.14 13974.89 10576.04 10211.37 5122.68 2600.31 1316.56 687.69

(b) Wall clock time in HH:MM:SS
N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

4096 00:12:29 00:06:18 00:03:31 00:02:41 00:02:42 00:01:22 00:00:42 00:00:17 00:00:06
8192 01:41:20 00:51:18 00:28:27 00:21:30 00:21:03 00:10:38 00:05:23 00:02:48 00:01:30

16384 13:54:02 09:44:11 03:52:55 02:56:16 02:50:11 01:25:23 00:43:20 00:21:57 00:11:28

(c) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

4096 1.00 1.98 3.56 4.65 4.63 9.14 18.01 43.17 125.04
8192 1.00 1.98 3.56 4.71 4.81 9.52 18.84 36.21 67.31

16384 1.00 1.43 3.58 4.73 4.90 9.77 19.24 38.01 72.77

(d) Observed efficiency Ep

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256

4096 1.00 0.99 0.89 0.58 0.29 0.29 0.28 0.34 0.49
8192 1.00 0.99 0.89 0.59 0.30 0.30 0.29 0.28 0.26

16384 1.00 0.71 0.90 0.59 0.31 0.31 0.30 0.30 0.28

(a) (b)

Figure 5.4: (a) Observed speedup (b)observed efficiency in solving Eq. (2.1) on cluster maya 2013 using 1-D
split with nonblocking communications. In obtaining these results 16 processes per node are used whenever
possible.

18



Table 5.8: Performance study of solving (2.1) on cluster maya 2013 using two-dimensional subdomain
devision with blocking communication. In obtaining these results 8 processes per node are used whenever
possible

(a) Wall clock time in seconds
N p = 1 p = 4 p = 16 p = 64 p = 256

4096 742.78 218.35 82.56 18.91 4.27
8192 6080.04 1666.84 658.06 171.66 39.32

16384 50042.98 13660.22 5248.86 1349.19 354.97

(b) Wall clock time in HH:MM:SS
N p = 1 p = 4 p = 16 p = 64 p = 256

4096 00:12:23 00:03:38 00:01:23 00:00:19 00:00:04
8192 01:41:20 00:27:47 00:10:58 00:02:52 00:00:39

16384 13:54:03 03:47:40 01:27:29 00:22:29 00:05:55

(c) Observed speedup Sp

N p = 1 p = 4 p = 16 p = 64 p = 256
4096 1.00 3.40 9.00 39.28 173.95
8192 1.00 3.65 9.24 35.42 154.63

16384 1.00 3.66 9.53 37.09 140.98

(d) Observed efficiency Ep

N p = 1 p = 4 p = 16 p = 64 p = 256
4096 1.00 0.85 0.56 0.61 0.68
8192 1.00 0.91 0.58 0.55 0.60

16384 1.00 0.92 0.60 0.58 0.55

(a) (b)

Figure 5.5: (a) Observed speedup (b)observed efficiency in solving Eq. (2.1) on cluster maya 2013 using 2-D
subdomain split with blocking communications. In obtaining these results 8 processes per node are used
whenever possible.

19



Table 5.9: Performance study of solving (2.1) on cluster maya 2013 using two-dimensional subdomain
devision with blocking communications. In obtaining these results 16 processes per node are used whenever
possible.

(a) Wall clock time in seconds
N p = 1 p = 4 p = 16 p = 64 p = 256

4096 742.78 218.35 160.82 43.14 6.31
8192 6080.04 1666.84 1278.04 327.14 93.72

16384 50042.98 13660.22 10168.43 2602.15 675.01

(b) Wall clock time in HH:MM:SS
N p = 1 p = 4 p = 16 p = 64 p = 256

4096 00:12:23 00:03:38 00:02:41 00:00:43 00:00:06
8192 01:41:20 00:27:47 00:21:18 00:05:27 00:01:34

16384 13:54:03 03:47:40 02:49:28 00:43:22 00:11:15

(c) Observed speedup Sp

N p = 1 p = 4 p = 16 p = 64 p = 256
4096 1.00 3.40 4.62 17.22 117.71
8192 1.00 3.65 4.76 18.59 64.87

16384 1.00 3.66 4.92 19.23 74.14

(d) Observed efficiency Ep

N p = 1 p = 4 p = 16 p = 64 p = 256
4096 1.00 0.85 0.29 0.27 0.46
8192 1.00 0.91 0.30 0.29 0.25

16384 1.00 0.92 0.31 0.30 0.29

(a) (b)

Figure 5.6: (a) Observed speedup (b)observed efficiency in solving Eq. (2.1) on cluster maya 2013 using
t2-D subdomain split with blocking communications. In obtaining these results 16 processes per node are
used whenever possible.

20



6 Conclusions

In this report, the Poisson equation was solved as a test problem to study the performance of parallel
computing on cluster maya 2013 using one dimensional domain subdivision with blocking, and nonblocking
communications, and two dimensional domain subdivision with grid-structured communications.

All of the results from one dimensional split with blocking and nonblocking communications as well as
two dimensional split showed satisfactory speedup. Moreover, one dimensional split with both methods of
communications suggested identical results. As discussed in details, this behavior stems from the efficient
implementation of send/receive commands used in blocking method of communications. Another important
observation was the huge improvement of performance with using 8 processes per node whenever possible
instead of using 16 processes per node.

The results from two dimensional split showed slight improvement, which was not what we expected.
The reason for this behavior can be the power of cluster maya 2013 and its network card in particular which
diminishes the superiority of two dimensional split. In consistent with one dimensional domain subdivision,
the results using two dimensional split with 8 processes per node showed much higher performance in
comparison to 16 processes per node.

7 Acknowledgments

This technical report started as a final project for Math 627, Introduction to Parallel Computing, instructed
by Professor Matthias K. Gobbert during Fall 2014 at UMBC.

I would like to express my sincere gratitude to my advisor, Professor Panos G. Charalambides for his
support. I also would like to thank Professor Gobbert for all of his help and guidance .

The hardware used in the computational studies is part of the UMBC High Performance Computing
Facility (HPCF). The facility is supported by the U.S. National Science Foundation through the MRI pro-
gram (grant nos. CNS–0821258 and CNS–1228778) and the SCREMS program (grant no. DMS–0821311),
with additional substantial support from the University of Maryland, Baltimore County (UMBC). See
www.umbc.edu/hpcf for more information on HPCF and the projects using its resources.

References

[1] S. Khuvis and M. K. Gobbert, “Parallel performance studies for an elliptic test problem on the cluster
maya,” Technical Report HPCF–2014–6, UMBC High Performance Computing Facility, University of
Maryland, Baltimore County, 2014.

[2] K. Atkinson, An Introduction to Numerical Analysis. Wiley, 2nd ed., 1989.

[3] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge ;
New York: Cambridge University Press, 3rd ed., 2007.

[4] P. Pacheco, Parallel Programming with MPI. San Francisco, Calif: Morgan Kaufmann, 1997.

21


