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Models for the individual steps used to fabricate integrated circuits (ICs) are of interest in

order to improve fabrication efficiency and improve process designs. Here we focus on depo-

sition from the gas stream, in which the dominant species is an inert carrier gas, as it flows

across a wafer on which ICs are being fabricated. We model the transport of gaseous species

to the surface and heterogeneous (surface) chemical reactions for chemical vapor deposition

using a kinetic transport and reaction model (KTRM), which is represented by a system

of linear Boltzmann equations. The model is valid for a range of pressures and for length

scales from nanometers to decimeters, making it suitable for multiscale models. We present

transient simulation results for transport of reactants into an inherently three-dimensional

prototypical micron scale trench/via structure for a wide range of Knudsen numbers. The re-

sults highlight the capabilities of the KTRM and its implementation, and demonstrate that

the transients last longer for lower Knudsen numbers than for higher Knudsen numbers. We

briefly discuss how the KTRM might be used in a multiscale computational model.

1 INTRODUCTION

Several important manufacturing processes for integrated circuits (ICs) involve the flow of gaseous reactants

over the wafer(s) on which the ICs are being made. Each process can occur at low (0.01 Torr), moderate, or

high (atmospheric) pressures. Correspondingly, the average distance that a molecule travels before colliding

with another molecule (the mean free path λ) ranges from less than 0.1 micron (micrometer) to over 1 cm.

On the one hand, the size of the structures created on the wafer during IC fabrication (called features) is now

well below 1 micron. On the other hand, the size of the chemical reactor through which the gas flow takes

place is on the order of decimeters. The appropriate transport model at a given combination of pressure

and length scale is determined by the Knudsen number Kn, defined as the ratio of the mean free path to

the length scale of interest Kn := λ/L. The Knudsen number arises as the relevant dimensionless group in

kinetic equations [1], and serves as a guide to the type of model needed: (i) For small values Kn < 0.01,
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the usual continuum models describe the gas flow well. (ii) At intermediate values Kn ≈ 1, kinetic models

based on the Boltzmann transport equation capture the influence of both transport of and collisions among

the molecules; this is called the transition regime. (iii) For large values Kn > 100, kinetic models are still

appropriate, with the collision term being small; this is called the free molecular flow, or ballistic transport,

regime. We are interested in models for species transport and chemical reactions on the sub-micron scale

(1 nm to 10 micron) to millimeter scale (10 micron to 1000 micron), over a range of pressures. This results

in Knudsen numbers ranging from less than 0.01 to greater than 100; i.e., all three transport regimes.

The focus of this paper is to study the effect of Kn on the time it takes for transients to be essentially

complete; e.g., how long does it take for the effects of a change in fluxes into the modeled domain to

stop changing the local concentration and kinetic density through the domain. The studies presented here

extend reports in [2, 3, 4]. Studies in Ref. [2] focus on the parallel scalability of the numerical method on

a distributed-memory cluster. Ref. [3] focuses on a full introduction to the modeling and careful reference

simulations that provide a validation of the model, and Ref. [4] focuses on studies of the numerical method

and its convergence that provide a validation of the numerical method. The studies in Ref. [3] validated

the model against EVOLVE (discussed in [5] and references therein), a well-established code that provides

steady state solutions to low pressure transport and reaction inside features on patterned wafers. The

KTRM computed distribution of flux of incoming species along the surface of a feature compares well with

that computed by EVOLVE. The agreement improves with increasing number of velocity terms, as expected,

as confirmed by the studies focussing on the numerical method in Ref. [4]. The studies in [2, 3, 4] considered

the Knudsen number as a dimensionless group that characterizes the flow regime, but did not specifically

address the Kn dependence on how long it takes for a transient to disappear. Since the transient time

dependency needs to be taken into account when developing an efficient multiscale simulator, we extend our

work to include this issue here.

These authors have coupled models on several length scales, from feature scale to reactor scale, to form

a single, or concurrent multiscale reactor simulator using a pseudosteady state approach [6, 7]. Continuum

models were used for all but the feature scale; free molecular flow was appropriate at that scale, as Kn > 100.

The current work provides the basis for creating a multiscale model which is valid over a wider pressure range,

uses finite element methods and parallel code on all scales, and can deal with process transients; e.g., in

atomic layer deposition [8, 9, 10, 11, 12]. Such a multiscale model will require well-tested and validated

models and numerical methods for each length scale of interest [5].

The following section summarizes the kinetic transport and reaction model (KTRM) developed for the

processes under consideration. Section 3 briefly describes the numerical methods used. The main part of

this paper is the presentation and discussion of simulation results for a micron scale model of chemical vapor
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deposition (CVD) in Section 4. Finally, Section 5 summarizes the conclusions drawn from the numerical

results.

2 THE MODEL

We have developed the kinetic transport and reaction model (KTRM) [3, 9, 10] to model flow of reactive

species in a gas flow dominated by an inert carrier that is assumed to be an order denser than the reactive

species. The KTRM is then represented by a system of linear Boltzmann equations, one for each of the ns

reactive species
∂f (i)

∂t
+ v · ∇xf (i) =

1
Kn

Qi(f (i)), i = 1, . . . , ns, (2.1)

with the linear collision operators

Qi(f (i))(x,v, t) =
∫

R3
σi(v,v′)

[
Mi(v)f (i)(x,v′, t)−Mi(v′)f (i)(x,v, t)

]
dv′,

where σi(v,v′) = σi(v′,v) ≥ 0 is a given collision frequency model and Mi(v) denotes the Maxwellian

distribution of species i. See [3] for a derivation of the model and more details on its assumptions and

non-dimensionalization. The left-hand side of (2.1) models the advective transport of molecules of species i

(local coupling of spatial variations via the gradient ∇xf (i)), while the right-hand side models the effect of

collisions (global coupling of all velocities in the integral operators Qi). The Knudsen number arises as the

relevant dimensionless group in (2.1), because the transport on the left-hand side is non-dimensionalized with

respect to the typical domain size, while the collision operator on the right-hand side is non-dimensionalized

with respect to the mean free path. Thus, the values of Kn are affected by both the scale of interest of the

model and by the operating conditions of the chemical reactor. The unknown functions f (i)(x,v, t) in this

kinetic model represent the (scaled) probability density, called the kinetic density in the following, that a

molecule of species i = 1, . . . , ns at position x ∈ Ω ⊂ R3 has velocity v ∈ R3 at time t. Its values need

to be determined at all points x in the three-dimensional spatial domain Ω and for all three-dimensional

velocity vectors v at all times 0 < t ≤ tfin. This high dimensionality of the space of independent variables is

responsible for the numerical complexity of kinetic models, as six dimensions need to be discretized, at every

time step for transient simulations. Notice that while the equations in (2.1) appear decoupled, they actually

remain coupled through the boundary condition at the wafer surface that models the surface reactions and

is of crucial importance for the applications under consideration.
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3 THE NUMERICAL METHOD

The numerical method for (2.1) needs to discretize the spatial domain Ω ⊂ R3 and the (unbounded) velocity

space R3. We start by approximating each f (i)(x,v, t) by an expansion f
(i)
K (x,v, t) :=

∑K−1
`=0 f

(i)
` (x, t)ϕ`(v).

Here, the basis functions ϕ`(v) in velocity space are chosen such that they form an orthogonal family of

functions in velocity space with respect to a weighted L2-inner product that arises from entropy considerations

for the linear Boltzmann equation [13]. The basis functions are constructed as products of polynomials and

a Maxwellian; hence, they are most appropriate if the flow regime is not too far from a Maxwellian regime.

This is suitable for the flows that will be considered here. Flows with other properties can however be

approximated by this method by constructing different basis functions.

Inserting the expansion for f (i)(x,v, t) and testing successively against ϕk(v) with respect to the inner

product approximates (2.1) by a system of linear hyperbolic equations [13]

∂F (i)

∂t
+ A(1) ∂F (i)

∂x1
+ A(2) ∂F (i)

∂x2
+ A(3) ∂F (i)

∂x3
=

1
Kn

B(i) F (i), i = 1, . . . , ns, (3.1)

where F (i)(x, t) := (f (i)
0 (x, t), ..., f (i)

K−1(x, t))T is the vector of the K coefficient functions in the expansion in

velocity space. Here, A(1), A(2), A(3), and B(i) are constant K×K matrices. Using collocation basis functions,

the coefficient matrices A(1), A(2), A(3) become diagonal matrices [4]. Note again that the equations for all

species remain coupled through the crucial reaction boundary condition at the wafer surface.

The hyperbolic system (3.1) is now posed in a standard form as a system of partial differential equations

on the spatial domain Ω ⊂ R3 and in time t and amenable to solution by various methods. Figure 1 shows two

views of a representative domain Ω ⊂ R3; more precisely, the plots show the solid wafer surface consisting of

a 0.3 micrometer deep trench, in which is etched another 0.3 micrometer deep via (round hole). The domain

Ω for our model is the gaseous region above the solid wafer surface up to the top of the plot box at x3 = 0.3

micrometers in Figure 1. Since typical domains in our applications such as this one are of irregular shape, we

use the discontinuous Galerkin method (DGM) [14], relying on a finite element discretization of the domain

into tetrahedra.

The degrees of freedom (DOF) of the finite element method are the values of the ns species’ coefficient

functions f
(i)
` (x, t) in the Galerkin expansion at K discrete velocities on the 4 vertices of each of the Ne

tetrahedra of the three-dimensional mesh. Hence, the complexity of the computational problem is given by

4 Ne K ns at every time step. To appreciate the size of the problem, consider that the mesh of the domain in

Figure 1 uses Ne = 7,087 three-dimensional tetrahedral elements; even in the case of a single-species model

(ns = 1) and if we use just K = 4 × 4 × 4 = 64 discrete velocities in three dimensions, as used for the

application results in the following section, the total DOF are N = 1,814,272 or nearly 2 million unknowns

to be determined at every time step. Extensive validations of the numerical method and convergence studies
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for a wide range of Knudsen numbers are the focus of [4]. Based on these results, the choice of discrete

velocities here is sufficient to obtain reliable results.

The size of problem at every time step motivates our interest in parallel computing. For the parallel

computations on a distributed-memory cluster, the spatial domain Ω is partitioned in a pre-processing step,

and the disjoint subdomains are distributed to separate parallel processes. The discontinuous Galerkin

method for (3.1) needs the flux through the element faces. At the interface from one subdomain to the next,

communications are required among those pairs of parallel processes that share a subdomain boundary.

Additionally, a number of global reduce operations are needed to compute inner products, norms, and other

diagnostic quantities. The performance of the parallel implementation was studied in [2] and confirmed that

a distributed-memory cluster is very effective in speeding up calculations for a problem of this type.

4 APPLICATION RESULTS

As an application example, we present a model for chemical vapor deposition. In this process, reactants

are supplied from the gas-phase interface at the top of the domain at x3 = 0.3 in Figure 1. The reactants

flow downwards throughout the domain Ω until they reach the solid wafer surface shown in Figure 1, where

some fraction of the molecules form a solid deposit. The time scale of all simulations corresponds to forming

only a very thin layer; hence the surface is not moved within a simulation. Here, we use a single-species

model with one reactive species (ns = 1) and drop the species superscript in the following discussion. The

deposition at the wafer surface can then be modeled using a sticking factor 0 ≤ γ0 ≤ 1 that represents

the fraction of molecules that are modeled to deposit at (“stick to”) the wafer surface. The re-emission

into Ω of gaseous molecules from the wafer surface is modeled as re-emission with velocity components in

Maxwellian form and proportional to the flux to the surface as well as proportional to 1−γ0. The re-emission

is scaled to conserve mass in the absence of deposition (γ0 = 0). The studies shown use a sticking factor of

γ0 = 0.01, that is, most molecules re-emit from the surface, which is a realistic condition [5]. The collision

operator uses a relaxation time discretization by choosing σ1(v,v′) ≡ 1/τ1 with (dimensionless) relaxation

time τ1 = 1.0 that characterized the time to return to steady-state under appropriate boundary conditions.

The temperature on the scale of this micron-scale domain is assumed constant and uniform throughout the

domain and is set at T = 500 K [3]. We focus on how the flow behaves when starting from no gas present

throughout Ω, modeled by initial condition f ≡ 0 at t = 0 for the reactive species; the inert species is already

present throughout the domain [3].
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4.1 Concentration Results

Figures 2 through 5 show the results of transient simulations for the values of the Knudsen numbers

Kn = 0.01, 0.1, 1.0, and 100.0, respectively, at six selected times throughout the simulation; notice that

different times are selected for different cases. The quantity plotted for each (re-dimensionalized) time is the

(dimensionless) concentration

c(x, t) :=
∫

R3
f(x,v, t) dv

across the domain Ω. The values of the dimensionless concentration 0 ≤ c ≤ 1 is represented by the gray-

scale on each of the horizontal slices through Ω at the vertical levels at six values of x3; the shapes of all

slices together indicate the shape of the domain Ω.

In Figure 2 for Kn = 0.01, a value that indicates near fluid-dynamic regime, we see that the top-most

slice at x3 = 0.15 is always darker than the slices below it, indicating higher concentration of molecules has

reached this level from the inflow at the top of the domain than the lower levels deeper in the feature. More

specifically, at the early times 5 ns and 10 ns, relatively few molecules have reached the inside of the feature.

By 10 ns, the slice at x3 = 0 shows that the concentration at the flat parts of the wafer surface has reached

relatively high values than above the mouth of the trench (0.3 ≤ x1 ≤ 0.7); this is explained by the ongoing

flow of molecules into the trench. By 50 ns, we observe the same phenomenon at the slice for x3 = −0.3,

where the concentration has reached a higher value in the flat areas of the trench bottom as compared to

the opening into the via (round hole) below. The following plots for times 100, 150, and 200 ns show how

the fill of the entire domain with gaseous molecules continues over time.

Figure 3 shows slice plots of c(x, t) across Ω for the case of Kn = 0.1 at selected times t; notice that the

first two plots are at the same times 5 and 10 ns as the previous figure, but the remaining times are different

than in the previous figure. Comparing the plots at t = 5 ns in Figures 3 and 2 with each other, the one

for the smaller Kn has generally lighter color indicating a slower fill of the feature with gas. The smaller

Knudsen number means more collisions among molecules, leading to a less directional flow than for the larger

Knudsen number. Since the bulk direction of the flow is downward because of the supply at the top with

downward velocity, the feature fills faster with molecules in this case. This comparison also applies to time

10 ns. The following plots show again how the fill of the entire domain with gaseous molecules continues

over time; as the times are 15, 20, 25, and 30 ns here, we see that the fill occurs substantially faster for this

larger Knudsen number of Kn = 0.1.

Figures 4 and 5 extend the comparison of slice plots of c(x, t) to the Knudsen numbers Kn = 1.0 and

100.0, respectively; notice that smaller times are selected here, but the times 5 and 10 ns are still available

for comparison, now in the final two plots. We notice first that the behavior of the two cases in Figures 4
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and 5 appears nearly identical, up to the resolution of the plots. We also note that the overall behavior of

the feature filling with molecules is similar to the previous cases of smaller Knudsen numbers, but it clearly

occurs a lot faster. By time 10 ns, steady-state is rapidly being approached already, where in the previous

plots at 10 ns, in particular the inside of the via had only been reached by few molecules.

4.2 Kinetic Density Results

The previous figures showed results of the (macroscopic) concentration c(x, t) =
∫

f(x,v, t) dx, given as

integral of the kinetic density f(x,v, t). To provide more insight into the behavior of the solution, the

following four figures show plots of the kinetic density f(x,v, t) directly as a function of velocity v. This

requires fixing the spatial position x ∈ Ω at which the kinetic density is analyzed. We select the values

x = (0.5, 0.5, 0.0) at the center of the mouth of the trench (at height x3 = 0.0) in Figures 6 and 7 and

x = (0.5, 0.5,−0.3) at the center of the mouth of the via (at height x3 = −0.3) in Figures 8 and 9. We focus

here on comparing the two Knudsen numbers Kn = 0.01 and 1.0, with the plots for Kn = 0.01 in Figures 6

and 8, and the plots for Kn = 1.0 in Figures 7 and 9. The selected times are, for each Kn, the same ones as

for the corresponding concentration plots in Figures 2 and 4, respectively.

Each plot in Figures 6 through 9 is an isosurface plot of f(x,v, t) as function of v ∈ R3, where the surface

of the wireframe shown represents the isosurface level f = 0.005. That is, the velocities on the inside of

the wireframe have higher values of f(x,v, t) and the outside lower values than 0.005. This presentation

is chosen, because a Maxwellian distribution of the molecule velocities, that represents the case of fully

randomized velocities, is useful as a reference and would result in a sphere in three dimensions, up to the

resolution of the velocity discretization.

In Figure 6 for the velocity distribution at the mouth of the trench at x = (0.5, 0.5, 0.0) for the relatively

small Knudsen number Kn = 0.01, the plots at times 5 and 10 ns confirm that few molecules have reached

this point, as all components of f(x,v, t) are less than 0.005. In accordance with the concentration results

in Figure 2, by time 50 ns, significant amounts of molecules have reached the mouth of the trench. The

plots in Figure 6 for the times 50 ns and larger additionally show that these molecules have apparently a

randomized velocity distribution, close to a Maxwellian distribution, for Kn = 0.01.

By contrast, the plots in Figure 7 for the case of the larger Kn = 1.0 first of all confirm the results in

Figure 4 that molecules reach the position x = (0.5, 0.5, 0.0) faster; notice that the times 5 and 10 ns are

in the bottom row of plots in this figure. But we also see in the plots for the earlier times 2, 3, 4 ns, and

even at 5 ns, that the distribution of velocities is far from Maxwellian. Rather, as f(x,v, t) > 0.005 only for

v3 < 0, we have predominantly velocities pointing from the inlet at the top of the domain downward into

the feature. By 10 ns though, sufficiently many molecules have been re-emitted from the wafer surface that
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there are also many molecules with upward velocities.

The next two Figures 8 and 9 show the same quantity as the previous plots at the same times, but with

the point x = (0.5, 0.5,−0.3) chosen at the mouth of the via (round hole) half-way down the feature. Since

this position lies deeper inside the feature than x = (0.5, 0.5, 0.0), it is expected that there is a time lag

for molecules to reach this position. This can be seen for each Kn by comparing Figure 8 with Figure 6

for Kn = 0.01 and Figure 9 with Figure 7 for Kn = 1.0. Particularly, the kinetic density at t = 50 ns in

Figure 8 has smaller values than those in Figure 6, but they are equally randomized due to relatively frequent

collisions for Kn = 0.01. Analogously, the density at t = 5 ns in Figure 9 has smaller values than the density

in Figure 7, but it is also still more directional and less randomized.

4.3 Kinetic Saturation Results

The final plots in Figures 6 through 9 all appear to show that kinetic density has reached a Maxwellian velocity

distribution in the final plot. To determine if this is indeed the case, we now plot the kinetic saturation

0 ≤ f(x,v, t)/M(v) ≤ 1 that shows how close to a Maxwellian the kinetic density f is. Moreover, all results

in the previous four figures bear out that at positions x in the center of the feature (x1 = x2 = 0.5) the

kinetic density f(x,v, t) does not depend on the velocity components v1 and v2 in the x1- and x2-directions,

respectively, and we use this observation to plot f/M as a function of v3 only, for v1 = v2 = 0 fixed, in

Figures 10 and 11. Each line shows the result at a particular time, as listed in the figure captions; these

times are the same ones for each Kn as before, but different for the two Kn.

Figure 10 shows the saturation f/M at the trench mouth and via mouth for Kn = 0.01. In both cases,

the saturation increases over time. Overall, the saturation levels are lower at the via mouth than at the

trench mouth, which is consistent with the concentration results in Figure 2; notice the different scales on

the vertical axes. We notice that the last lines are closer to each other than earlier lines, so a steady-state is

being approached; notice that only the final four times are uniformly spaced. Finally, each line shows larger

values of f/M for v3 < 0 (the left side of the plot) than for f3 > 0 (the right side). This means that the

velocity distribution has a downward direction. This detail could not be clearly determined in Figure 6 or 8;

in fact, many of the plots of the kinetic density could not be distinguished from Maxwellians there, but the

present plots of the saturation allow us to establish clearly that they are not Maxwellians.

Figure 11 shows the saturation f/M for Kn = 1.0. The same observations as for Figure 10 hold concerning

the level of saturation being higher at the trench mouth than the via mouth and concerning a generally

downward velocity distribution. But additionally, we notice that the difference between the f/M values for

v3 < 0 and v3 > 0 is sharper for most of the times; this corresponds to fewer collisions for this larger Kn = 1.0

compared to more collisions for Kn = 0.01 that tend to smooth out the velocity distribution. However, by
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the final time, sufficiently many molecules have been re-emitted from the wafer surface that also upward

velocity components are present in the distribution and hence the saturation plot has become more uniform.

5 CONCLUSIONS

The results presented in the previous section highlight the capabilities of the KTRM and the numerical

method used to model an important chemical process. We see that the flow associated with larger Knudsen

numbers is more directional and the transients due to the change in flux of reactant species are shorter for

higher Kn. This is highlighted by looking at the local kinetic density function at selected times. Access to

the kinetic density is thus important to understanding such systems.

The studies presented point out the need to consider Kn when deciding how long transients due to

perturbations might last. That is, when deciding the simulation time for a particular case, its Knudsen

number must be taken into account, because different times will be appropriate for different Kn. This is

important in our effort to develop a multiscale simulator for processes of this type.
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Figure 1: Two views of the solid wafer surface boundary of the trench/via domain. The gas domain of the

model is the region above the wafer surface up to the top of the plot box.
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t = 5 ns t = 10 ns

t = 50 ns t = 100 ns

t = 150 ns t = 200 ns

Figure 2: Slice plots of the dimensionless concentration c(x, t) for Kn = 0.01 at heights x3 =

−0.60,−0.45,−0.30,−0.15, 0.00, 0.15 at selected times t. Grayscale from light ⇔ c = 0 to dark ⇔ c = 1.
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t = 5 ns t = 10 ns

t = 15 ns t = 20 ns

t = 25 ns t = 30 ns

Figure 3: Slice plots of the dimensionless concentration c(x, t) for Kn = 0.1 at heights x3 =

−0.60,−0.45,−0.30,−0.15, 0.00, 0.15 at different times t. Grayscale from light ⇔ c = 0 to dark ⇔ c = 1.
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t = 1 ns t = 2 ns

t = 3 ns t = 4 ns

t = 5 ns t = 10 ns

Figure 4: Slice plots of the dimensionless concentration c(x, t) for Kn = 1.0 at heights x3 =

−0.60,−0.45,−0.30,−0.15, 0.00, 0.15 at different times t. Grayscale from light ⇔ c = 0 to dark ⇔ c = 1.
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t = 1 ns t = 2 ns

t = 3 ns t = 4 ns

t = 5 ns t = 10 ns

Figure 5: Slice plots of the dimensionless concentration c(x, t) for Kn = 100.0 at heights x3 =

−0.60,−0.45,−0.30,−0.15, 0.00, 0.15 at different times t. Grayscale from light ⇔ c = 0 to dark ⇔ c = 1.
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t = 5 ns t = 10 ns

t = 50 ns t = 100 ns

t = 150 ns t = 200 ns

Figure 6: Isosurface plots of the kinetic density f(x,v, t) for Kn = 0.01 as function of velocity v ∈ R3 at the

mouth of the trench at x = (0.5, 0.5, 0.0) at selected times. Isosurface level at f(x,v, t) = 0.005.
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t = 1 ns t = 2 ns

t = 3 ns t = 4 ns

t = 5 ns t = 10 ns

Figure 7: Isosurface plots of the kinetic density f(x,v, t) for Kn = 1.0 as function of velocity v ∈ R3 at the

mouth of the trench at x = (0.5, 0.5, 0.0) at selected times. Isosurface level at f(x,v, t) = 0.005.
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t = 5 ns t = 10 ns

t = 50 ns t = 100 ns

t = 150 ns t = 200 ns

Figure 8: Isosurface plots of the kinetic density f(x,v, t) for Kn = 0.01 as function of velocity v ∈ R3 at the

mouth of the via at x = (0.5, 0.5,−0.3) at selected times. Isosurface level at f(x,v, t) = 0.005.
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t = 1 ns t = 2 ns

t = 3 ns t = 4 ns

t = 5 ns t = 10 ns

Figure 9: Isosurface plots of the kinetic density f(x,v, t) for Kn = 1.0 as function of velocity v ∈ R3 at the

mouth of the via at x = (0.5, 0.5,−0.3) at selected times. Isosurface level at f(x,v, t) = 0.005.

19



trench mouth via mouth

Figure 10: Line plots of the saturation of the kinetic density f(x,v, t)/M(v) for Kn = 0.01 for (v1, v2) = (0, 0)

as function of v3; at the mouth of the trench at position x = (0.5, 0.5, 0.0) and at the mouth of the via at

position x = (0.5, 0.5,−0.3); at times: × = 5 ns, + = 10 ns, 3 = 50 ns, 2 = 100 ns, ◦ = 150 ns, 4 = 200 ns.

Notice the different scales of the vertical axes.

trench mouth via mouth

Figure 11: Line plots of the saturation of the kinetic density f(x,v, t)/M(v) for Kn = 1.0 for (v1, v2) = (0, 0)

as function of v3; at the mouth of the trench at position x = (0.5, 0.5, 0.0) and at the mouth of the via at

position x = (0.5, 0.5,−0.3); at times: × = 1 ns, + = 2 ns, 3 = 3 ns, 2 = 4 ns, ◦ = 5 ns, 4 = 10 ns.
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