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Abstract. We present a homogenization technique for rarefied gas flow over a microstructured
surface consisting of patterns of periodic features. The length scale of the model domain is comparable
to the mean free path of the molecules, while the scale of the surface patterns is much smaller. The
flow is modeled by a system of linear Boltzmann equations with a diffusive boundary condition
at the patterned surface. The resulting homogenized boundary condition holds at a virtual flat
surface and incorporates the microscopic geometry information about the surface structure on the
macroscopic level. Numerical results validate the approach. The setup models low pressure chemical
vapor deposition processes in the manufacturing of integrated circuits.
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1. Introduction. Low pressure chemical vapor deposition is used in the manu-
facturing of integrated circuits to deposit a thin layer of material onto the surface of
a silicon wafer. The deposition surface necessarily involves a microstructure given by
the electrical components of the future microchip. Classical models for this process
include reactor scale models [17] with a typical length scale of over 10 cm, which
model the gas flow throughout the chemical reactor, and feature scale models [3] with
a typical length scale of under 1 µm, which focus on the evolution of the film profile
inside an individual feature.

In more detail, the process works as follows. Molecules of the species to be
deposited are carried inside the chemical reactor by an inert carrier gas to a mi-
crostructured surface, where they are partially absorbed and partially reflected at a
certain rate. The length scale of the surface structure is several orders of magnitude
smaller than that of the reactor and therefore cannot be reasonably resolved on the
reactor scale. On the other hand, this structure will influence the gas flow through
the boundary conditions; i.e., adsorption on the microstructured surface will result
in a different behavior of the gas flow than adsorption on a flat surface, even on the
macroscopic reactor scale. We therefore have to solve a homogenization problem at
the boundary by deriving a boundary condition for the flow problem which incor-
porates the microscopic geometric information about the surface structure into the
macroscopic flow picture.
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Based on analytic work in [2, 5, 6, 8, 11], the authors and coworkers have pre-
viously introduced [7, 12] a mesoscopic scale model on a length scale intermediate
to those of the classical reactor scale and feature scale models, which was designed
to provide information on the effects of feature clustering on a length scale of about
1.0 cm at comparably high pressures of at least 1 torr (where 760 torr = 1 atm). In
that regime, the mean free path of the gas molecules was well inside the domain size,
and the gas flow could be modeled as diffusion-dominated [8, 9, 11, 12, 18]. While
[8, 11] derive the homogenized model formally for the concrete problem of interest,
[2, 5, 6] handle the analysis rigorously for a more general class of models.

However, as individual feature sizes decrease below 1 µm, the length scale of in-
terest for clustering effects also decreases. Therefore, this work considers a mesoscopic
scale model with a domain with typical length scale on the order of 0.01 cm. Using
this together with typical values for the total pressure of 1 torr or less, the mean free
path of the gas molecules is of length comparable to the typical length scale. The
Knudsen number Kn, which is defined as the ratio of the mean free path and the
typical length scale, is on the order of unity, and the process lies in the transition
regime for gaseous flow modeling [15].

The proper mathematical model for a gas flow in the transition regime is given by
the Boltzmann equation of gas dynamics for the (scaled) probability density f(x, v, t)
that there is a molecule in the region [x1, x1 + dx1] × [x2, x2 + dx2] × [x3, x3 + dx3]
with velocity in [v1, v1 + dv1] × [v2, v2 + dv2] × [v3, v3 + dv3] during time [t, t+ dt],

∂f

∂t
+ v · ∇f = Q(f, f),(1.1)

with the collision operator

Q(f, f)(x, v, t) =

∫ ∫ ∫ [
f(x, v′, t)f(x, v′∗, t) − f(x, v, t)f(x, v∗, t)

]
B(ϑ, |V |) dϑ dε dv∗,

(1.2)

where v′ = v−n(n · V ) and v′∗ = v∗ +n(n · V ) denote the precollision velocities, with
V = v − v∗ and n = (sinϑ cos ε, sinϑ sin ε, cosϑ)T (see [4, 15]).

A complete model for chemical vapor deposition will consist of one Boltzmann
equation for each gaseous species fi(x, v, t), i = 0, 1, . . . , ns, to form the system

∂fi
∂t

+ v · ∇xfi =

ns∑
j=0

Qij(fi, fj), i = 0, 1, . . . , ns,(1.3)

where the collision operators Qij(fi, fj) model the collisions between molecules of
species i and species j for 0 ≤ i, j ≤ ns. This model includes the inert background
gas f0(x, v, t) of the manufacturing process, which is a rarefied gas itself but still much
denser than the reacting species. Under these assumptions, the collisions of a reacting
species with the background gas will be much more frequent than collisions among
the reacting species, and it is legitimate to neglect all collisions except the ones with
the background species j = 0 on the right-hand side of (1.3); this also decouples the
equation for the background species f0 from the other equations, which can hence be
solved for independently from the other solutions fi, i = 1, . . . , ns.

In the classical derivation [4, Chapter IV], it is additionally assumed that the
background gas is in equilibrium and spatially homogeneously distributed. Then its



198 MATTHIAS K. GOBBERT AND CHRISTIAN RINGHOFER

distribution function f0(x, v, t) is given by a Maxwellian distribution of the form

f0(x, v, t) = M(v) :=
1

(2π)d/2
exp

(
−|v|2

2

)
,(1.4)

where d ∈ {1, 2, 3} denotes the dimension of the velocity space under consideration.
Then, the time-evolution of the probability distribution of a typical reacting species
is given by the system of linear Boltzmann equations

∂fi
∂t

+ v · ∇fi = Qi(fi), i = 1, . . . , ns,(1.5)

with the linear collision operators

Qi(fi)(x, v, t) =

∫
Si(v, v

′)
[
fi(x, v

′, t)
M(v′)

− fi(x, v, t)

M(v)

]
dv′;(1.6)

see [4, Chapter IV] for a detailed derivation. Here, Si(v, v
′) = Si(v

′, v) denotes the
scattering cross section, which describes the probability that a molecule with velocity
v′ before a collision scatters to a velocity v after the collision. A generalization to spa-
tially varying background gases is possible. We will assume that the reacting species
are introduced into the reactor chamber starting at the beginning of the processing
step, i.e., that fi = 0, i = 1, . . . , ns, at t = 0.

For the analysis, we therefore consider the representative equation for f(x, y, v, t):

∂f

∂t
+ v1

∂f

∂x1
+ v2

∂f

∂x2
+ v3

∂f

∂y
= Q(f).(1.7)

Here, x ≡ (x1, x2)T counts across the reacting surface, and y ≡ x3 points into the
gaseous domain perpendicular to the surface. That is, molecules with velocities v =
(v1, v2, v3)T travel towards the mean wafer surface when v3 < 0. More precisely, the
microstructured surface Γε is for this paper assumed to be given by a function

y = h̃(x) = ε h(x, xε ),(1.8)

with the small parameter 0 < ε � 1. This parameter represents the ratio of the
typical feature mouth (or, more precisely, the so-called pitch, i.e., the distance from
the center of one feature to the next one), e.g., 1 µm, to the typical length scale of
the mesoscopic scale model, e.g., 100 µm.

In this dimensionless form, h(x, ξ) is periodic in ξ ≡ (ξ1, ξ2)T with period 1 in
each component; that is,

h(x, ξ) = h(x, ξ + e1) = h(x, ξ + e2) for all (x, ξ),(1.9)

where e1 = (1, 0)T and e2 = (0, 1)T denote the unit vectors in two dimensions.
Physically, this reflects the fact that the microscopic features on a computer chip are
not random but arranged in clusters of hundreds or thousands of (by design) identical
features, periodic with the feature pitch as period. However, this periodic structure
will be different in different regions of the chip, and therefore we allow the function
h to depend on the slow spatial variable x as well. Realistic values for ε include the
range from 10−4 to 10−3.

The model is complemented by a boundary condition on the reacting surface for
all molecules that flow into the gaseous domain, i.e., that satisfy n · v ≤ 0, where n =
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n(x, y) denotes the unit outward normal vector at position (x, y)T ∈ Γε. Specifically,
we assume that the reinsertion occurs with Maxwellian distributed velocities and set

f(x, y, v, t) = M(v)

∫
n·w>0

a(x, xε , w) f(x, y, w, t) dw for n · v ≤ 0 and (x, y)T ∈ Γε,

(1.10)

where a(x, xε , w) ≥ 0 denotes a given function, and n is the unit outward normal
vector on the surface Γε. This boundary condition reflects a pseudo–steady-state
assumption, that is, the deposition of molecules on the surface progresses several
orders of magnitude more slowly than the flow of the rarefied gas; therefore neither
the functions a(x, xε , w) nor the geometry of the surface y = h̃(x) depends on the time
t of the gas flow under consideration. However, they are certainly allowed to depend
on x; that is, different regions of the surface can see different deposition conditions;
this is important in actual applications.

The model in its present form with a microstructured surface is not numerically
tractable because of the high cost of resolving the domain close to the rough surface
Γε. The goal of this work is to obtain a model with a reduced boundary condition
on a flat surface Γ0 given by y = 0 that gives equivalent results for f(x, y, v, t) in the
bulk of the gaseous domain away from the surface in an asymptotic sense using the
expansion parameter ε.

To this end, we make the ansatz

f(x, y, v, t) = f̃(x, y, v, t) + f̂(x
ε ,

y
ε ,

t
ε , x, v, t) + o(1),(1.11)

where f̃ denotes the bulk variable, for which we wish to derive a numerically tractable
model, and f̂ is the small-scale correction, which is assumed to be periodic in ξ = x

ε in
the same way as the surface function h(x, ξ). There is only one scale for the velocity v
of the molecules; hence there have to be pairs of corresponding length and time scales
on both the long (x and t) and the short scales (ξ = x

ε and τ = t
ε ). Note that we

have assumed the Knudsen number to be of order O(1) in the bulk of the mesoscopic
scale model, whose solution is f(x, y, v, t). This means that on the O(ε) spatial scale,
the feature scale, collisions will be negligible, and we obtain free transport inside the
features of the surface. Therefore, due to the hyperbolic nature of the Boltzmann
equation, we can assume only that f̂ decays weakly with ε at any fixed distance from
the surface; that is, we assume that small-scale fluctuations in the inner solution f̂
average out to zero at any fixed finite distance above the surface as ε → 0. That is,
we require that

lim
ε→0

∫ ∫
f̂(x

ε ,
y
ε ,

t
ε , x, v, t)ψ(x, t) dx dt = 0(1.12)

for all test functions ψ(x, t).
Based on these assumptions, we will derive the appropriate reduced boundary

condition for the bulk term f̃(x, y, v, t) on the flat surface y = 0

f̃(x, y, v, t) = M(v)

∫
ã(x, v, w) f̃(x, y, w, t) dw for v3 > 0 and y = 0,(1.13)

where the integral kernel ã(x, v, w) incorporates the information about the microscopic
surface geometry into the flow equations. This problem is tractable numerically, since
it is posed on a domain with a flat reacting surface, and the values of ã(x, v, w) can be
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precomputed for all times, since ã does not depend on the macroscopic time t. This
effective boundary condition still reflects the assumption of a pseudo–steady state in
the original model, because ã does not depend on the time t that is the relevant time
scale for the gas flow on the mesoscopic scale.

We remark that in the previous work [2, 5, 6, 8, 11], where the flow was assumed
to be Maxwellian inside the features as well, the only information needed about the
surface geometry was the ratio of surface areas between the microstructured surface
and the flat surface. This ratio is now replaced by the integral kernel ã, which contains
much more information about the actual shape of the surface and is necessary for the
non-Maxwellian picture. This approach has to be viewed as an alternative to the
work presented in [1], which deals with specular reflections on a random surface, as
opposed to random reflections on a deterministic surface. The result is, however, quite
different for the obvious reason that we allow for absorption into the surface; i.e., in
our resulting homogenized problem the total mass inside the gas phase domain will
not be conserved.

Section 2 details the analytical derivation of the reduced boundary condition,
where we will restrict ourselves to the two-dimensional case for notational simplicity.
The generalization to three dimensions is straightforward. Section 3 provides a nu-
merical demonstration of the result for a setup that closely resembles the structure of
the application problem under consideration by using a periodic boundary geometry.

2. Analysis. This section considers the two-dimensional linear Boltzmann equa-
tion

∂f

∂t
+ v1

∂f

∂x
+ v2

∂f

∂y
= Q(f)(2.1)

with boundary condition (1.10) at the reacting wafer surface. Note that we have
changed the notation slightly in going to a two-dimensional problem: The gas phase
domain is now given by y > εh(x, xε ), and molecules travel towards the surface for
velocities v = (v1, v2)T with v2 < 0. We introduce the surface density ρ as

ρ(x
ε ,

t
ε , x, t) =

∫
n·w≥0

a(x, xε , w)
(
f̃(x, 0, w, t) + f̂(x

ε , h(x, xε ), tε , x, w, t)
)
dw + o(1)

(2.2)

for the integral on the right-hand side of (1.10). Using the ansatz f = f̃ + f̂ + o(1),
the boundary condition (1.10) then reads

f̃(x, 0, v, t) + f̂(ξ, h(x, ξ), τ, x, v, t) = M(v) ρ(ξ, τ, x, t) + o(1) for σ ≤ 0,(2.3)

using also the shorthand notation σ(x, ξ, v) = n ·v = v1∂ξh(x, ξ)−v2 +O(ε). Here we

have already replaced the argument y = ε h(x, ξ) by 0 in the evaluation of f̃ at the
boundary. The homogenized boundary condition (1.13) on the limiting flat surface
y = 0 will be as derived follows.

Tracing back the characteristics, we will first solve the boundary layer problem
for the inner solution f̂ in terms of boundary data consisting of the outer solution f̃
and the boundary density ρ defined in (2.2). This result is given in Theorem 2.2 in
subsection 2.1. The surface density ρ involves both the inner and the outer solutions
and forms the connection between them. Its behavior in the limit of the fast time
variables τ → ∞ is analyzed in Theorem 2.4.
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In subsection 2.2, using the weak decay condition (1.12), we derive the homoge-
nized boundary condition for f̃ on the flat surface y = 0 in terms of the surface density
ρ and finally in terms of ã as in (1.13). This quantity will contain only information
about the microscopic and quasi-periodic geometry of the surface and can be solved
beforehand for a given surface structure.

2.1. Solution to the inner equation. The asymptotic ansatz applied to (2.1)

leads to the inner problem for the layer correction term f̂(ξ, η, τ, x, v, t) as a function
of the layer variables ξ, η, τ :

∂f̂

∂τ
+ v1

∂f̂

∂ξ
+ v2

∂f̂

∂η
= 0(2.4)

for any fixed x, v, t. Using the method of characteristics with ξ′ = v1 and η′ = v2
yields

f̂(ξ, η, τ, x, v, t) = f̂(ξ − sv1, η − sv2, τ − s, x, v, t)

for all parameters s sufficiently small. We can then follow the characteristics back to
the boundary or back to the initial condition f̂ = 0 at τ = 0 to obtain

f̂(ξ, η, τ, x, v, t)

= f̂(ξ − v1s, η − v2s, τ − s, x, v, t)

=

{
f̂(ξ − v1φ0, η − v2φ0, τ − φ0, x, v, t) if φ0 < τ,
0 if φ0 ≥ τ

= H(τ − φ0) f̂(ξ − v1φ0, η − v2φ0, τ − φ0, x, v, t),

(2.5)

with

φ0(ξ, η, x, v) =

{
min {s > 0 : η − v2s = h(x, ξ − v1s)} ,
∞ if η − v2s �= h(x, ξ − v1s) for all s > 0,

(2.6)

and using the Heaviside function

H(z) =

{
0 for z < 0,
1 for z ≥ 0.

The function φ0 denotes the intersection time, i.e., the time it takes for a molecule
emitted from the surface with velocity v to reach the point (ξ, η). The boundary
condition for the inner equation then reads

f̂(ξ, h(x, ξ), τ, x, v, t) = M(v) ρ(ξ, τ, x, t) − f̃(x, 0, v, t) for σ(x, ξ, v) ≤ 0.(2.7)

In order to apply the boundary condition to the solution in (2.5), we need to guarantee
that σ(x, ξ − v1φ0, v) ≤ 0 in the case when the characteristic traces back to the
boundary, i.e., φ0 is finite.

Lemma 2.1. If φ0(ξ, η, x, v) is finite and either (i) η = h(x, ξ) and σ(x, ξ, v) > 0
or (ii) η > h(x, ξ), then it holds that σ(x, ξ − v1φ0, v) ≤ 0.

Proof. Define

g(s) = η − sv2 − h(x, ξ − sv1).
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By definition of φ0, the first positive root of g(s) is given by s = φ0. Then

g′(s) = −v2 + v1∂ξh(x, ξ − sv1) = σ(x, ξ − sv1, v),
and we have to show that g′(φ0) = σ(x, ξ − v1φ0, v) ≤ 0.

Case (i). If η = h(x, ξ) and σ(x, ξ, v) > 0, then

g(0) = 0, g′(0) > 0 ⇒ g(s) > 0 for 0 < s < φ0(ξ, η, x, v) ⇒ g′(φ0) ≤ 0.

Case (ii). If η > h(x, ξ), then

g(0) > 0 ⇒ g(s) > 0 for s < φ0(ξ, η, x, v), g(φ0) = 0 ⇒ g′(φ0) ≤ 0.

Theorem 2.2. The solution f̂(ξ, η, τ, x, v, t) to the inner problem (2.4) with

boundary condition (2.7) and initial condition f̂ = 0 at τ = 0 is given by

f̂(ξ, η, τ, x, v, t) =



M(v)ρ(ξ, τ, x, t) − f̃(x, y = 0, v, t)

if η = h(x, ξ) and σ(x, ξ, v) ≤ 0,

H(τ − φ0)(M(v)ρ(ξ − v1φ0, τ − φ0, x, t) − f̃(x, y = 0, v, t))
if (i) η = h(x, ξ) and σ(x, ξ, v) > 0 or (ii) η > h(x, ξ),

with the intersection time φ0 given by (2.6).
Proof. Define the characteristics

g(s, ξ, η, τ, x, v, t) := f̂(ξ − sv1, η − sv2, τ − s, x, v, t);
then dg/ds = 0. Follow the characteristics in four possible cases, as follows.

Case 1. If η > h(x, ξ) and the line (ξ − sv1, η − sv2, τ − s) intersects τ = 0 first
(τ < φ0(ξ, η, x, v)), then

f̂(ξ, η, τ, x, v, t) = f̂(ξ − τv1, η − τv2, τ = 0, x, v, t) = 0.

Case 2. If η > h(x, ξ) and the line (ξ − sv1, η − sv2, τ − s) intersects η = h(x, ξ)
first (τ > φ0(ξ, η, x, v)), then

f̂(ξ, η, τ, x, v, t) = f̂(ξ − v1φ0, η − v2φ0, τ − φ0, x, v, t), φ0 = φ0(ξ, η, x, v).

Then η − v2φ0(ξ, η, x, v) = h(x, ξ − v1φ0(ξ, η, x, v)), and hence

f̂(ξ, η, τ, x, v, t) = M(v)ρ(ξ − v1φ0, τ − φ0, x, t) − f̃(x, 0, v, t),

because σ(x, ξ − φ0v1, v) ≤ 0 by Lemma 2.1.
Case 3. If η = h(x, ξ) and σ(x, ξ, v) ≤ 0 (boundary condition), then

f̂(ξ, h(x, ξ), τ, x, v, t) = M(v)ρ(ξ, τ, x, t) − f̃(x, 0, v, t).

Case 4. If η = h(x, ξ) and σ(x, ξ, v) > 0, then follow the ray (ξ−sv1, η−sv2, τ−s)
back until either τ − s = 0 or η − sv2 = h(x, ξ − sv1). We distinguish the following
two subcases.

(a) If η = h(x, ξ) and σ(x, ξ, v) > 0 and τ < φ0(ξ, η, x, v) (that is, τ = 0 is
intersected first), then

f̂(ξ, η, τ, x, v, t) = f̂(ξ − τv1, h− τv2, τ = 0, x, v, t) = 0.
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(b) If η = h(x, ξ) and σ(x, ξ, v) > 0 and τ > φ0(ξ, η, x, v) (that is, η = h(x, ξ) is
intersected first), then

f̂(ξ, η, τ, x, v, t) = f̂(ξ − v1φ0, h− v2φ0, τ − φ0, x, v, t),
φ0 = φ0(ξ, h(x, ξ), x, v),

and

f̂(ξ, η, τ, x, v, t) = M(v)ρ(ξ − v1φ0, τ − φ0, x, t) − f̃(x, 0, v, t),

because σ(x, ξ − φ0v1, v) ≤ 0 by Lemma 2.1.
We now turn to the evolution of the surface density ρ defined in (2.2). On the

one hand, according to (2.2), ρ is defined in terms of f̃ and f̂ evaluated at the surface

y = ε h(x, xε ). On the other hand, according to Theorem 2.2, the inner solution f̂

at the surface is given in terms of ρ and f̃ . Combining these two formulas, we are
able to write an evolution equation for ρ in terms of the outer solution f̃ alone. In
other words, we are able to write ρ = F [f̃ ] with some integral operator to be defined.
Moreover, for the computation of the reduced boundary condition (1.13), we will
need to make a statement about the behavior of ρ(ξ, τ, x, t) for the fast time variable
τ → ∞. To this end, it is convenient to make the following definitions. First we
introduce for convenience a new symbol for the function φ0 in Theorem 2.2 evaluated
at the boundary by defining φ1(ξ, x, v) := φ0(ξ, h(x, ξ), x, v), that is,

φ1(ξ, x, v) =

{
min {s > 0 : h(x, ξ) − v2s = h(x, ξ − v1s)} ,
∞ if h(x, ξ) − v2s �= h(x, ξ − v1s) for all s > 0.

(2.8)

The function φ1 denotes the time taken by molecules emitted from the boundary to
reach another point at the boundary, and is formally set to ∞ if they never do. Fur-
thermore, we define the indicator function on the set of all ξ, x, v for which, formally,
φ1 is infinite:

χ(ξ, x, v) =

{
0 if φ1(ξ, x, v) <∞,
1 if φ1(ξ, x, v) = ∞.(2.9)

To analyze the limiting behavior of the surface density ρ as τ → ∞ we will need that
the corresponding limiting problem actually has a solution. This is the statement of
the following lemma.

Lemma 2.3. The integral equation

Z(ξ, x) = g(ξ, x)

+

∫
H(σ(x, ξ, w))a(x, ξ, w) (1 − χ(ξ, x, w))M(w)Z(ξ − w1φ1(ξ, x, w), x) dw

has a solution Z(ξ, x) for any function g(ξ, x), provided that∫
H(σ(x, ξ, w))a(x, ξ, w) (1 − χ(ξ, x, w))M(w) dw ≤ C(2.10)

for some constant 0 ≤ C < 1.
Proof. Introduce the notation

A(x, ξ, w) := H(σ(x, ξ, w))a(x, ξ, w) (1 − χ(ξ, x, w))M(w),
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which satisfies A(x, ξ) ≥ 0 since a(x, ξ, w) and all other terms are nonnegative. Then
we consider the integral equation

Z(ξ, x) =

∫
A(x, ξ, w)Z(ξ − w1φ1(ξ, x, w), x) dw + g(ξ, x).

To compute the solution iteratively, introduce the fixed-point iteration for {Zn(ξ, x)}
by

Zn+1(ξ, x) =

∫
A(x, ξ, w)Zn(ξ − w1φ1(ξ, x, w), x) dw + g(ξ, x) for n = 0, 1, 2, . . . ,

with initial iterate Z0(ξ, x) = 0. Hence, the difference between successive iterates
satisfies

(Zn+1 − Zn) (ξ, x) =

∫
A(x, ξ, w) (Zn − Zn−1) (ξ − w1φ1(ξ, x, w), x) dw,

and we can bound it as

‖Zn+1 − Zn‖∞ ≤
∫
A(x, ξ, w) dw ‖Zn − Zn−1‖∞ .

The convergence of this sequence is guaranteed if condition (2.10) is satisfied.
Remark 2.1. Condition (2.10) constitutes a restriction on the function a(x, ξ, w)

in the boundary condition chosen in the application. It will be verified in section 3
for our choice of a(x, ξ, w).

Theorem 2.4. If a(x, ξ, w) satisfies (2.10), then the boundary density ρ is of the
form

ρ(ξ, τ, x, t) = F∞[f̃ ](ξ, x, t) + ρ1(ξ, τ, x, t),

where F∞[f̃ ] = ρ∞ is given implicitly by the integral equation

ρ∞(ξ, x, t) =

∫
H(σ(x, ξ, w))a(x, ξ, w)χ(ξ, x, w) f̃(x, 0, w, t) dw

+

∫
H(σ(x, ξ, w))a(x, ξ, w)(1 − χ(ξ, x, w))M(w) ρ∞(ξ − w1φ1, x, t) dw,

(2.11)

and the remainder term ρ1 satisfies
∫∞
0
ρ1(ξ, τ, x, t) dτ <∞.

Proof. Inserting the expression for f̂(ξ, h(x, ξ), τ, x, v, t) for σ(x, ξ, v) > 0 from
Theorem 2.2 into the definition (2.2) for ρ gives

ρ(ξ, τ, x, t) =

∫
H(σ(x, ξ, w))a(x, ξ, w) [1 −H(τ − φ1(ξ, x, w))] f̃(x, 0, w, t) dw

+

∫
H(σ(x, ξ, w))a(x, ξ, w)H(τ − φ1(ξ, x, w))M(w) ρ(ξ − w1φ1, τ − φ1, x, t) dw.

(2.12)

We are interested in the limiting behavior for τ → ∞. To this end, we have to
distinguish the cases when φ1 < ∞ holds, which means that the Heaviside function
in (2.12) will become equal to unity for τ sufficiently large, and the case φ1 = ∞ for
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which the Heaviside function will always be zero. Therefore we write

ρ(ξ, τ, x, t)

=

∫
H(σ(x, ξ, w))a(x, ξ, w) [1 − (1 − χ(ξ, x, w))H(τ − φ1(ξ, x, w))] f̃(x, 0, w, t) dw

+

∫
H(σ(x, ξ, w))a(x, ξ, w)(1 − χ(ξ, x, w))H(τ − φ1(ξ, x, w))M(w)

× ρ(ξ − w1φ1, τ − φ1, x, t) dw,

(2.13)

with χ defined as in (2.9). Letting, formally, τ tend to infinity gives ρ = ρ∞ +ρ1 with
(2.11) for ρ∞(ξ, x, t). The solution ρ∞ exists due to Lemma 2.3. This is, of course,
only a formal definition for ρ∞; the key is to estimate the remainder term ρ1. The
remainder term ρ1 satisfies the integral equation

ρ1(ξ, τ, x, t)

=

∫
H(σ(x, ξ, w))a(x, ξ, w)(1 − χ(ξ, x, w))H(τ − φ1(ξ, x, w))M(w)

× ρ1(ξ − w1φ1, τ − φ1, x, t) dw

+

∫
H(σ(x, ξ, w))a(x, ξ, w)(1 − χ(ξ, x, w))(1 −H(τ − φ1(ξ, x, w)))

× (f̃(x, 0, w, t) −M(w)ρ∞(ξ − w1φ1, x, t)) dw.

(2.14)

Let L[ρ1](ξ, s, x, t) :=
∫∞
0
ρ1(ξ, τ, x, t) e−sτ dτ , with 0 ≤ s < ∞, denote the Laplace

transform of ρ1. The transform of (2.14) is then given by

L[ρ1](ξ, s, x, t)

=

∫
H(σ(x, ξ, w))a(x, ξ, w)(1 − χ(ξ, x, w))M(w)e−sφ1(x, ξ, w)

× L[ρ1](ξ − w1φ1, s, x, t) dw

+

∫
H(σ(x, ξ, w))a(x, ξ, w)(1 − χ(ξ, x, w))

1

s

[
1 − e−sφ1(x, ξ, w)

]
× (f̃(x, 0, w, t) −M(w)ρ∞(ξ − w1φ1, x, t)) dw.

The variable s appears as a parameter only in the integral equation, so in order to
find L[ρ1](ξ, 0, x, t), we can solve directly

L[ρ1](ξ, 0, x, t)

=

∫
H(σ(x, ξ, w))a(x, ξ, w)(1 − χ(ξ, x, w))M(w)L[ρ1](ξ − w1φ1, 0, x, t) dw

+

∫
H(σ(x, ξ, w))a(x, ξ, w)(1 − χ(ξ, x, w))

1

φ1

× (f̃(x, 0, w, t) −M(w)ρ∞(ξ − w1φ1, x, t)) dw.

(2.15)

By Lemma 2.3, the solution L[ρ1](ξ, 0, x, t) exists, and we therefore have∫ ∞

0

ρ1(ξ, τ, x, t) dτ = L[ρ1](ξ, 0, x, t) <∞

by definition of the transform.
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Remark 2.2. Theorem 2.4 establishes the limiting behavior of ρ for τ → ∞ in a
weak sense, namely, that ρ1(ξ, tε , x, t) will go to zero when integrated with respect to
t against a test function. This is precisely the property that will be needed for the
derivation of the boundary condition.

2.2. Boundary condition for the outer solution. This subsection will use
the weak convergence property for the inner solution to derive the boundary condition
for the outer solution. Because the layer equation (2.4) does not have any damping, f̂
will give a contribution throughout the half-space y > 0. However, this contribution
will result in high frequency oscillations only for y > 0. Therefore, we formulate the
Boltzmann equation in the weak sense and require that f̂ tend to zero weakly for
fixed y > 0 and ε→ 0. Thus, we require in a weak sense for y, v fixed that

lim
ε→0

∫ ∞

0

∫ +∞

−∞
f̂
(
x
ε ,

y
ε ,

t
ε , x, v, t

)
ψ(x, t) dx dt = 0(2.16)

for all test functions ψ(x, t).
Theorem 2.5. The integral in (2.16) goes to zero for ε→ 0 and all fixed y > 0,

v if and only if

f̃(x, 0, v, t) = M(v)

∫ 1

0

F∞[f̃ ](ξ − v1φ3, x, t) dξ for all v2 > 0

holds with

φ3(ξ, x, v) = min {s ∈ R : −v2s = h(x, ξ − v1s)}

and the operator F∞[f̃ ] defined as in Theorem 2.4.

Proof. Let Iε :=
∫∫
f̂(x

ε ,
y
ε ,

t
ε , x, v, t)ψ(x, t) dx dt denote the integral in (2.16).

We need to estimate Iε for velocities v with v2 > κ(ε), where κ is some function with
κ(ε) > 0 and κ(ε) → 0 as well as ε/κ(ε) → 0 as ε→ 0. Since we are interested in the
bulk solution f̃(x, y, v, t), we need to consider only η = y

ε > h(x, xε ).
We have from Theorem 2.2 for y

ε > h(x, xε ) and v2 > κ(ε) > 0

f̂(x
ε ,

y
ε ,

t
ε , x, v, t) = H( t

ε − φ0)
(
M(v)ρ(x

ε − v1φ0,
t
ε − φ0, x, t) − f̃(x, 0, v, t)

)
,

with φ0(x
ε ,

y
ε , x, v) = min

{
s > 0 : y

ε − v2s = h(x, xε − v1s)
}

, where this simplified
(compared to (2.6)) definition for φ0 is possible because the existence of the mini-
mum is guaranteed for v2 > κ(ε) > 0. To transform

φ0(x
ε ,

y
ε , x, v) =

y

v2ε
+ φ2(x

ε − v1y
v2ε
, yε , x, v),

define

φ2(x
ε − v1y

v2ε
, yε , x, v) = min

{
s > − y

v2ε
: −v2s = h(x, xε − v1y

v2ε
− v1s)

}
.(2.17)

This gives

f̂(x
ε ,

y
ε ,

t
ε , x, v, t)

= H( t
ε − y

v2ε
− φ2)

(
M(v)ρ(x

ε − v1y
v2ε

− v1φ2,
t
ε − y

v2ε
− φ2, x, t) − f̃(x, 0, v, t)

)
,
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with φ2 ≡ φ2(x
ε − v1y

v2ε
, yε , x, v) for v2 > κ(ε).

We introduce the transformation

x = xjξ :=
v1
v2
y + εj + εξ, j ∈ Z, ξ ∈ [0, 1],

to rewrite Iε into

Iε = ε

+∞∑
j=−∞

∫ ∞

0

∫ 1

0

H( t
ε − y

v2ε
− φ2)

(
M(v)ρ(j + ξ − v1φ2,

t
ε − y

v2ε
− φ2, xjξ, t)

− f̃(xjξ, 0, v, t)
)
ψ(xjξ, t) dξ dt,

with φ2 ≡ φ2(j + ξ, yε , xjξ, v) = min{s > − y
v2ε

: −v2s = h(xjξ, j + ξ − v1s)}. Be-
cause h(x, ξ) and hence also ρ and φ2 are 1-periodic in ξ, we can drop the j from
their first arguments. Since ρ, f̃ , and ψ vary only slowly in x and since ξ varies only
in [0, 1], we make an O(ε) perturbation by replacing xjξ by xj := v1

v2
y + εj. Together

this gives

Iε = ε

+∞∑
j=−∞

∫ ∞

0

∫ 1

0

H( t
ε − y

v2ε
− φ2)

(
M(v)ρ(ξ − v1φ2,

t
ε − y

v2ε
− φ2, xj , t)

− f̃(xj , 0, v, t)
)
ψ(xj , t) dξ dt+ O(ε),

with φ2 ≡ φ2(ξ, yε , xj , v) = min{s > − y
v2ε

: −v2s = h(xj , ξ − v1s)}. The sum over
the j forms a Riemann sum for an integral with approximation error O(ε). Thus, we
obtain

Iε =

∫ ∞

0

∫ +∞

−∞

∫ 1

0

H( t
ε − y

v2ε
− φ2)

(
M(v)ρ(ξ − v1φ2,

t
ε − y

v2ε
− φ2, z, t)

− f̃(z, 0, v, t)
)
ψ(z, t) dξ dz dt+ O(ε),

(2.18)

with φ2 ≡ φ2(ξ, yε , z, v) = min{s > − y
v2ε

: −v2s = h(z, ξ − v1s)}.

Now we replace ρ = ρ∞ + ρ1 with F∞[f̃ ] = ρ∞, as defined in Theorem 2.4. For
the remainder term involving ρ1 this gives

Eε :=

∫ ∞

0

∫ +∞

−∞

∫ 1

0

H( t
ε − y

v2ε
− φ2)M(v)ρ1(ξ − v1φ2,

t
ε − y

v2ε
− φ2, z, t)

× ψ(z, t) dξ dz dt.

We transform again to a fast variable τ := t
ε − y

v2ε
− φ2 and obtain

Eε = εM(v)

∫ ∞

0

∫ +∞

−∞

∫ 1

0

ρ1(ξ − v1φ2, τ, z,
y
v2

+ ετ + εφ2)

× ψ(z, y
v2

+ ετ + εφ2) dξ dz dτ.

Since the test function ψ is smooth and has compact support, and since Theorem 2.4
guarantees that

∫∞
0
ρ1(ξ − v1φ2, τ, z, t) dτ is bounded, the integrals in Eε remain

bounded, and Eε → 0, as ε→ 0.
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In the remaining parts of (2.18), we use the fact that the Heaviside function
is scaling-invariant to get H( t

ε − y
v2ε

− φ2) = H(t− y
v2

− εφ2). From the definition
(2.17) of φ2 it follows that, for v2 > κ(ε) > 0, |φ2| ≤ max{h}/κ(ε) holds. Therefore,
the dependence of the Heaviside function on εφ2 is negligible, and it can be taken out
of the ξ-integral, introducing only another O( ε

κ ) error. Also, the integrand involving

f̃ does not depend on the fast variable ξ any more, and so the integration over the
interval [0, 1] yields just unity. This gives after ε→ 0

0 =

∫ ∞

0

∫ +∞

−∞
H(t− y

v2
)

(
M(v)

∫ 1

0

ρ∞(ξ − v1φ2, z, t) dξ − f̃(z, 0, v, t)

)
ψ(z, t) dz dt

(2.19)

for any fixed v2 > 0. Taking the limit ε→ 0 in φ2 ≡ φ2(ξ, yε , z, v) = min{s > − y
v2ε

:
−v2s = h(z, ξ − v1s)} results in the minimum being taken over the entire real line,
since y > 0 and v2 > 0. It also makes φ2 independent of ε and y, and we introduce
the notation

φ3 ≡ φ3(ξ, z, v) = min{s ∈ R : −v2s = h(z, ξ − v1s)}.

Therefore, (2.19) is satisfied in a weak sense if and only if

f̃(z, 0, v, t) = M(v)

∫ 1

0

ρ∞(ξ − v1φ3, z, t) dξ

holds for all z, v, t with v2 > 0.
Remark 2.3. For any fixed velocity v with v2 > 0, the function φ3 is guaranteed

to exist with −max{h(x, ξ)}/v2 ≤ φ3(ξ, x, v) ≤ −min{h(x, ξ)}/v2, since the surface
function h(x, ξ) is smooth.

Theorem 2.5 essentially yields the reduced boundary condition. In practice, one
will not solve the integral equation (2.11) to compute F∞[f̃ ] at every time step. It is
preferable to write the term F∞[f̃ ] as an integral operator with a time independent
integral kernel. A direct calculation leads from (2.11) to

F∞[f̃ ](ξ, x, t) =

∫
K∞(ξ, x, v) f̃(x, 0, v, t) dv,

where the integral kernel K∞ satisfies

K∞(ξ, x, v) = H(σ(x, ξ, v))a(x, ξ, v)χ(ξ, x, v)

+

∫
H(σ(x, ξ, w))a(x, ξ, w) (1 − χ(ξ, x, w))M(w)K∞(ξ − w1φ1(ξ, x, w), x, v) dw,

(2.20)

and K∞(ξ, x, v) again exists because of Lemma 2.3. Note that K∞ will be non-
negative, provided that a(x, ξ, w) is not too large.

In summary, we have obtained the following numerical problem for the bulk so-
lution f̃(x, y, v, t):

∂f̃

∂t
+ v1

∂f̃

∂x
+ v2

∂f̃

∂y
= Q(f̃),(2.21)
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with boundary condition for inflowing molecules on the flat surface y = 0

f̃(x, 0, v, t) = M(v)

∫
ã(x, v, w)f̃(x, 0, w, t)dw for v2 > 0,(2.22)

with

ã(x, v, w) :=

∫ 1

0

K∞(ξ − v1φ3(ξ, x, v), x, w) dξ(2.23)

and

φ3(ξ, x, v) = min {s ∈ R : −v2s = h(x, ξ − v1s)}.(2.24)

This problem is tractable numerically, since it is posed on a domain with a flat reacting
surface; the effect of the microscopic surface has been integrated into the boundary
condition. The numerical approach in practice will be as follows.

Step 1. Given a surface function h(x, ξ), compute the intersection times φ1 in
(2.8) and φ3 in (2.24).

Step 2. Solve the integral equation (2.20) for K∞.
Step 3. Compute the boundary kernel ã(x, v, w) in (2.23).
The function ã(x, v, w) provides the information about the microscopic surface

geometry on the macroscopic level. These steps have to be performed only once for
a given surface function h(x, ξ). Following these preprocessing steps, the Boltzmann
equation (2.21) with the homogenized boundary condition (2.22) is solved for the bulk
solution f̃(x, y, v, t).

3. Numerical validation. As a validation problem, we consider the linear
Boltzmann equation for a single species

∂f

∂t
+ v1

∂f

∂x
+ v2

∂f

∂y
= Q(f).(3.1)

We use a relaxation time approximation S(v, v′) = (1/τ)M(v)M(v′) in the linear
collision operator (1.6) to obtain the simple form

Q(f)(x, y, v, t) = −1

τ
[f(x, y, v, t) −N(x, y, t)M(v)]

with the constant relaxation time τ > 0. Here and in the following, N denotes
the number density given by N(x, y, t) =

∫
f(x, y, v, t) dv. The numerical domain is

chosen as

Ωε = {(x, y) ∈ R
2 : h̃(x) < y < 1, 0 < x < 1},(3.2)

with a microstructured surface Γε at the bottom given by

y = h̃(x) =
ε

8

(
1 + cos

(
2π
x

ε

))
with homogenization parameter 0 < ε� 1. This model is designed to closely resem-
ble the salient features of the application problem that motivated the model and to
support the above analysis; this motivates also the choice of the simple form of the
collision operator. Other types of boundary models, e.g., using random reflections [1],
could be used but would not be appropriate examples for our application.
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The following model is chosen as the boundary condition describing the reactions
of the gaseous species at the wafer surface that result in the deposition of the solid
film. If 0 ≤ R ≤ 1 denotes the sticking factor (the probability that a molecule sticks
to the surface), then the inflow into the gaseous domain is equal to (1−R) times the
outflow from the gaseous domain, namely (see [4]),∫

n·v<0

|n · v| f(x, y, v, t) dv = (1 −R)

∫
n·v>0

|n · v| f(x, y, v, t) dv,(3.3)

where n = n(x, y) denotes the unit outward normal vector at position (x, y) ∈ Γε. To
obtain the boundary condition in the form (1.10), assume reinjection with random
velocities, that is, f(x, y, v, t) = b(x, t)M(v) for n · v < 0; then

f(x, y, v, t) = M(v)

∫
n·w>0

a
(
x,
x

ε
, w
)
f(x,w, t) dw,

with

a
(
x,
x

ε
, w
)

=
1 −R
c

|n · w| , c =

∫
n·v<0

|n · v|M(v) dv.

The problem is completed by choosing Maxwellian inflow at the top and periodic
boundary conditions at both sides. This chosen setup of the problem is representative
of the application under consideration. We choose τ = 1 and R = 0.5 as values.

To check condition (2.10) for this choice of a(x, xε , w), we compute

I(x, xε ) :=

∫
H(σ(x, xε , w))a(x, xε , w)

(
1 − χ(x

ε , x, w)
)
M(w) dw

= (1 −R)

∫
n·w>0

|n · w| (1 − χ(x
ε , x, w)

)
M(w) dw∫

n·v<0
|n · v|M(v) dv

.

Since 0 ≤ χ ≤ 1, the fraction is always bounded by 1, which is seen by using the
transformation w = −v in the denominator and using the symmetry of the Maxwellian
in (1.4). In the case that 0 < R ≤ 1, we have 1−R < 1 and I < 1. In the limiting case
R = 0, we can still conclude that I < 1, because χ does not vanish almost everywhere
in reasonable situations in the application, and hence the fraction will be less than 1
except in pathological cases.

The problem was solved numerically by choosing an expansion in velocity space
of the form following [14, 16, 19, 20, 21, 22] and the references therein,

f(x, y, v, t) =
K∑

k=1

fk(x, y, t)ϕk(v),

where the {ϕk(v), k = 1, . . . ,K} form an orthogonal set of basis functions with respect
to the inner product

〈ϕk, ϕ�〉 =

∫
ϕk(v)ϕ�(v)ω(v) dv = δk�,

with weight function ω(v) = 1/M(v). The basis functions are chosen as Maxwellians
multiplied by (properly transformed) Hermite polynomials. To arrive at a Gaussian
quadrature for the integrals, the discretization points in velocity space are roots of
appropriate Hermite polynomials.
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A Galerkin discretization by inserting the expansion for f and forming inner
products with all basis functions then leads to the system of hyperbolic equations for
the expansion coefficients F = (fk)

∂F

∂t
+A(1) ∂F

∂x
+A(2) ∂F

∂y
= CF,

with the K ×K matrices A(1), A(2), and C with components

A
(1)
k,� = 〈v1ϕ�, ϕk〉 , A

(2)
k,� = 〈v2ϕ�, ϕk〉 , Ck,� = 〈Q(ϕ�), ϕk〉 .

We actually use an equivalent collocation basis for the Hermite polynomials, which
results in the matrices A(1) and A(2) being diagonal; see [10, 13, 23] for more details.
This system is solved by a finite-difference method using first-order upwinding and
explicit time-stepping. The solution on the homogenized domain

Ω0 = (0, 1) × (0, 1)(3.4)

is straightforward (that was the point of the homogenization). The comparison solu-
tion on the microstructured domain Ωε is obtained by transforming the domain to the
unit square. The transformation is designed such that it is an identity in the upper
half of the domain, i.e., for y ≥ 0.5; this is done in order to facilitate the comparison of
both numerical solutions there without incurring additional interpolation error from
a mesh transformation.

We discretize the velocity space by six basis functions in both x- and y-directions,
resulting in a hyperbolic system of 36 equations. The maximum velocity is bounded
by 4 in each direction. Using ∆x = 1/128 and ∆y = 1/64, the CFL condition requires
a time step of ∆t = 1/1024, accounting for an additional factor of about 4 from the
transformation of the domain. Solutions are computed until the final time tfin = 2.
We compute solutions f(x, y, v, t) with number densities denoted by N(x, y, t) on
domains Ωε in (3.2), ε = 1/4, 1/8, 1/16, and 1/32. The solution to the homogenized
problem is computed on Ω0 in (3.4) and denoted by f̃(x, y, v, t), with number density
Ñ(x, y, t). Smaller values do not yield reliable solutions for the grid spacing used in
the x-direction.

Figures 3.1, 3.2, 3.3, and 3.4 show comparisons of the number density Ñ(x, y, t)
at T = tfin = 2 on the homogenized domain to the number density N(x, y, t) on the
microstructured domain with the indicated values of ε. The plots show the physical
behavior of the flow: The reacting chemical is supplied at the top of the domain at y =
1, then moves towards the wafer surface at y = h̃(x), where it gets partially consumed
in the surface reaction. Notice that the oscillations of the solution are limited to a
boundary layer close to the microstructured surface; this effect is attributable to the
smoothing property of the collision operator; that is, the solution is smoother than
could be theoretically expected.

Table 3.1 shows the errors between the densities Ñ(x, y, t) and N(x, y, t) of the
homogenized and the original problems for various values of ε. They are compared
only across the upper half of the domain, i.e., for y ≥ 0.5, by choosing the subdomain
Ω̃ = (0, 1) × (0.5, 1) in the norms

‖N‖
L1(Ω̃)

:=

∫ ∫
Ω̃

|N(x, y, t)| dx dy

and

‖N‖
L∞(Ω̃)

:= max
(x,y)∈Ω̃

|N(x, y, t)|
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Fig. 3.1. Comparison of the number densities on the homogenized and the microstructured
domains with ε = 1/4.
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Fig. 3.2. Comparison of the number densities on the homogenized and the microstructured
domains with ε = 1/8.

for a fixed time t. The table shows results at the final time T = tfin = 2. Notice the
decrease of all absolute as well as relative errors with ε.

Tables 3.2 and 3.3 study the underlying error in the density function f itself. More
precisely, if f̃(x, y, v, t) denotes the homogenized solution and f(x, y, v, t) the solution
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Fig. 3.3. Comparison of the number densities on the homogenized and the microstructured
domains with ε = 1/16.
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Fig. 3.4. Comparison of the number densities on the homogenized and the microstructured
domains with ε = 1/32.

on the microstructured domain, then Table 3.2 lists the quantity I(f̃−f)(y, v, T ) with

I(f)(y, v, T ) :=

∫ T

0

∫ 1

0

f(x, y, v, t) dx dt

with T = tfin = 2 at y = 0.875 (close to the top of the domain) at various points
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Table 3.1
Errors in density Ñ measured in various norms ‖Ñ −N‖

L1(Ω̃)
, ‖Ñ −N‖

L1(Ω̃)
/‖N‖

L1(Ω̃)
,

‖Ñ −N‖
L∞(Ω̃)

, and ‖Ñ −N‖
L∞(Ω̃)

/‖N‖
L∞(Ω̃)

on subdomain Ω̃ = (0, 1)× (0.5, 1) at T = tfin = 2.

‖Ñ −N‖
L1 ‖Ñ −N‖

L1 /‖N‖
L1 ‖Ñ −N‖

L∞ ‖Ñ −N‖
L∞ /‖N‖

L∞
ε = 1/4 0.0023932 0.0076664 0.0070134 0.0101409
ε = 1/8 0.0013703 0.0044039 0.0031563 0.0045777
ε = 1/16 0.0008171 0.0026308 0.0017929 0.0026041
ε = 1/32 0.0005755 0.0018544 0.0012608 0.0018324

Table 3.2
Quantity I(f̃ − f)(y, v, T ) with T = tfin = 2 at y = 0.875 and velocity with v1 = −0.6167 and

v2 as listed.

v2 −3.3243 −1.8892 −0.6167 0.6167 1.8892 3.3243
ε = 1/4 6.8068e-08 4.7740e-06 5.6442e-05 7.2642e-04 3.8061e-04 1.1459e-05
ε = 1/8 3.7021e-08 2.5996e-06 3.0958e-05 3.7582e-04 2.1973e-04 6.4414e-06
ε = 1/16 2.3066e-08 1.6244e-06 1.9571e-05 2.2059e-04 1.4038e-04 3.6978e-06
ε = 1/32 1.8086e-08 1.2793e-06 1.5657e-05 1.5784e-04 1.1535e-04 2.7049e-06

Table 3.3
Quantity I(f̃ − f)(y, v, T )/I(f)(y, v, T ) with T = tfin = 2 at y = 0.875 and velocity with

v1 = −0.6167 and v2 as listed.

v2 −3.3243 −1.8892 −0.6167 0.6167 1.8892 3.3243
ε = 1/4 3.4103e-05 5.8409e-05 1.5900e-04 9.9293e-03 2.8628e-02 3.6588e-02
ε = 1/8 1.8549e-05 3.1806e-05 8.7218e-05 5.1617e-03 1.6729e-02 2.0902e-02
ε = 1/16 1.1557e-05 1.9875e-05 5.5139e-05 3.0362e-03 1.0753e-02 1.2107e-02
ε = 1/32 9.0618e-06 1.5652e-05 4.4112e-05 2.1743e-03 8.8528e-03 8.8848e-03

in velocity space given by v1 = −0.6167 and v2 as listed in the table. This quantity
mimics the behavior of

∫∫
f̂ ψ dx dt with ψ ≡ 1. Table 3.3 shows the corresponding

relative quantity I(f̃ − f)(y, v, T ) / I(f)(y, v, T ) at the same values of T , y, and v.
The convergence rate is not uniform for all velocities. For those components fk that
correspond to velocities pointing towards the wafer surface, i.e., with v2 < 0, the main
portion of the information travels from the given inflow condition, and convergence
is good. For the other components corresponding to information traveling back up
from the wafer surface, i.e., with v2 > 0, both absolute and relative errors deteriorate
somewhat.
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