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Abstract

A geometrically nonlinear continuum theory has been developed for the equilibria of martensitic crystals
based on elastic energy minimization. For these non-convex functionals, typically no classical solutions exist,
and minimizing sequences involving Young measures are studied. Direct minimizations using discretization based
on conforming, non-conforming, and discontinuous elements have been proposed for the numerical approximation
of this problem. Theoretical results predict the superiority of the discontinuous finite element. Detailed numerical
studies of the available finite element discretizations in this paper validate the theory. One-dimensional prototype
problems due to Bolza and Tartar and a two-dimensional numerical model of the Ericksen–James energy are
presented. Both classical elements yield solutions that possess suboptimal convergence rates and depend heavily
on the underlying numerical mesh. The discontinuous finite element method overcomes this problem and shows
optimal convergence behavior independent of the numerical mesh. 2001 IMACS. Published by Elsevier Science
B.V. All rights reserved.
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1. Introduction

Many new materials of interest in materials science and structural mechanics have been found to
exhibit microstructure under certain ambient conditions. For example, certain alloys show laminate
microstructure that can be observed in laboratory experiments [1,2]. The understanding of these
microscopic phenomena plays an important role to improve certain material properties like shape-
memory, ferroelectricity, or magnetostriction, used for instance in micromachines.
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A mathematical model for such ‘smart materials’ was first given by Ball and James [1,2]. In
there, minimizing solutions represent deformations that exhibit microstructures which are observed in
experiments. A particular example is the phenomenon of twinning associated with austenite-martensite
transformations [1,2].

Because of the non-(quasi-)convex nature of the so-called Ericksen–James energy density, the related
functional is not weakly lower semicontinuous and hence there is a lack of a minimizer belonging
to an appropriate underlying Sobolev space, in general. Instead, corresponding (weakly converging)
minimizing sequences are studied that typically show fast oscillations in the gradient of the deformation
which gives raise to microstructure. A tool for describing the asymptotic behavior of minimizing
sequences is the Young measure [23], giving volume fractions of the involved martensitic variants in
each test volume of the reference domain in austenite stateΩ . This probability measure enables the
evaluation of (nonlinear) quantities, like the stress for the limit of such minimizing sequences [23].

From the numerical point of view, the computation of minimizers associated with discrete models
leads to significant problems, mainly caused by their non-convex character. Over the last years, basically
three categories of methods have been studied to cope with this type of problem:

1. Convexification of the energy functional, see, e.g., [4,10,14,23]: The original non-convex elastic
energy density is replaced by its (quasi- or rank-one-)convex hull. This manipulation is attractive
since now a minimizer exists that is the weak limit of a minimizing sequence. Equally important, the
solution of this problem is now accessible to standard gradient based minimization routines. On the
other hand, explicit formulae of (quasi-)convex hulls are only known in some cases (unfortunately,
the physically important case of the Ericksen–James energy functional is not covered), and
numerical approximations of it are rather expensive, see [4]. Moreover, this process deletes physical
information from the original energy functional that makes this approach questionable for certain
important applications.

2. Generalized formulation of the energy functional, see, e.g., [6,23,24]: The original problem is
reformulated as a convex minimization problem in terms of the deformation and parameterized
gradient Young measures. This approach is quite promising from a theoretical point of view since
the energy functional is kept unchanged. As a drawback, it causes significant computational work
which necessitates additional sophisticated numerical strategies. A first promising step to reduce
computational work is given in [6], where a one-dimensional test problem is studied.

3. Direct minimization of the energy functional, see, e.g., [8,11,16,15,18–21]: Numerical methods that
fit into this category start with discretizations of the energy functional and underlying domain via,
e.g., finite element methods. These methods preserve the physical energy density and are applicable
without restrictions. On the other hand, they might suffer severely from the non-convex character of
the energy density in that computed minimizers often get stuck in local minima. Furthermore, the
spatial discretization introduces a scaling to the microstructure that limits the resolution of complex
microstructure. At the same time, this drawback of local minima is sometimes advantageous
for applications where local minima (e.g., “metastable states”) are important (e.g., in hysteresis
phenomena).

In the following, we consider finite element methods that are intended for the direct minimization of
non-convex functionals. In the context of the Ericksen–James energy density, we refer to the extensive
survey article by Luskin [19] and the publications [15,16,18,21] that deal with the numerical analysis
of conforming and classical non-conforming methods (i.e., continuity is only enforced in the center
of adjacent finite element faces). As is pointed out in these contributions, the resolution of microscale
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structures heavily relies on the alignment of the underlying mesh with the laminated microstructure,
otherwise leading to drastically polluted solutions.

This is the basic motivation for the introduction of discontinuous finite element methods to this type
of minimization problem. As can be clearly seen from the theoretical investigations performed in [11],
the convergence analysis leads to results that are superior to those of conforming and classical non-
conforming methods, which reflects the increased flexibility of the finite element method with respect to
the underlying triangulation.

Mathematical models for describing deformations from a reference state of ‘smart materials’ can be
formulated in two or three dimensions, i.e.,d ∈ {2,3}. The numerical problem reads then as follows. For
the reference stateΩ ∈Rd , minimize the energy functional

E(v)=
∫
Ω

φ
(∇v(x))dx (1)

over all admissible functionsv ∈A with

A= {u ∈C(Ω̄;Rd): u|∂Ω = g(x)}. (2)

Here, φ :Rd×d → R is the Ericksen–James energy, that only depends on the gradient∇v of the
deformationv, andg(x) is a given function on the boundary ofΩ . The Ericksen–James energy density
satisfies the principle of frame indifference and leads to a non-convex energy functional to be minimized.
For a detailed discussion on the physical background of the energy, we refer to [19]. For the subsequent
studies, we benefit from the densityφ(·) being non-negative andφ(A) = 0 if and only ifA ∈ U , where
U denotes the union of all energy wells. These wells correspond to symmetry-related energy-minimizing
states of the material.

In order to have minimizers being Lipschitz-continuous, the wells have to be rank-one connected. For
the case of a two-well problem, this implies the condition

∃Fi ∈ Ui , i = 1,2, ∃a,n ∈R3 such that F2= F1+ a⊗ n.
Here,⊗ denotes the tensor product of the vectorsa andn, that is,(a ⊗ n)ij = ainj . Without loss of
generality, we may assume|n| = 1. To guarantee uniqueness of a homogeneous gradient Young measure
that is associated with this microstructure [1,2], we prescribe affine boundary conditions

u(x)= Fλx for x ∈ ∂Ω, (3)

where

Fλ = λF1+ (1− λ)F2 (4)

with volume fractionλ ∈ [0,1]. These characterizations of admissible deformations generalize to the
multi-well case of several energetically equivalent crystallographic configurations, see, e.g., [19].

The first finite element methods for the minimization of (1) used conforming elements with piecewise
linear basis functions on each triangular or quadrilateral element, thus minimizing on a set of admissible
functionsAh ⊂A. For strictlyconvexenergy densitiesφ and sufficiently smooth data, this approach is
known to yield optimal convergence results for the energy with order O(h2). However, for the problem
with a non-convex energy density, it can only be shown in general that a minimizing deformationuh ∈Ah
satisfies

E(uh)6Ch1/2, (5)
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where the constantC may depend on the coefficients of the problem, the triangulationTh and the domain
Ω , but not on the mesh parameterh, see [7,8,15,18–20]. It has been observed that the quality of the
approximation depends strongly on the degree of alignment of the numerical mesh with the physical
laminates [9,19,21]. This means that the laminate microstructure is well-resolved on meshes, whose
element edges run along the laminate direction. If this is not the case, the numerical results are often
significantly polluted so that the laminates are distorted or, worse yet, align themselves with the numerical
grid irrespective of the underlying physics [9,21].

As a second numerical approach, a classical non-conforming finite element method with continuity
only in the edge midpoints (the Crouzeix–Raviart element) has been used [9,12,19,20]; even more general
three dimensional non-conforming elements have been used in [13] and analyzed in [16]. This method
relaxes the continuity constraints between each two elements by only requiring continuity of the discrete
deformations at the edge midpoints. Of course, the functionalE(·) is then defined in an appropriate
element-wise setting by takingEh(·). This finite element method does have increased flexibility to handle
deformations with microstructure on general grids due to the relaxation of the inter-element continuity
requirements. However, the theoretical analysis presented in [12,16] does not reflect this improved
flexibility in comparison to the conforming method, and the result for a minimizeruh ∈Ah is still

Eh(uh)6 Ch1/2. (6)

This motivates the construction of a new finite element method yielding more accurate approximations
of crucial quantities such as the macroscopic deformation, the structure of laminates, and the statistical
properties of the microstructure given in terms of its Young measure on general meshes. Moreover,
this new method should be able to represent more complex microstructure given through force-driven
deformations as well as ones occurring in evolutionary models both in this context and for more
complicated materials.

An algorithm based on discontinuous finite elements was introduced in [11]. As it is shown there,
this algorithm allows for much improved convergence rate estimates for the energy (namely, O(h2) for
the energy of a minimizing deformation) as well as other quantities of interest like the gradient Young
measure or the deformation gradient in laminate direction. In particular, this result holds for non-aligned
meshes, i.e., those that are independent of the alignment of the numerical grid with the physical laminates.
The underlying conceptual ideas are the following:

1. The (averaged) boundary conditions will be treated in a more relaxed way to avoid the pollution
impact from the boundary.

2. The cross-element continuity constraints are relaxed in the sense that small jumps are allowed.
3. The laminate structures are scaled differently from the transitions between laminates.

This leads to the following algorithm:

Algorithm 1. Given a quasiuniform triangulationTh of the domainΩ ⊂ Rd , with d ∈ {2,3}, consider
element-wise linear deformationsvh ∈Ah ≡∏K∈Th P1(K) with the scaled energy functional

Eβh (vh) =
∑
K∈Th

∫
K

φ
(∇vh(x))dx + α11

(∑
K∈Th

h1−β
∫
∂K

∣∣[vh](x)∣∣dσ
)2

+ α12

(∑
K∈Th

h1−β
∫
∂K

∣∣[vh](x)∣∣2 dσ

)
+ α2

∑
K∈Th

h2β
∫

∂K∩∂Ω

∣∣vh(x)− Fλx∣∣2 dσ, (7)
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and perform the minimization

min
vh∈Ah

Eβh (vh) (8)

for a fixed constantβ ∈ [0,1].

The coefficientsα11, α12, andα2 are order one constants that control the relative contributions from the
inter-element continuity constraints, and the relaxation of the boundary condition. Algorithm 1 introduces
a different scaling of the physical information (i.e., the laminates, which are of order O(h1−β)) and
numerical scaling (i.e., transitions between laminates (of order O(h)).

For the discontinuous element method, an energy estimate of O(h2) holds [11]. This is optimal for
the linear basis functions in use. However, this energy does not have a true physical meaning, but other
quantities important for practical purposes are the following: The volume fractionsµ(ωiρ(uh))/µ(ω)

give approximations to theλi , i ∈ {1,2}, with µ(ω) the measure of the subdomainω andµ(ωiρ(uh)) the
measure of that collection of elementsωiρ ⊂ ω, on which the deformation gradient∇uh is inside a ball
with radiusρ and centerFi (measured in the Frobenius norm). These quantities are crucial parameters
in the computation of the gradient Young measure generated by the deformation gradient∇uh [4].
The gradient Young measure in turn yields important macroscopic quantities of practical relevance, for
instance, the stress field, see [4,19] and the literature cited therein. It is for this reason that the accurate
approximation also of microscopic quantities like the deformation gradient and volume fraction is of
importance. We recall here the main theorem that is proved in [11].

Theorem 1. Consider problem(8), withβ = 1
2 , as an approximation of the minimization problem(1)–(2)

with Ω ⊂ R3 a bounded set, and supposeu ∈ A is a (weak limit) solution of problem(1)–(2) yielding
zero energy with associated gradient Young measureνx = λ1δF1+λ2δF2, where∇u(x)= ∫Rd×d Adνx(A).
Then problem(8) has at least one solutionuh ∈ Ah ≡ ∏K∈Th P1(K), and uh satisfies the following
convergence estimates, for allω ⊂Ω andh < ρ < 1, and allρ > 0, for positive constantsα11, α12 and
α2 of order one:

(a) E1/2
h (uh)6Ch2,

(b) ‖uh −Fλx‖L2(Ω) 6Ch1/4,
(c) ‖(∇uh −Fλ)w‖L2(Ω) 6 Ch1/4,
(d) |µ(ωiρ(uh))/µ(ω)− λi |6 Ch1/8, for i ∈ {1,2}.

The generic constantC may depend on the parameters of the continuous minimization problem, with
energy(1) and the valuesα11, α12 andα2, but not on the mesh parameterh. In the case(d), it additionally
depends on the choice ofρ.

The analytic convergence results for all quantities of interest and the different finite element methods
that are subject to computational comparison in the following are summarized in Table 1. Here,‖ · ‖
stands for theL2-norm. Moreover, the constantsλi , i ∈ {1,2}, denote the coefficients of the gradient
Young measure that are approximated by the volume fractionµ(ωiρ(uh))/µ(ω); for the double well
problem, this is concretelyλ1 = λ andλ2 = 1− λ. A marked improvement over the classical methods
can be observed for all quantities.

The purpose of this paper is a practical comparison of these different finite element methods for the
direct minimization of the non-convex energy for several relevant energy densities. Specifically, a detailed
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Table 1
Summary of convergence results for the energy and other crucial quantities for different finite element methods

Finite element method Eh(uh) ‖uh − Fλx‖ ‖ (∇uh − Fλ)w‖
∣∣∣µ(ωiρ (uh))µ(ω)

− λi
∣∣∣

Conforming [18,19] O(h1/2) O(h1/8) O(h1/8) O(h1/16)

Classical non-conforming [16] O(h1/2) O(h1/8) O(h1/8) O(h1/16)

Discontinuous [11] O(h2) O(h1/4) O(h1/4) O(h1/8)

numerical case study for a one-dimensional prototype problem for simple laminates is presented in
Section 2. This problem was originally proposed by Bolza, see, e.g., [23]. The results for the conforming
element depend substantially on the alignment of the numerical grid with the the physical laminates,
while the non-conforming and discontinuous element are able to follow the laminates in all cases.
However, both classical elements show substantially worse convergence rates than the discontinuous
element. These results demonstrate the validity of the theoretical results contained in Table 1. A proposed
modification of relaxing the enforcement of the boundary conditions also for the classical finite elements
is shown to be ineffective in improving convergence rates in general. This demonstrates that the
improvements gained for the discontinuous element are a result of the behavior in the interior of the
domain.

Section 3 is devoted to the study of a more complex one-dimensional example due to Tartar. Its
solution possesses microstructure only in part of the domain. Hence, this is a test of the flexibility
of the methods to handle a more complex case than the one of simple laminates. The methods each
exhibit the same behavior as for the simpler prototype problem, with the classical element suffering from
numerical pollution in the case of non-aligned grids, while the discontinuous element is able to represent
the physical situation adequately.

A classical two-dimensional model for orthorhombic to monoclinic transformations is studied in
Section 4. This transformation is the physical example of two-well energy densities. The energy density
following [19] exhibits all relevant features of the three-dimensional Ericksen–James energy and is used
in many numerical studies of simple laminates, see [19]. Also in this case, the discontinuous element is
able to represent the physics appropriately, while the conforming element suffers severe pollution of its
results from the mis-alignment.

2. Example 1: A prototype problem for simple laminates

We consider the following prototype problem for the Ericksen–James energy [4,10]:

E(v)=
∫
Ω

(
(vx)

2− 1)2+ (vy)2 dx (9)

for the domainΩ = (0,1) × (0,1) ⊂ R2 and the deformationsv :Ω → R with boundary condition
v = 0 on∂Ω . The solution to this problem consists of laminates in they-direction, because the favored
deformation gradients∇v = (vx, vy) areF1= (+1,0) andF2= (−1,0).
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In order to study the dependence of the finite element method on the alignment of the numerical mesh
with the physical laminates, we introduce the following generalized energy functional:

E(v)=
∫
Ω

(
(∇v · n)2− 1

)2+ (∇v ·w)2 dx. (10)

Here,n= n(γ )= (cos(γ ),sin(γ ))T denotes the vector normal to the laminate direction,w=w(γ )∈R2

is a vector along the laminates and orthogonal ton, andγ the angle between the positivex-axis and
the vectorn. Since the prototype problem with boundary conditionu= 0 on∂Ω models the example of
simple laminates, the coefficients of the gradient Young measureλ1 andλ2 have to equal12 in all cases.

We start with our comparison of the conforming, classical non-conforming, and discontinuous finite
elements for this problem, by taking

E0
h(vh)=

∑
K∈Th

∫
K

φ
(∇vh(x))dx + α2

∑
K∈Th

∫
∂K∩∂Ω

∣∣vh(x)− Fλx∣∣2 dσ (11)

for both the conforming and the classical non-conforming method to study the impact of (averaged)
boundary conditions in these schemes. For the discontinuous element, we choose the optimal coefficient
β = 1

2 [11] and parametersα11 = α12 = α2 = 1. The angleγ is varied through five values to cover
different mesh effects,γ ∈ {−45◦,−22.5◦,0◦,+22.5◦,+45◦}. The mesh is given by a regularly refined
triangular mesh independent of the angleγ and such that the mesh is fully aligned with the physical
laminates whenγ =−45◦ andγ = 0◦. A study for the parameterα2 governing the degree of relaxation
of the boundary term was performed for the classical element by choosing eitherα2 = 1000 for strict
enforcement of the boundary conditions orα2= 1 for relaxed enforcement.

The computer program implements the nonlinear conjugate gradient method for the minimization with
a quadratic fit line search after bracketing [17]. The energy functional of Algorithm 1 is discretized using
the package FEAT2D [3] for the underlying finite element discretization. New element routines were
defined in this package for the discontinuous finite element for our purposes.

2.1. The conforming finite element

This element has been considered computationally by Collins, see [8,9], and the convergence analyses
are contained in [7,15,18,19]. Fig. 1 shows the computed volume fraction of the laminate microstructure.
If the numerical mesh is well aligned with the physical laminates, the element represents the physical
situation well. However, if the alignment is not good, distortion is possible (Fig. 1(d)), or the laminates
grow wider than expected (Fig. 1(e)).

Table 2(a) lists the values of the computed energy functional for the conforming finite element. Note
that for γ = −45◦ andγ = 0◦ the convergence rate is linear, due to the mesh being aligned with the
direction of the physical laminates. In the other cases, however, the convergence rate is observed to be
much less than O(h).

Tables 3(a), 4(a), and 5(a) show the numerical results for the quantities listed in columns 2, 3, and 4
of Table 1. For theL2-error of the deformation in Table 3(a), we observe nearly linear convergence for
all anglesγ , which is significantly better than the theoretically predicted rate of O(h1/8), see Table 1.
However, theL2-error of the deformation gradient in laminate direction in Table 4(a) as well as the
approximation to the volume fraction in Table 5(a) depend crucially on the alignment of the numerical
mesh.
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Table 2
Total energy (column 1 in Table 1)

γ =−45◦ γ =−22.5◦ γ = 0◦ γ =+22.5◦ γ =+45◦

(a) for the conforming element withα2= 1000

h= 1
4 0.5754 0.5305 0.4532 0.6690 0.8920

h= 1
8 0.3497 0.3604 0.3891 0.4617 0.6182

h= 1
16 0.1884 0.2634 0.1939 0.3444 0.4260

h= 1
32 0.0972 0.1958 0.0963 0.2512 0.2911

h= 1
64 0.0488 0.1587 0.0474 0.1956 0.2320

(b) for the conforming element withα2= 1

h= 1
4 0.1703 0.2791 0.1145 0.2460 0.5335

h= 1
8 0.0435 0.1563 0.0425 0.2510 0.3300

h= 1
16 0.0113 0.1251 0.0112 0.1676 0.3227

h= 1
32 0.0029 0.1180 0.0029 0.1659 0.3459

h= 1
64 0.0007 0.1162 0.0007 0.1861 0.3758

(c) for the classical non-conforming element withα2= 1000

h= 1
4 0.2297 0.2629 0.3733 0.3833 0.3265

h= 1
8 0.1532 0.1744 0.1996 0.2315 0.2200

h= 1
16 0.0885 0.0980 0.0992 0.1438 0.1507

h= 1
32 0.0470 0.0652 0.0491 0.0960 0.1085

h= 1
64 0.0238 0.0392 0.0243 0.0765 0.0679

(d) for the classical non-conforming element withα2= 1

h= 1
4 0.1422 0.1982 0.0880 0.2305 0.0938

h= 1
8 0.0356 0.0612 0.0347 0.0957 0.0678

h= 1
16 0.0093 0.0271 0.0092 0.0631 0.0132

h= 1
32 0.0024 0.0171 0.0024 0.0524 0.0033

h= 1
64 0.0006 0.0145 0.0006 0.0520 0.0115

(e) for the discontinuous element

h= 1
4 0.0165 0.0521 0.0173 0.0849 0.1156

h= 1
8 0.0052 0.0222 0.0047 0.0324 0.0481

h= 1
16 0.0007 0.0052 0.0007 0.0108 0.0192

h= 1
32 0.0005 0.0014 0.0007 0.0033 0.0038

h= 1
64 0.0000 0.0003 0.0000 0.0009 0.0013
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Table 3
Error of the deformation in theL2-norm (column 2 in Table 1)

γ =−45◦ γ =−22.5◦ γ = 0◦ γ =+22.5◦ γ =+45◦

(a) for the conforming element withα2= 1000

h= 1
4 0.0733 0.0890 0.0980 0.1068 0.0800

h= 1
8 0.0773 0.0832 0.1171 0.0904 0.1043

h= 1
16 0.0459 0.0574 0.0658 0.0685 0.0857

h= 1
32 0.0243 0.0309 0.0345 0.0452 0.0648

h= 1
64 0.0125 0.0158 0.0177 0.0274 0.0308

(b) for the conforming element withα2= 1

h= 1
4 0.1882 0.1997 0.1897 0.1838 0.1975

h= 1
8 0.1004 0.1433 0.1398 0.1363 0.1208

h= 1
16 0.0509 0.0653 0.0717 0.0855 0.0590

h= 1
32 0.0255 0.0325 0.0360 0.0441 0.0276

h= 1
64 0.0128 0.0162 0.0180 0.0185 0.0122

(c) for the classical non-conforming element withα2= 1000

h= 1
4 0.1055 0.1332 0.1708 0.1405 0.1194

h= 1
8 0.0857 0.0954 0.1196 0.0957 0.0765

h= 1
16 0.0473 0.0586 0.0662 0.0585 0.0424

h= 1
32 0.0246 0.0315 0.0346 0.0313 0.0241

h= 1
64 0.0125 0.0162 0.0177 0.0163 0.0125

(d) for the classical non-conforming element withα2= 1

h= 1
4 0.1864 0.2194 0.1991 0.1980 0.1536

h= 1
8 0.1003 0.1468 0.1396 0.1452 0.1137

h= 1
16 0.0509 0.0664 0.0716 0.0670 0.0592

h= 1
32 0.0255 0.0334 0.0360 0.0337 0.0289

h= 1
64 0.0128 0.0167 0.0180 0.0168 0.0135

(e) for the discontinuous element

h= 1
4 0.0960 0.1223 0.1375 0.1301 0.1233

h= 1
8 0.0673 0.0915 0.1015 0.0896 0.0728

h= 1
16 0.0505 0.0658 0.0718 0.0634 0.0519

h= 1
32 0.0351 0.0468 0.0504 0.0458 0.0357

h= 1
64 0.0255 0.0332 0.0361 0.0327 0.0251



164 M.K. Gobbert, A. Prohl / Applied Numerical Mathematics 36 (2001) 155–178

Table 4
Error of the deformation gradient in laminate direction in theL2-norm (column 3 in Table 1)

γ =−45◦ γ =−22.5◦ γ = 0◦ γ =+22.5◦ γ =+45◦

(a) for the conforming element withα2= 1000

h= 1
4 0.2665 0.3946 0.4089 0.5459 0.4849

h= 1
8 0.3135 0.3942 0.4368 0.4842 0.5063

h= 1
16 0.2474 0.3297 0.3086 0.4135 0.4483

h= 1
32 0.1834 0.2758 0.2158 0.3446 0.3805

h= 1
64 0.1313 0.2330 0.1496 0.3145 0.3255

(b) for the conforming element withα2= 1

h= 1
4 0.0173 0.2006 0.0653 0.3002 0.3375

h= 1
8 0.0199 0.1975 0.0398 0.2741 0.3216

h= 1
16 0.0105 0.1882 0.0137 0.2302 0.3502

h= 1
32 0.0037 0.1872 0.0045 0.2324 0.3670

h= 1
64 0.0013 0.1880 0.0015 0.2477 0.3886

(c) for the classical non-conforming element withα2= 1000

h= 1
4 0.3547 0.4289 0.5002 0.4291 0.2750

h= 1
8 0.3427 0.3598 0.4017 0.3486 0.2356

h= 1
16 0.2657 0.2778 0.2813 0.2839 0.2018

h= 1
32 0.1945 0.2221 0.1978 0.2313 0.1994

h= 1
64 0.1374 0.1690 0.1373 0.1965 0.1551

(d) for the classical non-conforming element withα2= 1

h= 1
4 0.0419 0.1461 0.0884 0.1922 0.0368

h= 1
8 0.0358 0.0982 0.0519 0.1502 0.1573

h= 1
16 0.0167 0.0883 0.0194 0.1495 0.0137

h= 1
32 0.0063 0.0950 0.0068 0.1509 0.0051

h= 1
64 0.0023 0.0961 0.0023 0.1525 0.0630

(e) for the discontinuous element

h= 1
4 0.0097 0.0772 0.0169 0.0635 0.0897

h= 1
8 0.0058 0.0484 0.0062 0.0374 0.0471

h= 1
16 0.0012 0.0142 0.0011 0.0164 0.0185

h= 1
32 0.0008 0.0047 0.0007 0.0063 0.0056

h= 1
64 0.0002 0.0015 0.0001 0.0021 0.0020
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Table 5
Error in the volume fractionλ1 for ω=Ω (column 4 in Table 1 withi = 1)

γ =−45◦ γ =−22.5◦ γ = 0◦ γ =+22.5◦ γ =+45◦

(a) for the conforming element withα2= 1000

h= 1
4 0.3125 0.3750 0.2500 0.4375 0.5000

h= 1
8 0.1875 0.2344 0.2500 0.2578 0.3125

h= 1
16 0.1172 0.1816 0.1250 0.1816 0.2188

h= 1
32 0.0645 0.1704 0.0625 0.1455 0.1533

h= 1
64 0.0337 0.1477 0.0303 0.1028 0.1326

(b) for the conforming element withα2= 1

h= 1
4 0.2500 0.1562 0.0000 0.1562 0.5000

h= 1
8 0.0000 0.1484 0.0000 0.1328 0.1562

h= 1
16 0.0000 0.1074 0.0000 0.0703 0.1797

h= 1
32 0.0000 0.1191 0.0000 0.1055 0.2168

h= 1
64 0.0000 0.1234 0.0000 0.1218 0.2324

(c) for the classical non-conforming element withh=α2= 1000

h= 1
4 0.3125 0.1875 0.2500 0.3438 0.2500

h= 1
8 0.0469 0.0859 0.1250 0.2344 0.2031

h= 1
16 0.0586 0.0703 0.0625 0.1504 0.2109

h= 1
32 0.0381 0.0527 0.0312 0.1216 0.1641

h= 1
64 0.0212 0.0326 0.0154 0.1105 0.1029

(d) for the classical non-conforming element withα2= 1

h= 1
4 0.2500 0.0312 0.0000 0.2188 0.1250

h= 1
8 0.0000 0.0078 0.0000 0.0781 0.0156

h= 1
16 0.0000 0.0000 0.0000 0.0762 0.0312

h= 1
32 0.0000 0.0137 0.0000 0.0869 0.0156

h= 1
64 0.0000 0.0144 0.0000 0.0902 0.0134

(e) for the discontinuous element

h= 1
4 0.0000 0.0000 0.0000 0.0000 0.0625

h= 1
8 0.0312 0.0547 0.0000 0.0781 0.0312

h= 1
16 0.0000 0.0000 0.0000 0.0000 0.0020

h= 1
32 0.0186 0.0029 0.0312 0.0049 0.0068

h= 1
64 0.0000 0.0000 0.0000 0.0000 0.0000
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(a) (b)

(c) (d)

(e)

Fig. 1. Prototype problem, computed volume fractions for the conforming element withα2 = 1000 usingh= 1
64,

(a)γ =−45◦, (b) γ =−22.5◦, (c) γ = 0◦, (d) γ = 22.5◦, (e)γ = 45◦.
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As a unique feature of using a one-dimensional prototype problem, it is possible to plot also the
deformation itself in Fig. 4(a); the deformation for the largerh= 1

16 is shown for visibility. It can be seen
that the boundary conditions are indeed satisfied and that the transition to the laminate structure in the
interior is limited to a small layer close to the boundary. Thus, the penalization technique is seen to work
effectively, and the contribution from the boundary to the total energy is (much) less than 10%. That
is, practically all error in the conforming finite element method with exact boundary conditions results
from the bulk term in the energy functional. This motivates the relaxation of the enforcement of the
boundary conditions by choosing smaller values forα2. As is well-understood theoretically, this results
in improved convergence for aligned meshes, whereas no improvement is visible in the non-aligned
cases; see Tables 2(b), 3(b), 4(b), and 5(b).

2.2. The classical non-conforming finite element

This element has been proposed for the simulation of microstructures in order to increase the flexibility
of the finite element approximation, when adjusting to non-aligned meshes; see [9,12,16,20]. All cases
in Fig. 2 show that the increased flexibility allows for a better representation of the laminates, while
the boundary conditions are still satisfied exactly, see Fig. 4(b). However, Table 2(c) shows that the
convergence behavior has not improved over the conforming element. It is observed that the bulk term
of the energy still accounts for more than 90% of the energy, that is the mesh pollution effect on the
minimizer is still present.

As in the conforming case, the enforcement of the boundary conditions in the penalty formulation is
further relaxed by decreasing the value ofα2. As Tables 2(d), 3(d), 4(d), and 5(d) show, any improvements
are concentrated on the aligned cases of anglesγ = −45◦ andγ = 0◦, as for the conforming element.
It has to be concluded that the classical non-conforming element possesses more flexibility to represent
the laminates (see the figures), but it does not decrease the interpolation error independently of the mesh
alignment (see the tables), thus validating the theoretical result (6) in general.

2.3. The discontinuous finite element

Fig. 3 shows the computed volume fraction for the discontinuous element. The laminates are wider than
for the classical elements due to the scaling used in the scaled energy functional (7). As the figure and
Table 2(e) show, the results as well as the convergence behavior are independent of the mesh alignment.
We can observe nearly quadratic convergence rates in most entries, in agreement with the theoretical
prediction in Table 1.

Tables 3(e) and 4(e) exhibit slightly better convergence rates than predicted in Table 1. On the one
hand, the absolute values for the error in the deformation in Table 3(e) are slightly higher than for
the previous elements due to the wider laminates. On the other hand, the values for the error in the
deformation gradient in laminate direction in Table 4(e) are significantly smaller than before, which
are well-resolved. Finally, Table 5(e) shows that the volume fractionµ(ωiρ(uh))/µ(ω) is computed
without error in many instances for general meshes, an observation that is in contrast with the previous
methods.

The difference in the energy between aligned and non-aligned cases is made up nearly solely by
contributions from the jump terms with coefficientsα11 andα12, which are very small in the aligned cases.
However, if the resolution is sufficiently good (h6 1

32), the bulk term in the energy functional contributes
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at most 5% to the total energy. This demonstrates that the discontinuous finite element method is capable
of resolving the simple laminate structure on general meshes, since the interpolation error is uniformly
small.

3. Example 2: Tartar’s example with non-zero energy

This section shows the increased flexibility of the discontinuous finite element method in another test
example due to Tartar, see [22], involving a more complicated microstructure. Numerical studies on this
problem for convexified energies or generalized formulations have been performed in [22] and [4,5],
respectively.

We consider the minimization of the following energy, forΩ = (0,1)× (0,1),
Ẽ(v)=

∫
Ω

(
v2
x − 1

)2+ v2
y dx +

∫
Ω

[− 3
128

(
x − 1

2

)5− 1
3

(
x − 1

2

)3− v]2 dx. (12)

It is known that the minimum of the relaxed problem is given by

u(x, y)=
−

3
128

(
x − 1

2

)5− 1
3

(
x − 1

2

)3
for 06 x 6 1

2,

1
24

(
x − 1

2

)3+ (x − 1
2

)
for 1

2 < x 6 1.
(13)

The minimum energy [23] is given by a positive value, i.e., inf
v∈ÃẼ(v) = 1409

30000, for Ã = {v ∈
W 1,4
g (Ω), g = u|∂Ω}, and minimizing sequences exhibit spatial oscillations, i.e., microstructure, on the

domainm = (0, 1
2)× (0,1).

The conforming and the discontinuous finite element methods were applied to this problem in order to
study the impact of general triangulations and given boundary data on computed minimizers. To this end,
the energy functional (12) is ‘rotated’ in the same way as in (10) for the energy functional in (9). For a
rotation ofγ =+22.5◦, the solution deformation has the form as shown in Fig. 5 with the microstructure
in the front part of the graphs.

The results for the computed volume fractions are presented in Figs. 6 and 7 for the conforming and the
discontinuous element, respectively. There is again significant pollution of the laminate microstructure
on parts of the domain for the conforming method in Fig. 6. The discontinuous method produces the
volume fractions in Fig. 7 with crisp laminates in the appropriate part of the domain, for all rotation
anglesγ .

4. Example 3: Two-dimensional modeling for simple laminates

This example deals with a physically relevant situation modeling orthorhombic to monoclinic
transformation [19]. Its two-dimensional deformationv :Ω→R2 minimizes the energy

E(v)=
∫
Ω

φ
(∇v(x))dx (14)

with energy density

φ(F)= κ1
(
C11− (1+ η2))2+ κ2(C22− 1)2+ κ3

(
C2

12− η2)2, (15)
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whereC = F TF is the Cauchy–Green strain tensor andη, κ1, κ2, and κ3 are positive constants. Its
energetically favored deformation gradients are

F1=
(

1 0
−η 1

)
and F2=

(
1 0
+η 1

)
. (16)

The boundary condition is given by the average gradient as

v(x)= [(1− λ)F1+ λF2
]
x for all x ∈ ∂Ω; (17)

it is chosenλ = 1
2 in the simulations. The constants in the energy density are chosen asη = 0.1 and

κ1= κ2= κ3= 1.
The plots in the following show the observed distances of the deformation gradientF on each element

from the favored gradient matrixF1; more formally, each element is colored representing a scale from 0
to 1 according to the function [19]

ψ(F)= ‖F TF −F T
1 F1‖2F

‖F TF − F T
1 F1‖2F +‖F TF − F T

2 F2‖2F
. (18)

This leads to plots that visualize both the direction of the laminates as well as the observed volume
fractions.

Results for the conforming element are shown in Fig. 8. The initial guess for the deformation was
chosen as accurately as the discretization on each grid allows for the continuous deformation. Despite
the good initial guess, the finite element discretization could not maintain the structure of the deformation
while minimizing the energy in the misaligned cases in Fig. 8(d), similar to results in [19]. Even worse,
the direction of the laminates in Fig. 8(e) follows thenumericalgrid, entirely contradicting the physics
of the problem; this effect has also been reported in [21, Fig. 13].

Fig. 9 summarizes the results for the discontinuous element. This finite element is able to discretize
the physical laminates equally well for all anglesγ . The initial guesses for the results were also chosen
close to the solution. It is a known problem of direct minimization that the gradient based minimizers
risk getting stuck in local minima for non-convex problems, and this is exhibited by poor convergence
behavior and strong dependence on the initial guess. However, it is demonstrated that the finite element
is able to resolve the physical structure on the given uniform mesh.

Finally, we notice that in the well-aligned cases, the conforming element is able to find an energy
minimum corresponding to narrower laminates than the discontinuous element. This demonstrates of
course that the latter element got stuck in some local minimum. However, for the approximation of the
most important quantities like the volume fraction in some relevant subset of the domain, it is more
important to be able to guarantee that the relevant physics (direction of laminates and the proportion
of phases) are represented correctly; this is not satisfied by the conforming element in general, and the
narrower laminates do not provide any benefit.

5. Conclusions

Results for detailed case studies for relevant prototype problems for the simulation of crystalline
microstructure have been presented for three finite elements: conforming, classical non-conforming, and
discontinuous finite elements. The quality of both the conforming and the classical non-conforming
elements are seen to depend on the alignment of the numerical grid with the physical laminates,
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(a) (b)

(c) (d)

(e)

Fig. 2. Prototype problem, computed volume fractions for the non-conforming element withα2 = 1000 using
h= 1

64, (a)γ =−45◦, (b) γ =−22.5◦, (c) γ = 0◦, (d) γ = 22.5◦, (e)γ = 45◦.
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(a) (b)

(c) (d)

(e)

Fig. 3. Prototype problem, computed volume fractions for the discontinuous element usingh= 1
64, (a)γ =−45◦,

(b) γ =−22.5◦, (c) γ = 0◦, (d) γ = 22.5◦, (e)γ = 45◦.
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(a) (b)

(c)

Fig. 4. Prototype problem, computed deformation forγ = 22.5◦ usingh= 1
16, (a) for the conforming element with

α2= 1000, (b) for the non-conforming element withα2= 1000, (c) for the discontinuous element.

(a) (b)

Fig. 5. Tartar’s example, computed deformation forγ = 22.5◦ usingh= 1
16, (a) for the conforming element with

α2= 1000, (b) for the discontinuous element.
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(a) (b)

(c) (d)

(e)

Fig. 6. Tartar’s example, computed volume fractions for the conforming element withα2 = 1000 usingh = 1
64,

(a)γ =−45◦, (b) γ =−22.5◦, (c) γ = 0◦, (d) γ = 22.5◦, (e)γ = 45◦.
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(a) (b)

(c) (d)

(e)

Fig. 7. Tartar’s example, computed volume fractions for the discontinuous element usingh = 1
64, (a) γ = −45◦,

(b) γ =−22.5◦, (c) γ = 0◦, (d) γ = 22.5◦, (e)γ = 45◦.
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(a) (b)

(c) (d)

(e)

Fig. 8. Two-dimensional model, computed volume fractions for the conforming element withα2 = 1000 using
h= 1

64, (a)γ =−45◦, (b) γ =−22.5◦, (c) γ = 0◦, (d) γ = 22.5◦, (e)γ = 45◦.
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(a) (b)

(c) (d)

(e)

Fig. 9. Two-dimensional model, computed volume fractions for the discontinuous element usingh = 1
64,

(a)γ =−45◦, (b) γ =−22.5◦, (c) γ = 0◦, (d) γ = 22.5◦, (e)γ = 45◦.
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with decreasing quality on general triangulations. The relaxation of the enforcement of the boundary
conditions alone in the case of the classical elements did not improve their convergence behavior. In
contrast, the results of the case study for the discontinuous element show optimal convergence behavior
on general meshes, independent of the mesh alignment. All three elements studied in this paper represent
the macroscopic deformation quite well, but only the discontinuous element represents the crucial
microscopic quantities like the deformation gradient in laminate direction and the coefficient of the
corresponding Young measure adequately. Also for the more complex microstructures in Sections 3
and 4, the discontinuous element shows superior performance compared to the classical elements. These
computational results are in agreement with analytic results contained in [11].
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