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Abstract

We present a model for rarefied gas flows that are characterized by reactive species as minor constituents in a dominant
inert carrier species. The kinetic transport and reaction model consists of a system of transient linear Boltzmann equations
for the reactive species in the flow. This model applies to a wide range of transport regimes, including the transition regime
in which both transport and collisions between molecules must be taken into account, characterized by Knudsen numbers
on the order of unity. A numerical simulator based on a spectral Galerkin method in velocity space approximates each
linear Boltzmann equation by a system of transient conservation laws in space and time with diagonal coefficient matrices,
which are solved using the discontinuous Galerkin method. This deterministic solver gives direct access to the kinetic den-
sity that is the solution to the Boltzmann equation, as a function of position, velocity, and time. It is valuable to have direct
access to the velocity dependence in order to analyze the underlying kinetic causes of macroscopic observeables. Using
chemical vapor deposition as an important application example, the influence of process parameters is studied in two-
dimensional reference studies and transient studies for a three-dimensional domain that represents structures seen during
integrated circuit fabrication.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Many important manufacturing processes for integrated circuits involve the flow of gaseous reactants at
pressures that range from very low to atmospheric [18]. Correspondingly, the mean free path k (the average
distance that a molecule travels before colliding with another molecule) ranges from less than 0.1 lm to over
100 lm. The typical size of the electronic components (called �features� during integrated circuit processing) is
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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now below 1 lm and the size of the chemical reactor, in which the gas flow takes place, can be on the order of a
meter in one or more dimensions. Thus, models on a range of length scales L* are of interest, each of which
needs to be appropriately selected to be valid on its length scale.

The appropriate transport model at a given combination of pressure and length scale is determined by the
Knudsen number Kn, defined as the ratio of the mean free path and the length scale of interest Kn := k/L*,
which is a dimensionless group obtained in the non-dimensionalization of the Boltzmann transport equation
[18]: For very small Kn, the Boltzmann equation simplifies to the equations of continuum flow models. For
very large Kn, the collision term in the Boltzmann equation goes to zero and collisionless or ballistic transport
models are appropriate. For intermediate Kn, flow is in the transition regime and the Boltzmann equation is
appropriate. Guidelines for deciding which flow regime should be modeled differ somewhat. It is safe to say
that for Kn < 0.01, continuum equations are appropriate, while for Kn > 100.0, ballistic transport models are
appropriate.

Our interest includes models on the micron- to millimeter-scale at a range of pressures, resulting in Knud-
sen numbers ranging across the wide spectrum from Kn = 0.01 to Kn ! 1, with a particular focus on the
transition regime with Kn � 1.0. We have developed a kinetic transport and reaction model (KTRM) for mul-
ticomponent, reactive flows typical of those seen in integrated circuit fabrication equipment. The KTRM is
represented by a system of linear Boltzmann equations for all ns reactive species in dimensionless form
of ðiÞ

ot
þ v � rxf ðiÞ ¼ 1

Kn
Qi f

ðiÞ� �
; i ¼ 1; . . . ; ns; ð1Þ
with the linear collision operators
Qi f
ðiÞ� �

ðx; v; tÞ ¼
Z
R3

riðv; v0Þ MiðvÞf ðiÞðx; v0; tÞ �Miðv0Þf ðiÞðx; v; tÞ
� �

dv0;
where ri(v,v 0) = ri(v 0,v) > 0 is a given collision frequency model and Mi(v) denotes the Maxwellian density of
species i. The left-hand side of (1) models the advective transport of molecules of species i (local coupling of
spatial variations via the spatial derivatives $x f

(i)), while the right-hand side models the effect of collisions
(global coupling of all velocities in the integral operators Qi). The unknown functions f (i)(x,v, t) in this kinetic
model represent the (scaled) probability density, which we call kinetic density for short and to distinguish it
clearly from other densities, that a molecule of species i = 1, . . .,ns is at a position in [x,x + dx] with a velocity
in [v,v + dv] at a time in [t, t + dt]. Its values need to be determined at all points x 2 X � R3 and for all velocity
vectors v 2 R3 at all times 0 < t 6 tfin. Models in both two and three dimensions are of interest for our appli-
cations, but we write all equations in three dimensions for clarity of presentation. Notice that while the equa-
tions in (1) appear decoupled, they actually remain coupled through the boundary conditions at the wafer
surface that involve general models for the interaction of the gas phase reactive species with wafer surface.

The purpose of this paper is to provide a detailed derivation to the KTRM for multi-species collisional gas
flow in a dominant carrier gas (Section 2), and to demonstrate its predictive capabilities (Section 4); the
numerical method for the simulations is sketched in Section 3. This work extends the collision-less model that
we introduced for the process of atomic layer deposition (ALD) in two dimensions [13–16] and three dimen-
sions [26]. First, results for this extended model are contained in [12,25]. Other work, more focused on the
numerical method, can be found in [17] and on the scalability of the parallel implementation in [12,17,25,27].

We accomplish the extension to collisional transport by combining modeling techniques from neutron
transport (see, e.g., [8, Chapter IV]) that allow us to pose the KTRM as a system of linear Boltzmann equa-
tions with numerical techniques originally devised for the semiconductor Boltzmann equation in [22–24]. Two
of the fundamental challenges of the Boltzmann transport equation are the quadratic non-linearity of its solu-
tion and the high dimensionality of the integral in the collision operator. As in the context of neutron trans-
port, the fact that the reactive species are at least an order of magnitude less dense than the inert carrier gas
gives rise to the linear Boltzmann equation as appropriate model in (1). The model is simpler in that the solu-
tion appears linearly in the collision operator which involves only integration over velocity space. The remain-
ing fundamental challenge for numerical simulations of kinetic models is the high dimensionality of the phase
space variables (x,v) that need to be discretized, and at every time step if transient studies are desired.
Historically, Monte Carlo methods [3] were usually used to attack the problem, as deterministic methods
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could not resolve the phase space adequately on available computers. Recent work [7,11] has demonstrated
that efficient deterministic methods can be competitive with Monte Carlo methods. Besides the inherent
advantage of avoiding stochastic variability, [7,11] also show that deterministic methods can give direct access
to the kinetic density as a function of v at selected positions x and times t. For these same reasons, we chose a
deterministic simulator for the KTRM.

Since the operating conditions of the applications under consideration give rise to Knudsen numbers in a
range that includes the transition regime, a kinetic model is necessary. Simultaneously, since the KTRM can
be formulated as a system of linear Boltzmann equations and the solutions are not expected to be too far from
Maxwellian, it is appropriate to use a moment method approach following, for instance, the formulation in
[22–24] for the semiconductor Boltzmann equation. But the numerical challenges are quite different in those
applications: The spatial domain of a transistor channel is reasonably modeled as one-dimensional, and even
with two-dimensional extensions of interest (e.g., [6]), the most fundamental numerical difficulty still lies in the
coupling of the linear Boltzmann equation with the Poisson equation that is driven by an applied voltage
whose values vary over several orders of magnitude. By contrast, we are materially interested in multi-species
models, with coupling to reaction models through boundary conditions, and in developing a simulator for
two- and three-dimensional problems, whose domains are irregular in shape. This explains our particular for-
mulation [17] of the spectral Galerkin method in velocity space that gives a system of hyperbolic equations
with diagonal system matrices for every Boltzmann equation in our model and makes dealing with higher
dimensions systematic, and the use of a finite element method to discretize the physical domain X that is
designed to discretize higher dimensional domains of any shape.

The remainder of this paper is organized as follows: Section 2 derives the KTRM in (1) in detail with its
assumptions and our choices for the model and non-dimensionalization parameters. Section 3 provides a brief
overview of the numerical method used in the simulator for the KTRM. Section 4 shows the ability of the
KTRM to gain insight into phenomena in an application example, the simulation of initial deposition in
chemical vapor deposition: First, Section 4.1 analyzes the behavior of the model as two physical parameters
(the sticking factor c0 of the deposition and the Knudsen number Kn) are varied and demonstrates the mean-
ing of the kinetic density f (i)(x,v, t) as a function of its velocity argument v at a specific position x and time t.
Then, Section 4.2 shows results of the KTRM used to model chemical vapor deposition in a three-dimensional
domain with a realistic irregular shape and analyzes the effect of different Knudsen numbers.

2. The model

2.1. The spatial domain

Fig. 1 shows two views of the spatial domain X � R3 for a representative trench/via feature; more precisely,
the plots show the solid wafer surface Cw � oX consisting of a 0.3 lm deep trench (which in practice can be
very long) of width 0.4 lm (x1-coordinates between 0.3 and 0.7), into which is etched another 0.3 lm deep via
Fig. 1. Two views of the solid wafer surface of the three-dimensional trench/via feature. The domain X is the gaseous region above the
wafer surface up to the interface to the bulk gas at x3 = 0.3, the top of the plot box.
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(round hole). The domain X for our model is the gaseous region above the solid wafer surface Cw up to the top
Ct of the plot box at x3 = 0.3 lm and bounded on the sides by the vertical parts of the plot box collectively
denoted by Cs. The portions of the boundary are chosen mutually disjoint and such that oX = Cw [ Ct [ Cs.

In our context of deposition processes in the manufacturing of computer chips, the trench and the via
would have been etched in the previous production step. The purpose of the present manufacturing step is,
for instance, to fill them with conducting material that will act as connection between the electronic compo-
nents of the chip. Since this domain does not admit any symmetries that allow for a reduction to a two-dimen-
sional problem, this example demonstrates the importance of being able to accommodate a three-dimensional
domain with irregular shape.
2.2. The dimensional model equations

To better accommodate the chemical reactions vital to the applications of interest here, we use molar units,
that is, the kinetic density f (i)(x,v, t) has units of mol/(cm3 (cm/s)3) such that �f (i)(x,v, t)dv defines the molar
concentration ci(x, t) of species i in mol/cm3. Using the molecular weight xi of species i with units g/mol, these
variables can be related to the mass density qi = xici and to the mass-scaled kinetic density ~f

ðiÞ ¼ xif ðiÞ such
that qi ¼

R
~f
ðiÞðx; v; tÞdv. Conventions of process engineering are the reason we do not use SI units but rather

the cgs-system with base units cm for length, g for mass, and s for time.
Our derivation of the KTRM starts with the dimensional system of non-linear Boltzmann equations appro-

priate for a multicomponent system with ns + 1 chemical species i = 0,1, . . .,ns
of
ot

ðiÞ
þ v � rxf ðiÞ ¼

Xns
j¼0

Qij f ðiÞ; f ðjÞ� �
þ
Xns
j¼0

Xns
k¼0

Xns
‘¼0

Rk‘
ij f ðiÞ; f ðjÞ; f ðkÞ; f ð‘Þ� �

. ð2Þ
To distinguish the effects of purely elastic collisions from collisions that also involve a chemical reaction, the
terms are written in additive form in (2); i.e., following, for instance, [9, p. 224] and the original references cited
there, the collision kernels Bij in the collision operators Qij model elastic collisions and the functions W k‘

ij in the
reaction operators Rk‘

ij reactive collisions. In more detail, the collision operator Qij models collisions between
molecules of species i and j. It can be stated in many forms that differ in subtle details; we will follow the for-
mulation used in [8, p. 64] (adjusted for our units)
Qij f ðiÞ; f ðjÞ� �
¼
Z
R3

Z 2p

0

Z p=2

0

f ðiÞ0f ðjÞ0
� � f ðiÞf ðjÞ

�

h i
Bijð#; V Þd#dedv� ð3Þ
with the short-hand notations f (i)
0
= f (i)(x,v 0, t), f ðjÞ0

� ¼ f ðjÞðx; v0�; tÞ, f
(i) = f (i)(x,v, t), and f ðjÞ

� ¼ f ðjÞðx; v�; tÞ. In
turn, v0 and v0� are short-hand notations for the pre-collision velocities related to v and v* via the conservation
of momentum and energy
mivþ mjv� ¼ miv
0 þ mjv

0
�; ð4aÞ

miv2 þ mjv2� ¼ miv02 þ mjv02� ; ð4bÞ
where we use the notations v = |v|, v* = |v*|, v
0 = |v 0|, and v0� ¼ jv0�j. In (3), Bij(#,V) in units of cm3/(mol s) is the

collision kernel scaled properly for our units. The function Bij(#,V) depends only on the magnitude of the rel-
ative velocity V = |V| = |v � v*| and on the collision angle # that is defined as the angle between V and v � v 0.

For the form of the reaction operators, we follow [8,9,18] that propose a generalization from collisions to a
class of chemical reactions in the gas phase by defining the reaction term Rk‘

ij as
Rk‘
ij ¼

Z
R3

Z
R3

Z
R3

f ðkÞ0f ð‘Þ0
� � f ðiÞf ðjÞ

�

h i
W k‘

ij ðv; v�; v0; v0�Þdv� dv0 dv0� ð5Þ
with the short-hand notations f (k)
0
= f (k)(x,v 0, t), f ð‘Þ0

� ¼ f ð‘Þðx; v0�; tÞ, f
(i) = f (i)(x,v, t), and f ðjÞ

� ¼ f ðjÞðx; v�; tÞ,
but where the velocities v, v*, v

0, and v0� are now taken as independent variables. Here, W k‘
ij models a reaction

in which molecules of species k and ‘ become molecules of species i and j.
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To motivate the particular form of Rk‘
ij that models binary reactive collisions, notice that it is a generaliza-

tion of the collision operator Qij that models binary elastic collisions: Prevent the molecules in a reactive col-
lision in Rk‘

ij from changing species by fixing indices in W k‘
ij ¼ W ijdikdj‘ (with Kronecker deltas), thus dropping

out the summations over k and ‘, which makes the collision elastic. Then enforce momentum and energy
conservation by introducing Dirac delta functions by setting [8, p. 65]
W ijðv; v�; v0; v0�Þ ¼ Sijð#; V Þdðmivþ mjv� � miv
0 � mjv

0
�Þ � d miv2 þ mjv2� � miv02 � mjv02�

� �
; ð6Þ
where the choice of the function
Sijð#; V Þ ¼
1

2

Bijð#; V Þ
2V cos# sin#

m3
i m

3
j

m2
ij

ð7Þ
with the reduced mass mij := (mimj)/(mi + mj) of species i and j [8, p. 67] establishes the connection to a col-
lision operator of the form (3), as follows: First, integrate out v0� using the conservation of momentum, which
introduces a factor 1=m3

j from the delta function. Second, transform v0 2 R3 to k :¼ miðv� v0Þ 2 R3, which
gives a factor 1=m3

i from the Jacobian of the transformation. Third, introduce spherical coordinates (k,#, e)
for k with polar axis V and polar angle #, which introduces the standard differential dk = k2dksin#d#de with
k = |k| 2 (0,1), # 2 (0,p), and e 2 (0,2p). Finally, the integral with respect to k is then evaluated using the del-
ta function for energy conservation [8, p. 65], resulting in the factor 2m2

ijV cos#. The integration over # 2 (0,p)
and e 2 (0,2p) amounts to an integration over the whole unit sphere; to get Qij with # 2 (0,p/2) as in (3), we
have the additional factor 1/2 in Sij; compare [8, pp. 57 and 65].

The applications in microelectronics manufacturing, for which we endeavor to develop a model, involve the
flow of gases through chemical reactors. These processes typically use an inert carrier gas that is maintained at
a constant (relatively) low pressure throughout, with the (expensive) reactive gases switched on only when de-
sired. While at (relatively) low pressure, the carrier gas is still (at least) an order of magnitude denser than the
reactive chemicals. We denote this special species as i = 0 and the reactive species as i = 1, . . .,ns. Since the
inert carrier gas does not react with any other species, we have Rk‘

ij ¼ 0 above, whenever any index i, j, k,
or ‘ is 0, that is, the summations of Rk‘

ij in (2) can actually start at index 1 instead of 0 and are not present
at all in the equation for i = 0. Moreover, since species 0 is (at least) an order of magnitude denser than
the other species j = 1, . . .,ns, we can assume that |Qi0| � |Qij| as well as jQi0j � jRk‘

ij j for j,k,‘ = 1, . . .,ns in
all equations. These arguments decouple the equation for i = 0 from those for i = 1, . . .,ns in (2). Notice that
we also need the inertness of i = 0 to ensure that it is not involved in the reactive boundary conditions at the
wafer surface.

If we consider the flow on the scale of a feature, with its domain close to the wafer surface, we can addi-
tionally assume that the flow of the carrier gas is well established and not affected by the introduction of reac-
tive species. Hence, we assume that species i = 0 is in a spatially homogeneous steady-state during our
simulations. Putting all information about i = 0 together, f (0) satisfies the equation Q00(f

(0), f (0)) = 0. All solu-
tions to this equation are in the form of Maxwellians, which we define in the following for all species for future
reference after introducing reference quantities appropriate for our applications of interest.

Although we treat flow on small spatial scales in this paper, we retain a focus on coupling these small
scale models with models for the reactor scale, which today can be on the scale of a meter in one or
more direction. In general, the pressure, temperature, and concentrations of all species vary with both
time and position in the reactor. Some processes in use today are operated in transient mode; e.g.,
the rapid pulses seen in a typical atomic layer deposition process [13–16]. A complete model for such
a process would include spatial and temporal variations in the dependent variables of interest. For the
purposes of this paper, we assume that conditions at the top of the small feature scale domain (much
smaller than the chemical reactor) are spatially uniform. Solutions within a multiscale framework would
be required to meaningfully improve upon this approach, for which the present model is intended to sup-
ply the small scale part.

In the definition of reference quantities, we therefore wish to only use information that is accessible mac-
roscopically. Using the temperature T in K as one of the operating conditions of the chemical reactor, define
the thermal reference speeds for all species i = 0,1, . . .,ns as
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vrefi ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2
kB
mi

T

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2
Rg

xi
T

r
; ð8Þ
where the universal Boltzmann constant kB = 1.3807 · 10�23 J/K is related to the universal gas constant
Rg = 8.3145 J/(K mol) by Avogadro�s number NA = 6.0221 · 1023/mol via Rg = NAkB. Useful units for Rg

in our context are also Rg = 8.3145 · 107 (g cm2)/(K mol s2) = 62,400 (cm3 Torr)/(K mol). This choice of ref-
erence speeds uses the so-called most likely speed for its physical significance. Then we can define Maxwellians
for all species i = 0,1, . . .,ns by
MiðvÞ ¼
1

½pðvrefi Þ2�3=2
exp � jv� uj2

ðvrefi Þ2

 !
; ð9Þ
a form chosen in units of 1/(cm/s)3, such that �Midv = 1 in dimensionless form. Here, u is the bulk velocity of
the mixture. It is reasonable to assume that u = 0 in a feature scale model, as we are considering at present.
Using the total pressure Ttotal in Torr and the dimensionless mole fractions 0 6 xi 6 1 of all species in addition
to the temperature T in K, we also define reference concentrations for i = 0,1, . . .,ns by
crefi ¼ P i

RgT
¼ xiP total

RgT
; ð10Þ
where Pi = xiPtotal denotes the partial pressure of species i. Notice that the mole fractions satisfy
P

xi = 1,
hence

P
Pi = Ptotal.

Then, the solution of Q00(f
(0), f (0)) = 0 is given by f (0)(x,v, t) = c0M0(v) with a constant concentration

c0 > 0 in units of mol/cm3. Putting all information for the reactive species i = 1, . . .,ns together, we arrive at
the dimensional equations for the KTRM
of ðiÞ

ot
þ v � rxf ðiÞ ¼ Qi f

ðiÞ� �
; i ¼ 1; . . . ; ns; ð11Þ
where we recognize abstractly that the collision operator on the right-hand side Qi(f
(i)) := Qi0(f

(i),c0M0) is a
linear function of f (i), thus justifying its notation. To see this concretely, we write out and transform the linear
collision operator Qi(f

(i)) a number of times into a form more convenient both for modeling and for the design
of the numerical method.

Using its definition Qi(f
(i)) = Qi0(f

(i),c0M0), we have
Qi f
ðiÞ� �

¼
Z
R3

Z 2p

0

Z p=2

0

f ðiÞ0c0M0ðv0�Þ � f ðiÞc0M0ðv�Þ
h i

Bi0ð#; V Þd#dedv�. ð12Þ
Using Wi0 and Si0 from (6) and (7) with j = 0, we can use the same techniques that explained the connection of
the collision operator Qij and reaction operator Rk‘

ij to introduce integrations over v 0 and v0� to get
Qi f
ðiÞ� �

¼
Z
R3

Z
R3

Z
R3

f ðiÞ0c0M0ðv0�Þ � f ðiÞc0M0ðv�Þ
h i

W i0 dv� dv
0 dv0�. ð13Þ
Using the molar units of the collision kernel Bi0 as cm
3/(mol s) from above, the units of Si0 are (cm

2 g4)/mol.
Since the units of a Dirac delta function are the reciprocal of the units of its argument and noting that the delta
function of the momentum conservation has a vector-valued argument (a short-hand notation for the product
of delta functions for each vector component), the units of Wi0 are s5/(mol cm3).

Generalizing the notation in [8, Chapter IV] to multiple species, we introduce
Kiðv0 ! vÞ :¼
Z
R3

Z
R3

c0M0ðv0�ÞW i0ðv; v�; v0; v0�Þdv� dv0� ð14Þ
and
miðvÞ :¼
Z
R3

Z 2p

0

Z p=2

0

c0M0ðv�ÞBi0ð#; V Þd#dedv�; ð15Þ
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and change the order of integrations in (13) and obtain
Qi f
ðiÞ� �

¼
Z
R3

Kiðv0 ! vÞf ðiÞðx; v0; tÞdv0 � miðvÞf ðiÞðx; v; tÞ. ð16Þ
The units of Ki are s2/cm3 and of mi are 1/s. Mass conservation requires that we have [8, p. 169]
miðvÞ ¼
Z
R3

Kiðv ! v0Þdv0; ð17Þ
and the principle of detailed balance implies that [8, p. 170]
Kiðv0 ! vÞMiðv0Þ ¼ Kiðv ! v0ÞMiðvÞ. ð18Þ

To understand better why the term Mi would appear here, write out (18) explicitly. From the definition of
Ki(v

0 ! v), obtain first
Kiðv ! v0Þ ¼
Z
R3

Z
R3

c0M0ðv0�ÞW i0ðv0; v�; v; v0�Þdv� dv0�. ð19Þ
The principle of detailed balance actually guarantees that W ijðv; v�; v0; v0�Þ ¼ W ijðv0; v0�; v; v�Þ [9, p. 217], which
gives here
Kiðv ! v0Þ ¼
Z
R3

Z
R3

c0M0ðv0�ÞW i0ðv; v0�; v0; v�Þdv� dv0�. ð20Þ
Interchanging the labels of the dummy integration variables v� and v0� does not change the value of the double
integral that reads now
Kiðv ! v0Þ ¼
Z
R3

Z
R3

c0M0ðv�ÞW i0ðv; v�; v0; v0�Þdv� dv0�; ð21Þ
where we have also interchanged the order of integration. Thus, all terms in Ki(v
0 ! v) and Ki(v ! v 0) agree

except the Maxwellians M0ðv0�Þ and M0ðv�Þ. But we note that Miðv0ÞM0ðv0�Þ ¼ MiðvÞM0ðv�Þ holds, since the Mj

are Maxwellians and mass conservation holds, thus giving the detailed balance as stated in the form (18).
Taking advantage of the facts resulting from mass conservation and detailed balance, it is natural to intro-

duce the following function:
riðv; v0Þ :¼
Kiðv0 ! vÞ

MiðvÞ
ð22Þ
which is symmetric ri(v,v 0) = ri(v 0,v) and positive ri(v,v 0) > 0 and allows us to re-write the linear collision
operator in the following form:
Qi f
ðiÞ� �

¼
Z
R3

riðv; v0Þ MiðvÞf ðiÞðx; v0; tÞ �Miðv0Þf ðiÞðx; v; tÞ
� �

dv0. ð23Þ
In the case of a single reactive species (ns = 1), this form of the linear collision operator agrees with one com-
monly used form in semiconductor device modeling and allows us to generalize numerical techniques that were
originally introduced for the semiconductor Boltzmann equation [7,21,23] to the case of multiple species.

We note that ri has units of 1/s and is interpreted as a collision frequency. Hence, the simplest model
chooses ri = 1/si with the relaxation time si of species i = 1, . . .,ns. This gives the relaxation time approxima-
tion with
Qi f
ðiÞ� �

¼ � 1

si
f ðiÞðx; v; tÞ �MiðvÞ

Z
R3

f ðiÞðx; v0; tÞdv0
� �

; ð24Þ
where we used the scaling of the Maxwellian that guarantees �Midv = 1. We finally have to define the relax-
ation time si that characterizes the time scale on which the molecules of species i reach their steady-state dis-
tribution (if one is permitted by the model conditions), which we choose to relate to the mean free path k by
the thermal reference speed vrefi via si ¼ k=vrefi . Notice that this relaxation time approximation constitutes a
multi-species generalization from [22,24].
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2.3. Dimensional boundary and initial conditions

Owing to the hyperbolic character of the Boltzmann equation, we have to supply the inflow velocity com-
ponents characterized by n Æ v < 0 of the kinetic density f (i)(x,v, t) for x 2 oX for all reactive species i = 1, . . .,ns
in (11), where n = n(x) denotes the unit outward normal vector at x 2 oX.

The boundary condition at the solid wafer surface Cw is the crucial part of the model that connects the gas
flow with the deposition of solid material on the wafer surface. On the length and time scales of our interest,
we neglect other effects (e.g., diffusion of molecules on the surface) and model the re-emission as purely Max-
wellian in velocity space and thus choose
f ðiÞðx; v; tÞ ¼ aiðx; tÞMiðvÞ; x 2 Cw; n � v < 0. ð25Þ

We now enforce the conservation of molecules by requiring, for every reactive species, the flux into the gas
domain from the surface to equal the flux of that species to the surface gi plus the molar species generation
rate (per area) ri of that species due to chemical reactions. This can be written as
Z

n�v<0

jn � vjf ðiÞðx; v; tÞdv ¼ giðx; tÞ þ riðx; tÞ; ð26Þ
where gi(x, t) = �n Æ v0 >0|n Æ v 0|f (i)(x,v 0, t)dv 0 denotes the flux to the surface of species i. The reaction model that
supplies the formulas for ri, i = 1, . . .,ns, can be any general, non-linear model, giving the KTRM the flexibility
to use any reaction chemistry desired. Note that the flux gi has units of mol/(s cm2) because of our use of molar
units for f (i), which agrees with the units that the species generation rate ri has in process engineering; this
explains our choice of molar units in the KTRM.

To obtain the final form of the boundary condition at Cw, insert the f
(i) from (25) into the integral on the

left-hand side of (26) to determine ai. The boundary condition at the wafer surface then reads
f ðiÞðx; v; tÞ ¼ Ci½giðx; tÞ þ riðx; tÞ�MiðvÞ; x 2 Cw; n � v < 0 ð27Þ

with the scaling factor Ci ¼ 2

ffiffiffi
p

p
=vrefi in units of 1/(cm/s).

At the top of the domain Ct that constitutes the interface to the bulk gas phase of the chemical reactor, we
assume that also the reactive chemicals are in Maxwellian form, and we use the boundary condition
f ðiÞðx; v; tÞ ¼ ctopi ðx; tÞMiðvÞ; x 2 Ct; n � v < 0. ð28Þ

Notice that the form of this boundary condition is not limited by the model but chosen because of its reason-
ableness for a micron-scale model; it essentially represents an infinite domain in the directions along the
surface.

At the remaining parts of the boundary, the vertical sides of the domain X collectively labeled Cs, we use
specular reflection
f ðiÞðx; v; tÞ ¼ f ðiÞðx; v0; tÞ; x 2 Cs; n � v < 0 ð29Þ

with v = v 0 � 2(v 0 Æ n)n. This is a convenient and reasonable boundary condition for a micron-scale model.

Finally, we assume that the initial distributions of the reactive species are known; while this is not material
to our model, we assume at present that it is in Maxwellian form given by
f ðiÞðx; v; tÞ ¼ cinii ðxÞMiðvÞ at t ¼ 0. ð30Þ

Specifically, we often choose cinii 	 0 to model the case, where the reactive chemicals are not present in the
domain X at the beginning of the simulation.
2.4. Derivation of the dimensionless model

Up to this point, we have purposefully kept the equations in dimensional form in order to introduce the
model parameters for our applications of interest with units. Now, we introduce reference quantities to
non-dimensionalize the system of Boltzmann equations (11) with linear collision operators (23). We start
by choosing the reference speed v� :¼ vref1 from (8) and the reference concentration c� :¼ cref1 from (10) based
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on species i = 1. The transport on the left-hand side of (11) needs to be non-dimensionalized with respect to
the typical scales for transport [1], which are the length scale of the domain L* and correspondingly the time
t* := L*/v*. The collision operators (23) on the right-hand side of (11) need to be non-dimensionalized with
respect to the typical scales for collisions, which are the mean free path k and the corresponding time s* := k/
v*. For convenience, also introduce the notation f* := c*/(v*)3.

Using these reference quantities, we define the dimensionless independent variables x̂ :¼ x=L�; v̂ :¼
v=v�; and t̂ :¼ t=t�. To non-dimensionalize the dependent variable, introduce f̂

ðiÞ
:¼ f ðiÞ=f � ¼ ðv�Þ3f ðiÞ=c�.

The dimensionless Maxwellians are given by M̂ i :¼ ðv�Þ3Mi ¼ expð�jv̂j2=ðv̂refi Þ2Þ=½pðv̂refi Þ2�3=2 with the dimen-
sionless thermal reference speeds v̂refi :¼ vrefi =v�. The collision frequencies ri in (23) have to be non-dimension-
alized with respect to collisions by choosing r̂i :¼ ris�. For the relaxation time approximation in (24), we need
to introduce the dimensionless relaxation times ŝi :¼ si=s�, which implies that ŝi ¼ v�=vrefi ¼ 1=v̂refi , involving
the dimensionless thermal reference speed v̂refi . Using these definitions, (11) with (23) becomes
f �

t�
of̂

ðiÞ

ôt
þ f �v�

L� v̂ � rx̂f̂
ðiÞ ¼ ðv�Þ3f �

ðv�Þ3s�

Z
R3

r̂i M̂ if̂
ðiÞ0 � M̂

0
if̂

ðiÞh i
dv̂0. ð31Þ
Noting that v*/L* = 1/t* and simplifying results in
of̂
ðiÞ

ôt
þ v̂ � rx̂f̂

ðiÞ ¼ 1

Kn

Z
R3

r̂i M̂ if̂
ðiÞ0 � M̂

0
if̂

ðiÞh i
dv̂0; ð32Þ
where the Knudsen number Kn := k/L* = s*/t* has been introduced. We recognize how the Knudsen number
emerges naturally as the relevant dimensionless group that quantifies the relative importance of inter-
molecular and molecular-wall collisions. Notice that the present results agrees with the dimensionless system
of linear Boltzmann equations in (1), with the hats dropped.

To transform the boundary and initial conditions to dimensionless form, we choose the reference flux
g* := c*v* to define the dimensionless fluxes ĝi :¼ gi=g

� as well as the dimensionless species generation rates
r̂i :¼ ri=g�. Introducing also the transformation Ĉi :¼ v�Ci, the boundary and initial conditions have the same
dimensionless form as the dimensional equations stated above.

We continue in dimensionless form and drop the hat notation for simplicity.

3. The numerical method

The numerical method for the system of Boltzmann equations (1) needs to discretize the 3-D spatial domain
X � R3 and the 3-D (unbounded) velocity space R3 for full 3-D/3-D simulations. The KTRM in (1) with its
linear collision operator allows for the application of moment methods following [22–24]. In this approach, we

start by discretizing in velocity space by approximating each f (i)(x,v, t) by an expansion f ðiÞ
K ðx; v; tÞ :¼PK�1

‘¼0 f
ðiÞ
‘ ðx; tÞu‘ðvÞ. The classical basis functions in this approach are products of a Maxwellian and Hermite

polynomials in each dimension. Each linear Boltzmann equation in (1) is discretized by inserting f ðiÞ
K ðx; v; tÞ for

f (i)(x,v, t) and testing against the K basis functions uk(v), resulting in a system of K transient linear hyperbolic
transport equations
oF ðiÞ

ot
þ Að1Þ oF

ðiÞ

ox1
þ Að2Þ oF

ðiÞ

ox2
þ Að3Þ oF

ðiÞ

ox3
¼ 1

Kn
BðiÞF ðiÞ ð33Þ
in space x = (x1,x2,x3)
T and time t for the vector of K coefficient functions F ðiÞðx; tÞ :¼ ðf ðiÞ

0 ðx; tÞ; . . . ;
f ðiÞ
K�1ðx; tÞÞ

T for each reactive species i = 1, . . .,ns. Here, the K · K matrices A(1), A(2), A(3), and B(i) are constant
owing to the linearity of (1). The use of the classical basis functions results in dense coefficient matrices A(1),
A(2), and A(3) that can in turn be diagonalized simultaneously [23]. Based on this observation, we design col-
location basis functions u‘(v) in the expansion f ðiÞ

K ðx; v; tÞ that give rise to diagonal coefficient matrices in (33)
directly [17,25]. Recall that the solutions for all reactive species are coupled through the boundary condition at
the wafer surface that is crucial for the applications under consideration. Our formulation has the advantage
that boundary and initial conditions can be evaluated more directly without a transformation; this makes no
difference in one dimension but the setup of simulations in higher dimensions becomes easier in practice.
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Since the hyperbolic system in (33) can be transformed to the one based on classical basis functions [17,25],
we can apply the analytic results in [23]. More specifically, under reasonable assumptions on the problem,
there are available the stability result i fK iG(t) 6 C with problem-dependent constant C < 1 and the asymp-
totic convergence result i f � fK iG(t) ! 0 for all times t as the number of expansion coefficients K! 1, using
the norm i f iG(t) := (�� f 2/M(v)dvdx)1/2 induced by properties of the linear Boltzmann equation [23]. Here, we
are dropping the species index and quote the theory only for the single-species case. Extending the 1-D numer-
ical results in [23,24] for the semiconductor Boltzmann equation, numerical demonstrations for representative
simulations on 2-D and 3-D trench domains for a relevant range of Knudsen numbers in Table 1 confirm that
convergence can be achieved using reasonable numbers of discrete velocities in each dimension, for which
transient studies on adequate spatial meshes are feasible; see [17,25] for more details on the theoretical results
and the stability and convergence studies. Therefore, the studies in this paper use K = 16 · 16 = 256 for two-
dimensional velocity space and K = 4 · 4 · 4 = 64 for three-dimensional velocity space.

The hyperbolic system (33) is now posed in a standard form as a system of partial differential equations on
the spatial domain X � R3 and in time t and amenable to solution by various methods. Since we are interested
in discretizing spatial domains X with potentially irregular shapes, such as the one in Fig. 1, the discontinuous
Galerkin method (DGM) is convenient. It was first in fact introduced in [19] for solving the neutron transport
equation, an example of a scalar linear Boltzmann equation. More recently, the DGM in the code DG [20] has
been used to solve systems with a small number of non-linear conservation laws (the Euler equations in two and
three dimensions) [10,20]. We use this implementation of the DGM here by extending it to solve the system
(33) with a large number of linear conservation laws. This implementation has both triangular and quadrilat-
Table 1
Stability and convergence studies for the velocity discretization as function of the number of expansion coefficients K, for selected Knudsen
numbers

K ifKiG(t) ifiG(t) � ifKiG(t) if � fKiG(t)

(a) 2-D trench domains

Kn = 0.01
4 0.47861 6.86e�03 8.73e�03
16 0.48252 2.95e�03 3.69e�03
64 0.48425 1.22e�03 1.51e�03
256 0.48508 3.90e�04 4.94e�04

Kn = 1.0
4 0.52021 5.28e�03 9.31e�03
16 0.52299 2.51e�03 4.70e�03
64 0.52455 9.20e�04 4.63e�03
256 0.52522 2.50e�04 2.88e�03

Kn = 1
4 0.52306 6.20e�03 1.12e�02
16 0.52599 3.27e�03 8.78e�03
64 0.52805 1.21e�03 6.63e�03
256 0.52891 3.50e�04 4.34e�03

(b) 3-D trench domains

Kn = 0.01
8 0.61551 4.84e�03 5.89e�03
64 0.61848 1.87e�03 1.79e�03

Kn = 1.0
8 0.65713 1.94e�03 8.43e�03
64 0.65869 3.80e�04 5.09e�03

Kn = 1
8 0.65956 3.58e�03 1.01e�02
64 0.66142 1.72e�03 6.75e�03
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eral elements available in two and three dimensions. For the two-dimensional domain with regular shape in
Section 4.1, we use quadrilateral elements. For the three-dimensional domain in Fig. 1 in Section 4.2, we use
tetragonal elements. In both cases, we use linear finite elements, which are second-order accurate in their nat-
ural L2-norm [2]. Currently, we use explicit, first-order accurate Euler time-stepping because of its memory
efficiency and cheap cost per time step. Because the spatial and time discretizations are well known and we
are using the established software package DG, we do not provide numerical demonstrations of their stability
and convergence.

The degrees of freedom (DOF) of the finite element method are the values of the ns species� coefficient func-
tions f ðiÞ

‘ ðx; tÞ in the spectral Galerkin expansion at K discrete velocities on the vertices of each of the Ne ele-
ments of the DGM: Since quadrilateral elements in two dimensions and tetragonal elements in three
dimensions both have four vertices per element, this happens to give the same formula for the number of de-
grees of freedom DOF = 4Ne nsK for both 2-D/2-D and 3-D/3-D simulations here. This is the complexity of
the computational problem that needs to be solved at every time step. For the two-dimensional studies in Sec-
tion 4.1, we use a modest spatial mesh with Ne = 16 · 8 = 128 elements; for the velocity discretization with
K = 256, this implies 4 · 128 · 256 = 131,072 degrees of freedom in a single-species simulation (ns = 1) at
every time step. For the three-dimensional studies in Section 4.2, the mesh of the domain in Fig. 1 uses
Ne = 7087 elements; even in the case of a single-species model (ns = 1) and using just K = 4 · 4 · 4 = 64 dis-
crete velocities, the total DOF are N = 1,814,272 or nearly 2 million unknowns to be determined at every time
step.

The size of problem at every time step motivates our interest in parallel computing for this problem. For the
parallel computations on a distributed-memory cluster, the spatial domain X is partitioned in a pre-processing
step, and the disjoint subdomains are distributed to separate parallel processes. The discontinuous Galerkin
method for (33) needs the flux through the element faces. At the interface from one subdomain to the next,
communications are required among those pairs of parallel processes that share a subdomain boundary.
DG uses MPI for its parallel communications. If the number of DOF are large, parallel performance results
show excellent efficiency for up to 64 processors on our cluster with high-performance Myrinet interconnect,
while for more moderate number of DOF, such as in the two-dimensional studies here, the efficiency drops off
for more than 16 processors [12,17,25]. Therefore, we typically use 16 processors in production runs.

4. Simulation results

To demonstrate the capabilities of the KTRM, we choose chemical vapor deposition (CVD) as an impor-
tant example of a deposition process in microelectronics manufacturing. In this process, gaseous chemicals are
supplied from the gas-phase interface at the top of the domain, for instance in Fig. 1, through the x1–x2-plane
at x3 = 0.3. The gaseous chemicals flow downwards throughout the domain X until they reach the solid wafer
surface, where some of the molecules react to form a solid deposit. Deposition processes in or over sub-micron
features on a wafer are critical to the fabrication of integrated circuits. Thin deposited films (a few nanometers
thick) are used for several purposes in features such as that shown in Fig. 1. An important aspect of such thin
films is that they need to coat the internal surface of the feature with uniform thickness. This is called high
conformality or step-coverage. Thicker film deposits are used to fill features; e.g., with copper to form wires
that electrically connect the devices to form logic, and get signals off the chip. The work here is very relevant to
understanding the thin film deposition processes. What is really needed is an understanding of the relative
rates of growth around the features, for the feature shape as given. For thicker depositions, the surface needs
to be updated and the governing equations resolved. EVOLVE [5] and PLENTE [4] are two codes that per-
form physics-based simulations of such processes. Like all similar (topography) codes, they use pseudo-steady
models for collisionless transport (for low pressures), and are not used to study the rapid transients in species
fluxes that can be followed using the KTRM. For more details, see [4,5] and the references therein.

To focus on studying the interplay of transport and surface reactions, we use a single-species model with
ns = 1 reactive species. Hence, we drop the species superscripts in f (1) as well as subscripts in c1, M1, g1, r1,
r1, and s1 in the following. Recall that we are solving the dimensionless problem (1) here and all quantities
are dimensionless (with hats dropped), except explicitly re-dimensionalized quantities such as the domain X
and time t. For clarity, we consider chemical reaction rates that can be considered linear in the species flux;
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i.e., we use �sticking factor� based chemical reaction rates that take the reaction rate R as proportional to the
flux to the surface: R(x, t) = c0g(x, t) for x 2 Cw; here, the proportionality constant 0 6 c0 6 1 denotes the
sticking factor that represents the fraction of molecules that are modeled to deposit at (‘‘stick to’’) the wafer
surface. The species generation rate in the relevant boundary condition is then given by r(x, t) = �R(x, t). This
reaction model yields a boundary condition for the inflowing components of f, proportional to the fraction of
molecules not �sticking� (1 � c0), proportional to the flux to the surface g, and with Maxwellian re-emission of
molecules.

We focus on how the flow behaves when starting from no gas present throughout X, modeled by initial
condition f ” 0 at t = 0. The boundary condition at the top of the domain Ct, modeling the interface to the
bulk gas, is f(x,v, t) = ctopM(v) with ctop ” 1 for the inflowing velocity components n Æ v < 0. The collision oper-
ator uses a relaxation time approximation by choosing r(v,v 0) ” 1/s with the (dimensionless) relaxation time
s = 1.0 for a single-species model [22,24].

4.1. Reference studies for a flat wafer surface

First, we present reference studies to analyze the interplay between sticking factor c0 and the pressure re-
gime; the latter is equivalently determined by selecting the Knudsen number Kn, which controls the relative
importance of transport and collisions in (1). A small Kn corresponds to higher pressure, while a large value
corresponds to low pressure. For instance, the choice of Kn = 0.01 gives flow in the near-hydrodynamic re-
gime and Kn = 0.1 denotes flow in the transition regime, while Kn ! 1 leads to a cancellation of the collision
terms on the right-hand side of (1) and models free molecular flow in the Knudsen regime; see [18, p. 50]. To
focus only on the interplay of the parameters c0 and Kn, we choose a flat wafer, so as to suppress any effect
that the geometry of the domain has on the flow. For simplicity and easier depiction of the results, we use a
two-dimensional domain. Concretely, the domain is chosen as X := (�0.25,0.25) · (0.0,0.25) in units of lm;
since we choose the reference length as 1 lm, the dimensionless domain is given by the same numerical values.
Here, the first component x1 of x 2 X counts along the wafer surface, and the second component x2 orthog-
onal to it, with x2 = 0.0 denoting the flat wafer surface.

The transient studies were run sufficiently long in each case to approximate steady-state, which takes longer
for smaller Knudsen number than for large values. In Figs. 2–4, these steady-state results are shown for 12
cases, namely in four rows for the sticking factors c0 = 1.0, 0.1, 0.01, and 0.0 and in three columns for the
Knudsen numbers Kn = 0.01, 0.1, and 1. Three quantities are plotted for each steady-state result:


 Fig. 2: the dimensionless concentration 0 6 c(x, t) 6 1 as functions of x 2 X.

 Fig. 3: the kinetic density f(x,v, t)P 0 as functions of v 2 R2 at point x = (0.0625,0.0625).

 Fig. 4: the saturation of the kinetic density 0 6 f(x,v, t)/M(v) 6 1 as functions of v 2 R2 at point
x = (0.0625,0.0625).

Each individual plot is a mesh plot, in which the quantity is plotted in the vertical direction over the two-
dimensional domain of the independent variable, being x 2 X for c(x, t) and v 2 R2 for f(x,v, t) and
f(x,v, t)/M(v). The fact that the Maxwellian M(v) is the steady-state limit for the solution f(x,v, t) for the model
with the boundary conditions considered here and in the absence of reactions motivates the definition of the
kinetic saturation as f(x,v, t)/M(v). Since additionally the values of f are never larger than M in our simula-
tions, we have the bound for the saturation f/M 6 1 and for the (dimensionless) concentration
c = �fdv 6 �Mdv = 1. The spatial point x at which f and f/M are plotted is chosen x2 = 0.0625 lm above
the wafer surface. Its x1-coordinate is chosen for convenience, as the results are identical at all values of
x1. Notice that the first and last choice of c0 are particularly useful for demonstration purposes: c0 = 1.0 means
that all molecules deposit on the wafer surface, meaning that nomolecules re-emit from the surface; this is seen
in some widely used processes, and so has practical relevance. And c0 = 0.0 implies that no deposition takes
place and all molecules re-emit from the surface, with Maxwellian velocity distribution.

We start by interpreting the upper right corner for the steady-state results in Figs. 2–4 for the demonstration
case of c0 = 1.0 and Kn = 1. This choice of Knudsen number means that no collisions take place among the
molecules. Additionally, the choice of sticking factor implies that no molecules re-emit from the surface.



Fig. 2. Concentration c(x, t), for selected Knudsen numbers Kn and sticking factors c0, as function of x in the two-dimensional domain
with flat wafer surface at steady-state.
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Starting from the initial condition of zero throughout the domain, molecules flow in from the boundary at the
top of the domain x2 = 0.25. Since there are no collisions, the kinetic density f from the boundary condition is
translated through the spatial domain convectively until the wafer surface at x2 = 0.0 is reached, where all
molecules get consumed. This results in the spatially uniform steady-state concentration in Fig. 2 for this case.
Notice that the boundary condition at the top of the domain feeds only downward components (v2 < 0) of the
kinetic density. Hence, also only those components are non-zero at steady-state, since neither collisions nor re-
emission from the wafer surface contribute to the other components with v2 > 0. This is born out most clearly
in Figs. 3 and 4 which confirm the zero value for the v2 > 0 components of f for the chosen point x. For v2 < 0,
Fig. 3 only shows that f > 0, but due to widely varying scales of different components, their exact values can-
not be assessed; this is the value of the saturation plots in Fig. 4, which in fact shows that all components of f
for v2 < 0 are fully saturated at their respective maximum values. In turn, since the components of f are zero
for v2 > 0 and fully saturated for v2 < 0 at all points x 2 X, we can explain the value of 0.5 for the concentration
c throughout the domain for this case of c0 = 1.0 and Kn = 1, seen in Fig. 2.

We continue by interpreting and comparing the results in the right column for the steady-state results in
Figs. 2–4 that all have Kn = 1 and contrast the cases of different sticking factors c0. The case c0 = 1.0 showed



Fig. 3. Kinetic density f(x,v, t), for selected Knudsen numbers Kn and sticking factors c0, as function of v 2 R2 at x = (0.0625,0.0625) in
the two-dimensional domain with flat wafer surface at steady-state.
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that the v2 > 0 components of f remain zero at steady-state, as no molecules re-emit from the surface. Com-
pared to that, the re-emitting molecules for c0 < 1.0 generate non-zero components of f for v2 > 0, as can be
seen in Fig. 3. To see the values of the f components more precisely, consider the saturation plots in Fig. 4 that
bear out that the downward components for v2 < 0, unaffected by any collisions for Kn = 1, still attain full
saturation at steady-state, while the values of the upward components for v2 > 0 are proportional to 1 � c0
(most clearly visible for c0 = 0.1 in the second row). The results for f and f/M are for a particular point x,
but since there are no collision effects that flow attains the same steady-state value for all x 2 X after sufficient
time. Therefore, the concentrations c in each plot in the right column of Fig. 2 are spatially uniform. Their
values are larger, the more molecules are re-emitted from the wafer surface, as born out by the plots. The
extreme case is for both concentrations and saturation to reach the value 1.0 uniformly throughout their do-
mains in the case where all molecules are re-emitted from the wafer surface for c0 = 0.0 in the last row.

Next, consider the first row for the steady-state results in Figs. 2–4 now, which share the sticking factor
c0 = 1.0 and contrast the effect of collisions controlled by the Knudsen number. For the collisionless flow in
the upper right corner the upward components of f remained zero, since there was neither collisions nor re-emis-



Fig. 4. Saturation of kinetic density f(x,v, t)/M(v), for selected Knudsen numbers Kn and sticking factors c0, as function of v 2 R2 at
x = (0.0625,0.0625) in the two-dimensional domain with flat wafer surface at steady-state.
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sion from the wafer surface to contribute to them. Here, now, c0 = 1.0 implies that there are still no molecules
re-emitting from the wafer surface, but as Kn gets smaller, collisions become progressively more dominant and
we see non-zero f components for v2 > 0 in Fig. 3. The saturation plots in Fig. 4 clearly show the smoothing out
that results from progressively more collisions among the molecules, as more and more molecules collide to
attain upward velocities as Kn decreases. To understand the concentration plots in Fig. 2, recall that all mol-
ecules are consumed at the wafer surface at x2 = 0.0, hence the concentration must decrease from the top of the
domain to the wafer surface. This explains the spatial dependence seen in the plots. Moreover, since the upward
components of f are solely fed by the collisions (as no molecules re-emit from the surface), this effect depends on
the location of the point x, with more contribution to all components of f the closer to the inflow at the top and
the more collisions (smaller Kn). This leads in turn to larger values of c at those locations, with the opposite
effect the closer to the wafer surface at which molecules are consumed.

Consider now the last row of steady-state results in Figs. 2–4, which share the sticking factor c0 = 0.0. For
collisionless transport with Kn = 1, a spatially uniform steady-state with full saturation of f was attained at
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all points x 2 X, as the molecules flow from the top of the domain at x2 = 0.25 convectively without collisions
to the wafer surface at x0 = 0.0, where all of them get re-emitted. After sufficiently long time, this leads to the
saturation also of the upward components of f everywhere in X and a uniform concentration of 1.0. For
Kn < 1 in the last row, collisions smooth out the kinetic density f from the start, leading to smaller numbers
of molecules reaching the wafer surface than for Kn =1 at a fixed time. But after sufficiently long time, and
the smaller the Kn the longer time it takes, sufficiently many molecules have reached the wafer surface and
have been re-emitted from there to saturate all components of f, and we see that the case of c0 = 0.0 admits
a uniform Maxwellian steady-state solution. This is exhibited in the plots of c = 1.0 in Fig. 2 and full satura-
tion in Fig. 4.

It remains to discuss the left and center columns for the second and third rows in Figs. 2–4: In those cases, we
have a combination of the effects of collisions and increasing re-emission of molecules from the wafer surface.
Comparing the concentration plots in Fig. 2 for fixed Knudsen number shows the higher steady-state values
attainable throughout the domain if less molecules are consumed. This reaches the extreme case of all mole-
cules being re-emitted for c0 = 0.0 in the last row, where at steady-state the concentration attains its maximum
value of 1.0 throughout the domain X. Fig. 3 bears out that all components of f are non-zero for collisional
regimes with Kn < 1, while Fig. 4 shows in more detail that collisions result in smoothing the kinetic density
as Kn decreases; compare the plots in the second row for c0 = 0.1. This tends to the extreme case, where no
molecules are consumed at the surface and then smoothed out by collisions, resulting in full saturation at
steady-state independent of the Knudsen number.

In summary, the concentration results in Fig. 2 show that the steady-state concentrations form a decreasing
function from the top of the domain to the wafer surface, with the value at the wafer surface depending on the
fraction of molecules that re-emit. But as c0 gets closer to 1.0 and a smaller fraction of molecules are re-emitted
from the wafer surface, we see the effect of the transport regime characterized by the Knudsen number: the
larger Kn, the less interaction there is between the different velocity components in f, such that some of the
components remain zero in the extreme case of Kn = 1, thus limiting the concentration values attainable
at steady-state. This behavior can only be explained in detail by considering the kinetic density f as a function
of its velocity arguments in Figs. 3 and 4. This demonstrates the value of being able to plot the kinetic density
as a function of its velocity arguments, because it provides more insight into the structure of the solution be-
yond the macroscopic concentration as a function of space.

4.2. Application results for a three-dimensional irregular wafer surface

The results in Figs. 5–7 are designed to bring out the capabilities of the KTRM to simulate the transient

behavior of flow in a general domain X with irregular shape, such as the example shown in Fig. 1.
We continue to use the single-species (ns = 1) sticking factor-based CVD model from the previous section

and contrast the results for three different Knudsen numbers Kn = 0.01, 0.1, and 1.0. The studies shown use a
sticking factor of c0 = 0.01, that is, 99% of all molecules re-emit from the surface. The results show the fol-
lowing quantities:


 Fig. 5: the dimensionless concentration 0 6 c(x, t) 6 1 as functions of x 2 X.

 Fig. 6: the kinetic density f(x,v, t)P 0 as functions of v 2 R3 at the mouth of the trench at x = (0.5,0.5, 0.0).

 Fig. 7: the saturation of the kinetic density 0 6 f(x,v, t)/M(v) 6 1 for (v1,v2) = (0,0) as functions of v3 2 R at
mouth of the trench at x = (0.5,0.5, 0.0) and at mouth of the via at x = (0.5,0.5,�0.3).

For these transient studies, the figures show the results for the case of each Kn column-wise, indicated at the
top of the column, with each column showing the quantity at four different points in time, in re-dimension-
alized units at t = 5, 10, 15, and 20 ns. These values are based on a reference time t* = 5 ns corresponding
to a reference length L* = 1 lm and reference speed v* = 2.0 · 104 cm/s; this speed is appropriate for rel-
atively high temperature T = 500 K and a relatively heavy reactant with molecular weight x of about
200 g/mol.

It is challenging to display three-dimensional results in a meaningful and elucidating way and different
choices are necessary for each quantity plotted. For each plot in Fig. 5, we choose to use a slice plot, which



Fig. 5. Slice plots of the dimensionless concentration c(x, t), for selected Knudsen numbers Kn at times t = 5, 10, 15, 20 ns, as function of x
in the three-dimensional trench/via feature with slices at heights x3 = �0.60, �0.45, �0.30, �0.15, 0.00, 0.15. Grayscale from
light () c = 0 to dark () c = 1.
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encodes the values of 0 6 c(x, t) 6 1 for x 2 X on slices through X in grayscale from light color for c = 0 to
dark color for c = 1; simultaneously, a slice plot still gives an indication of the shape of the domain X by
the shapes of all slices taken together. We choose to show slice plots at 6 horizontal levels with heights of
x3 = �0.60, �0.45, �0.30, �0.15, 0.00, 0.15. The two top slices lie in the gaseous area of X above and at
the opening of the trench. The two middle layers lie inside the trench, as seen by the shape of the slices.
The two bottom layers cut through the via below the trench, indicated by their shape as disks.

In the process considered here, gaseous chemicals are supplied from the gas-phase interface (at x3 = 0.3
in Fig. 1) and flow downwards throughout the domain X until they reach the solid wafer surface (the surface
plotted in Fig. 1 with flat parts at height x3 = 0.0), where a fraction of molecules react to form a solid deposit.
Considering first the right column in Fig. 5 at time t = 5 ns, the top-most slice at x3 = 0.15 is mostly dark-
colored, indicating that a relatively high concentration of molecules have reached this level from the inflow
at the top of the domain. The slice at x3 = 0.0 shows that the concentration at the flat parts of the wafer



Fig. 6. Isosurface plots of the kinetic density f(x,v, t), for selected Knudsen numbers Kn at times t = 5, 10, 15, 20 ns, as function of velocity
v 2 R3 at the mouth of the trench at x = (0.5,0.5,0.0) in the three-dimensional trench/via feature. Isosurface level at f(x,v, t) = 0.005.
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surface has reached relatively high values, as well, due to reflections from that surface, while the lighter color
above the mouth of the trench (x1-coordinates between 0.3 and 0.7) is explained by the ongoing flow of mol-
ecules into the trench. At the slice for x3 = �0.3, we observe the same phenomenon where the concentration has
reached a higher value in the flat areas of the trench bottom as compared to the opening into the via (round
hole) below. Finally, not many molecules have reached the via bottom, yet, indicated by the light color there.



Fig. 7. Line plots of the saturation of the kinetic density f(x,v, t)/M(v), for selected Knudsen numbers Kn, for (v1,v2) = (0,0) as function of
v3 2 R; at the mouth of the trench at position x = (0.5,0.5,0.0) and at the mouth of the via at position x = (0.5,0.5,�0.3) in the three-
dimensional trench/via feature; at times: ·, 5 ns; +, 10 ns; }, 15 ns; h, 20 ns. Notice the different scales of the vertical axes.
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Comparing the three plots in the first row in Fig. 5 for Kn = 0.01, 0.1, and 1.0 at t = 5 ns with each other,
the ones for the smaller Kn have generally lighter color indicating a slower fill of the feature with gas. The
smaller Knudsen numbers imply more collisions among molecules with the carrier gas, leading to a less direc-
tional flow than for the larger Knudsen number shown. Since the bulk direction of the flow is downward be-
cause of the supply at the top with downward velocity, the feature fills faster with molecules in the case of high
Kn.

The plots in each column in Fig. 5 show how the fill of the entire domain with gaseous molecules continues
over time. The results for the concentration c(x, t) show that steady-state distribution of concentration is
reached faster for the larger Knudsen number, which is realistic. Steady-state is not reached in 20 ns for
the Knudsen numbers Kn = 0.01 and 0.1.

In Fig. 6, each plot shows the kinetic density f (x,v, t) plotted as functions of the three-dimensional v 2 R3

for a fixed point x. We show isosurface plots that indicate the surface of a body, along which f has a fixed
value, here f = 0.005. The choice of isosurface plots is motivated by the observation that a Maxwellian distri-
bution has symmetric values about the origin v = (0,0,0) (the center of each plot) and hence the isosurface for
a Maxwellian would look like a ball in three dimensions, up to the resolution used to discretize velocity space.

In Fig. 6, we start by considering the right column for Kn = 1.0. The isosurface plots as function of v 2 R3

are evaluated at position x = (0.5,0.5, 0.0), which is located at the height of the mouth of the trench at x3 = 0.0
and in the center of the trench and via structure with respect to the x1- and x2-coordinates. At t = 5 ns, the
isosurface plot has a skewed shape with more extent at the bottom, indicating higher values in f for velocity
components with v3 < 0. Over time, the f values for the velocity components with v3 > 0 continue to grow due
to both re-emission from the wafer surface and collisions, until at t = 20 ns, the isosurface of f appears to
approach the shape of a ball. The center column for Kn = 0.1 shows a similar evolution. Comparing the plots
at equal times reveals that the approach to equilibrium is slower for the smaller Knudsen number; notice that
even at t = 20 ns, the sides of the apparent ball are not as near-vertical for Kn = 0.1 as those for Kn = 1.0. The
results for Kn = 0.01 in the left column in Fig. 6 show the same evolution at yet slower pace; the apparently
empty plots for the first and second point in time reveal that none of the components in f has reached a value
above the cut-off of f = 0.005 yet. Recall that these plots show f evaluated at the fixed position x at the mouth
of the trench, and the previous figure showed that the concentration had not yet reached significant values at
this position at these points in time.
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In Fig. 7 for the saturation of the kinetic density f (x,v, t)/M(v), we build on the realization that the kinetic
density exhibits its main variation with respect to the third velocity component v3, when evaluated at a point x
that lies on the central axis of the domain in Fig. 1. To bring out this effect, we fix now (v1,v2) = (0,0) and plot
the kinetic saturation f/M as a function of v3 only. The columns in Fig. 7 fix the Knudsen numbers Kn = 0.01,
0.1, and 1.0, respectively. The first row shows the saturation again at the same spatial point x = (0.5,0.5,0.0)
at the mouth of the trench and in the center with respect to x1 and x2 as in the previous figure. But we take
advantage of the compact display of information possible for f/M as a function of v3 by also showing it at the
point x = (0.5,0.5,�0.3) that lies at the mouth of the via and directly below the former point. Each individual
plot in Fig. 7 contains four lines that plot f/M at the times t = 5, 10, 15, 20 ns, distinguished by markers as
indicated in the caption. Notice that the scales of the vertical axes are different in each plot, with both the min-
imum and the maximum varying widely. The v3 values on the horizontal axis vary from v3 = �3 on the left to
v3 = +3 on the right in the conventional increasing direction; this means that f/M values on the left end are for
downward velocities and for upward velocities on the right end.

We first observe that the increasing nature of the kinetic density f as a function of time is confirmed by the
fact that the lines for latter times lie above lines for earlier times in every plot in Fig. 7. Looking at the first

row, which plots f/M at the same position x as f in Fig. 6, we can confirm that the v3 < 0 components of f are
not just larger than the isosurface level value of f = 0.005 used in that figure, but they have in fact reached
near-saturation for Kn = 1.0 and values above 0.9 for Kn = 0.1; the relative closeness of the lines for
t = 15 and 20 ns indicates that the steady-state is being approached for these cases. For Kn = 0.01, all lines
in the plot are still far apart from each other, indicating a continued increase of f/M over time beyond
t = 20 ns. Notice how the lines of the saturation change more smoothly as function of v3 for the more colli-
sional cases of the smaller Knudsen numbers.

The second row in Fig. 7 shows the kinetic density at the point x = (0.5,0.5,�0.3) further down inside the
feature, at the mouth of the via. Since the chemicals are fed from the top of the spatial domain, it takes longer
for them to reach a point deeper inside the feature. Hence, all values of f/M lag behind those for corresponding
times in the first row. Only for Kn = 1.0, values of above 0.9 have been reached at all. The transition of the
saturation values from v3 < 0 to v3 > 0 tends to be smoother in all cases in the second row than in the first,
owing to the fact that this position is closer to the wafer surface, from which molecules with velocity compo-
nents in all directions are re-emitted; recall the small value of the sticking factor c0 = 0.01 used here, hence
99% of all molecules re-emit from the wafer surface.

The results validate the effectiveness of the model and its numerical method for this application in three
dimensions. The plots of the kinetic density provide here additional insight into the approach to steady-state
and into the behavior observed for a macroscopic quantity such as the molar concentration.
5. Conclusions

In Section 2, we summarize the basis and formulation of the KTRM, which is appropriate to low pressure
reactive flows in the presence of a dominant inert carrier gas. Such conditions are commonly found in the pro-
cessing steps used to fabricate integrated circuits. In Section 3, we then summarize the design of the numerical
method and its parallel implementation used to solve the KTRM. Two example are presented in Section 4,
both using a simple sticking factor based reaction model for chemical vapor deposition: (1) reference studies
for a flat wafer surface to analyze in detail the effect of the Knudsen number and species reactivity (sticking
factor) on concentration and the kinetic density in Section 4.1; (2) transient studies for a three-dimensional
trench/via feature that is commonly found in integrated circuit fabrication for several Knudsen numbers in
Section 4.2. The KTRM provides reasonable solutions which can guide process development by increased
understanding of low pressure transport and reaction.
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