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Calcium dynamics in a cardiac cell are described by a system of 3-D non-linear stochastic partial
differential equations. To obtain solutions that have biophysical properties, it is necessary to explore
the model parameter space. To decrease the complexity of the parameter search, we reduce the 3-D
stochastic model to a 1-D deterministic model. The reduction of the problem from 3-D to 1-D is done
through an asymptotic approximation after non-dimensionalization and based on rational biophysical
assumptions of the 3-D domain; the stochastic to deterministic transformation is based on the regular
property of the 3-D solution. The result of the model reduction proves very effective in reducing the
time required to get qualitative as well as quantitative information about parameter regions in the
3-D stochastic model including calcium dynamics (sparks, wave propagation, and recovery) observed
in cardiac cells.
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1. Introduction

Various computational methods and computational architectures have been used to
model the diffusion of calcium in cardiac cells (see [5] for modeling through ODEs;
see [10] for modeling through stochastic PDEs modeling; and see [13] for Monte Carlo
simulations using a GPU). Although challenging to compute over application time scales,
we use the numerical solution of a 3-dimensional reaction diffusion equation with thou-
sands of randomly releasing point sources to model diffusion of calcium in a cardiac cell.
We have previously constructed a specialized program to handle the application of spon-
taneous calcium release in a single cardiac cell [7]. We have shown that the scheme is
numerically sound with thorough convergence study [6] and rigorous convergence anal-
ysis [14], but the long-time biophysical results in [6] were inappropriate, although the
model derivation is reasonable [9]. The key contribution of [6] was to enable reaching
large final times by providing an efficient parallel implementation. This brought out the
flaws in the values of model parameters that remain hidden in short-term simulations
such as in [9].

In this paper, we provide a reduction of the 3-D random system to 1-D deterministic
system to find biophysically appropriate regimes in parameter space for long-time be-
havior. This then informs us of the parameter region to explore in the full 3-D system.
Our approach can be applied to other sophisticated problems. The work and reduction
technique presented here can be viewed as a rigorous extension of the studies conducted
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in [4] where we performed, in a stochastic setting, an extensive study of the model pa-
rameters and showed that wave propagation is sensitive to pump and release strengths.
The result of our technique indicates that we can use reduction to get information on
this complicated type of problem.

We motivate the 3-D to 1-D reduction with rational biophysical assumptions derived
from calcium wave properties and with an asymptotic approximation of the 3-D system
which has the 1-D system satisfying a solvability condition. We transform the random
release function, which saturates in probability as a Hill function of local calcium con-
centration, by increasing the Hill coefficient and maximum probability to 1. We then
show that mapping the 1-D model back to the 3-D environment retains the important
biophysical parameter regimes even in the random case. With this assessment, we can
now characterize biophysically interesting long-time scale behavior such as a sustained
traveling wave that was previously unobserved in this model.

Specifically, this paper focuses on critical parameters that have a significant effect on
the dynamic behavior of calcium waves in order to obtain experimentally seen long-
time scale behaviors. More precisely, we look at the behavior of the model when wave
propagation-sensitive terms (pump and release) are varied including values used in the
literature and derive a range of parameter values for given behaviors.

The paper is organized as follows. Section 2 describes a 3-D stochastic model of calcium
flow in heart cell and introduces its 1-D deterministic equivalent. Section 3 describes the
implementation of the 3-D and 1-D models using the finite element method. Section 4
describes 3-D and 1-D model dynamics and characterizations. We finish the paper with
a discussion in Section 5.

2. Model

The dynamics of calcium release and calcium uptake are critical in the process of contrac-
tion and relaxation of cardiac cells because elevated cytosolic calcium levels are required
in the binding of myofilaments and calcium removal is required for relaxing contrac-
tion. Under certain conditions, such as high sarcoplasmic reticulum (SR) calcium load
[8], spontaneous release from ryanodine receptors can occur and cause subsequent re-
ceptors to activate, leading to the initiation and propagation of a calcium wave and a
non-uniform cell contraction. Self-initiated intracellular calcium waves have the potential
to lead to cardiac arrhythmias (irregular heart beats). Although arrhythmias are mainly
attributed to electrical dysfunction, they have been linked, from a sub-cellular point of
view, to spontaneous calcium sparks self-organizing into waves [2].

2.1 3-D model description

A mathematical model of calcium flow in the heart cell, as presented in [9] is given by
the system of coupled, time-dependent reaction diffusion equations

∂c

∂t
= ∇ · (Dc∇c) + R2 + R1 − Jpump + Jleak + JCRU,

∂f

∂t
= ∇ · (Df∇f) + R1,

∂b

∂t
= ∇ · (Db∇b) + R2,

(1)
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on a three-dimensional rectangular domain Ω with no-flux boundary conditions, where
c represents the cytosolic calcium ion concentration, f represents the free fluorescent
calcium indicator concentration, and b represents the free endogenous calcium buffer
concentration. The non-linear reaction terms, R1 and R2, follow the chemical reactions
and are given by

c + f

k+
1

⇀↽
k−

1

F ⇔ R1 = −k+
1 c f + k−

1 F = −k+
1 c f + k−

1 (FT − f),

c + b

k+
2

⇀↽
k−

2

B ⇔ R2 = −k+
2 c b + k−

2 B = −k+
2 c b + k−

2 (BT − b),

where F and B are bound indicator and bound buffer species, respectively. Using con-
servation of buffers, having assumed equal diffusion of bounded and unbounded buffer,
the terms F and B are substituted with FT − f and BT − b, where FT and BT are total
buffer concentration. The values of constants used in the model (and in [6]) are listed in
Table 1.

The pump term in (1) is formulated as

Jpump(c) = Vpump
cnpump

K
npump

pump + cnpump

, (2)

where Vpump is the maximum SR pump rate measured in µM/s, Kpump is the SR pump
sensitivity constant with value of 0.184 µM, and npump is the SR pump Hill coefficient
with value of 4. The term Jleak is taken to be a constant; at rest, the calcium leak balances
the pump (i.e., Jleak = Jpump(cini) for cini = 0.1 µM). The release of calcium ions through
clusters of ryanodine receptors called calcium release units (CRUs) located at discrete
locations, x̂ ∈ Ωs, is modeled with the expression

JCRU(c,x, t) =
∑

x̂∈Ωs

σ Sx̂(c, t) δ(x − x̂), (3)

where σ is the amount of calcium injected per CRU in units of µM µm3/ms. The
term σ is related to the calcium current from a spark ISR by σ = ISR/(2F ), with
F = 96, 485.3C/mol, the Faraday constant. The Dirac delta distribution δ(x− x̂) models
the injection of calcium as a point source at each CRU location x̂ ∈ Ωs. The indicator
function Sx̂(c, t) is defined by

Sx̂(c, t) =

{
1 if α ≤ Jprob(c),
0 if α > Jprob(c),

(4)

with probability

Jprob(c) = Pmax
cnprob

K
nprob

prob + cnprob

, (5)

for α is a random number, between 0 and 1, generated from a uniform random dis-
tribution, Pmax is the maximum probability rate in ms−1 and Kprob is the probability
sensitivity constant with value of 5 µM. When a CRU opens, that is, Sx̂(c, t) changes

3
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Parameter Description Values/Units
c Calcium concentration µM
cini Initial calcium concentration 0.1 µM
Dc Calcium diffusion coefficient diag(Dcx

,Dcy
,Dcz

)
=diag(150,150,300) µm2/s

f Mobile buffer concentration µM
fini Initial mobile buffer concentration 45.9184 µM
FT Total mobile buffer concentration 50 µM
Df Mobile buffer diffusion coefficient diag(Dfx

,Dfy
,Dfz

)
=diag(10,10,20) µm2/s

k+
1 Forward reaction rate 80 µM−1s−1

k−

1 Backward reaction rate 90 s−1

b Mobile buffer concentration µM
bini Initial mobile buffer concentration 111.8182 µM
BT Total stationary buffer concentration 123 µM
Db Stationary buffer diffusion coefficient diag(0,0,0) µm2/s
k+
2 Forward reaction rate 100 µM−1s−1

k−

2 Backward reaction rate 100 s−1

Vpump Maximum pump strength µMs−1

npump Pump Hill coefficient 4
Kpump pump sensitivity 0.184 µM
Jleak Leak term ≈ 0.16 µMs−1

σ Source flux amplitude µMµm3/ms
∆xs = ∆ys CRU spacing in x- and y-direction 0.8 µm
∆zs CRU spacing in z-direction 2.0 µm
Pmax Maximum probability rate ms−1

Ω Rectangular domain in µm (−l, l) × (−l, l) × (−L,L)
= (−6.4, 6.4) × (−6.4, 6.4) × (−32, 32)

topen CRU opening time 5 ms
tclose CRU refractory period 100 ms
tfin Simulation duration 1,000 ms

Table 1. Coefficients of the application problem. The concentration unit M is short for mol/L (moles per liter).

state from 0 to 1, a spark or release of calcium ions occurs for topen ms; the CRU then
closes (Sx̂(c, t) = 0) and enters an inhibition or refractory period of tclosed ms during
which it cannot open. In our model, topen = 5 ms and tclosed = 100 ms.

2.2 1-D model description

A search on wave-sensitive parameters in the full 3-D formulation of the model becomes
difficult due to probabilistic calcium release and to the computational cost involved with
running a long-time simulation [4]. Instead, we consider a 1-D model based on longitu-
dinal direction (z-direction) of the domain on which a parameter search is performed to
gain insight into which parameter sets lead the model to display biophysically acceptable
behaviors. By biophysically acceptable behaviors, we mean either wave propagation(s)
with recovery or no wave propagation; this is as opposed to, for instance, growth of
calcium concentration without bound in some simulations in [6].

The motivation to use a 1-D version of the model is based on the fact that in 3-D, a
wave propagation after self-initiation at a random point in space is nearly a plane wave
in the longitudinal direction of the cell. Furthermore, once a wave is initiated, it triggers
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CRUs in the front of the wave to appear deterministic instead of stochastic; this is due
to high calcium concentration. Indeed, if we assume that during a wave propagation, the
calcium concentration is high compared to Kprob, the firing rate probability of a CRU in
the neighborhood of the wave front tends to Pmax and the probability Pn of firing within
an interval t ∈ [0, n] is given by

Pn = 1 − (1 − Pmax)
n,

which is the cumulative distribution for the waiting time probability for a geometric
distribution. The above probability is near 1 even for a short interval (e.g., Pmax = 0.3
and n = 10 ms). The planar and almost deterministic characteristic of calcium wave
propagation has also been observed experimentally [11]. Hence, propagation in 3-D has
an almost regular and unidirectional property. We formulate a one-dimensional version
of the problem based on the unidimensional aspect of calcium diffusion as follows

ct = Dcz
czz + R1 + R2 − Jpump + Jleak + JCRU,

ft = Dfz
fzz + R1,

bt = Dbz
bzz + R2,

(6)

where Dcx
,Dfx

, and Dbx
are effective diffusion coefficients in the longitudinal direction

as shown in Table 1.
We can capture the regular aspect of self-initiating waves by changing the model of

CRU firing from being stochastic to deterministic by defining Pmax = 1 and having
nprob → ∞. We obtain the following formula

Jprob(c) =







0 if c < Kprob,
1/2 if c = Kprob,
1 if c > Kprob,

(7)

which gives the following expression for JCRU

JCRU(c,x, t) =

{
0 if c ≤ Kprob,
σδ(x − x̂) if c > Kprob.

We further expand the expression for JCRU to take into account the firing mechanism
in our model, i.e., CRUs are considered to be point sources, which when firing, open
for a period of topen and close afterward for a recovery period of tclosed. We obtain the
following expression

JCRU(c,x, t) =
∑

σH(c − Kprob)
[

H(t − Tm) − H(t − Tm − topen)
]

δ(x − x̂),

where H(x) represents the Heaviside function, δ(x − x̂) is the Dirac delta distribution
with x̂ representing the CRU coordinates, and Tm is the mth time a particular CRU
opens due to calcium concentration crossing threshold levels and is defined by

Tm = inf{t | c > Kprob,
∂c

∂t
> 0, t ≥ Tm−1 + topen}, m = 0, 1, . . . . (8)

The above notation for Tm is widely used in the literature when modeling fire-diffuse-
fire type models such as the ones presented in [10] and [3]. With the limiting form of
Jprob in (7), the firing process (opening and closing of CRU) does not depend on a
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randomly generated number, but rather on the calcium concentration at release sites.
In this deterministic setting, a CRU opens (or fires) either when forced to (when it is
manually triggered) or when the calcium concentration at that particular CRU location
exceeds the value of Kprob.

The connection between 3-D and 1-D model can be made more apparent and mathe-
matically rigorous through a non-dimensionalization and asymptotic expansion of a 3-D
buffer-free version of the model. If we consider the three-dimensional bufffer-free diffusion
equation

∂c

∂t
= ∇ · (Dc∇c) − Jpump + Jleak + JCRU (9)

on the domain Ω = (−l, l)× (−l, l)× (−L,L) and introduce the non-dimensional param-
eters

ĉ = c/cini, x̂ = x/l, ŷ = y/l, ẑ = z/L, τ = tDcz
/L2,

the three-dimensional buffer-free model becomes

cτ =
L2

Dcz

(Dcx

l2
cx̂x̂ +

Dcy

l2
cŷŷ +

Dcz

L2
cẑẑ − Jpump + Jleak + JCRU

)

. (10)

We can now use the elongated geometry with l < L of a typical cardiac cell to define
a small parameter ǫ that incorporates key biophysical features of the model by defining

ǫ = Dcz
l2

Dcx
L2 . Using the fact that Dcx

= Dcy
, we can rewrite the above equation as

ĉτ = ĉẑẑ +
1

ǫ

(

ĉx̂x̂ + ĉŷŷ

)

+
L2

Dcz

(

− Ĵpump + Ĵleak + ĴCRU

)

, (11)

where

Ĵpump =
Jpump

cini
, Ĵleak =

Jleak

cini
, and ĴCRU =

JCRU

cini
.

We assume that the solution to equation (11) can be expanded asymptotically and written
under the form

ĉ = c0 + ǫc1 + ǫ2c2 + · · · ,

where c0, c1, . . . are functions of τ, x̂, ŷ, and ẑ. Substituting the asymptotic expansion of
ĉ and the following functional Taylor’s expansions of the terms

Jpump = Vpump
c
npump

0

c
npump

0 + K
npump

pump
+ Vpump

npump(ǫc1 + ǫ2c2 − c0 + · · · )c
npump−1
0 K

npump

pump

(c
npump

0 + K
npump

pump )2
+ O(ǫ2),

JCRU =
∑

σH(c0 + ǫc1 + ǫ2c2 − Kprob + · · · )×
[

H(L2τ/Dcx
− Tm) − H(L2τ/Dcx

− Tm − topen)
]

δ(x − x̂)
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in (11), we obtain the ordering equations

O(1/ǫ) : c0x̂x̂ + c0ŷŷ = 0, (12)

O(1) :







c0τ − c1x̂x̂ − c1ŷŷ − c0ẑẑ = L2

Dcz

(

− Vpump

cini

c
npump

0

c
npump

0 +K̂
npump
pump

+ Jleak

cini

+
∑

σ
cini

H(c0 − Kprob)×[

H(L2τ/Dcx
− Tm) − H(L2τ/Dcx

− Tm − topen)
]

δ(x − x̂)
)

,

(13)

O(ǫ) :
{

c1τ − c2x̂x̂ − c2ŷŷ = −Vpump

cini

npumpc1c
npump−1

0 K
npump
pump

(c
npump

0 +K
npump
pump )2

. (14)

Using separation of variables in Equation (12), we get that

c0(x̂, ŷ, ẑ, τ) = h0(x̂, ŷ)g0(ẑ, τ),

where h0x̂x̂
+ h0ŷŷ

= 0. Since ĉ(x̂, ŷ, ẑ, 0) = ĉini, then h0(x̂, ŷ) = K(ẑ, τ). From Equa-
tion (12), we have that c0(x̂, ŷ, ẑ, τ) = c0(ẑ, τ). Let the self-adjoint operator L : U → U
be defined as

L(φ) = φx̂x̂ + φŷŷ,

where φ ∈ U = H1
0 (Ω) ∩ L2(Ω) is an adequate function space for our problem (see [14])

on which the standard inner product 〈f, g〉 =
∫

Ω fg dΩ is used for f, g ∈ U . We can
rewrite the first order equation as

O(1) : L(c1) = c0τ − c0ẑẑ − G
︸ ︷︷ ︸

F

(15)

with the additional observation that L(c0) = 0; here, G is the right hand side of Equa-
tion (13). From the Fredholm alternative theorem, Equation (15) has a solution if F is
orthogonal to c0 (〈c0, F 〉 = 0), or in other words if the equation

∫

Ω
c0 (c0τ − c0ẑẑ − G) dΩ = 0,

holds, which is equivalent to solving

∫

Ω
(c0τ + c0ẑẑ − G) dΩ = 0. (16)

Expanding equation (16) using the first ordering equations, and performing an integration
with respect to x̂ and ŷ over the non-dimensionalized subdomain [0, 1]× [0, 1], we obtain

7
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the 1-D equation

c0τ − c0ẑẑ −
L2

Dcz

(

−
Vpump

cini

c
npump

0

c
npump

0 + K
npump

pump
+

Jleak

cini

+ N
∑ σ

cini
H(c0 − Kprob)×

[

H(L2τ/Dcx
− Tm) − H(L2τ/Dcx

− Tm − topen)
]

δ(ẑ − ẑ)
)

= 0,

(17)

where N is the total number of release units in the x- and y-planes. Equation (17) is
the buffer-free version (R1 = R2 = 0) of Equation (6). The addition of buffer species
introduces the reaction term R1 + R2 which acts both as a sink and a source of calcium;
our analysis will address this case in Section 4.2.

3. Implementation

Our method of model simulation uses the finite element method with linear basis func-
tions. The use of the finite element method and the selection of only linear basis functions
in our model simulation is motivated by the presence of the Dirac delta distribution in
the term JCRU, since heuristic arguments as well as computational evidence in [6, 7]
suggest that convergence does hold in the case of linear basis function and no better
convergence can be expected from higher-order finite elements. These facts were very
recently made rigorous in [14].

3.1 3-D model implementation

The 3-D simulations use a special-purpose code for systems of time-dependent reaction-
diffusion equations using the finite element method [6]. The method uses implicit time-
stepping with automatic step size and order control in the state-of-the-art numerical
differentiation formulas that are also implemented in the stiff ODE solver ode15s in
MATLAB [15]. The Krylov subspace method QMR is used as linear solver kernel inside
the Newton method that solves the system of non-linear equations at every time step.
The Krylov subspace method allows for a matrix-free form for optimal memory efficiency.
The code for the simulation is implemented in C and parallelized using the MPI standard
for communications. See [6] for more details on the numerical method used.

The postprocessing uses MATLAB for visualization. The domain, in units of µm,
Ω = (−6.4, 6.4)×(−6.4, 6.4)×(−32, 32) contains 6,975 CRUs located at discrete positions
in the cell interior. The CRUs have the spacings ∆ys = ∆xs = 0.8 µm in the x- and
y-directions and ∆zs = 2.0 µm in the z-direction of the cell; no CRU is located on the
boundary of the cell. The values of ∆xs, ∆ys, and ∆zs are the same CRU spacings as
used in [9]. Figure 1 shows the domain Ω with CRUs located at discrete sites.

All simulations of the 3-D model are run on the 86-node cluster tara in the UMBC
High Performance Computing Facility (www.umbc.edu/hpcf). Each node of tara has two
quad-core Intel Nehalem X5550 processors (2.66 GHz, 8192 kB cache) and 24 GB of
memory. The nodes are connected for parallel communications by a high-performance
quad-data rate InfiniBand interconnect. Most simulations presented in this paper are the
results of solving the problem on a numerical mesh consisting of 32× 32× 128 elements.
Runs using 8 compute nodes, with 8 processes per node for a total of 64 parallel MPI
processes, typically take on the order of 20 minutes. Considering that each such run
in serial would take on the order of 21 hours, it is clear that only the use of a large

8
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Figure 1. Domain Ω with all 6,975 CRUs represented as dots.

parallel computer enables production runs of these simulations, in particular since the
stochasticity in the model requires repeated simulations for the same parameter values.

3.2 1-D model implementation

The 1-D simulations use a 1-D finite element method code implemented in MATLAB; the
code makes use of MATLAB’s stiff ODE solver ode15s. The mesh resolution used consists
of 4 points between CRUs; that is to say, when the number of CRUs in our simulation
is n (CRUs are always nodal points), the mesh size consists of 4(n + 1) + 1 elements.
The distance used between each CRU is 2.0 µm. Since our 1-D model is deterministic
and our purpose is to classify wave behavior (see Section 4), we can use a domain that
consists of 3 CRUs and obtain a simulation result over 120 ms. On a standard laptop
with a 3.2 GHz processor and 8.0 GB of memory, such studies take only about 5 minutes,
which makes them accessible to parameter studies with large numbers of cases. The 1-D
FEM code used in this paper can be obtained through the authors.

4. Characterization of wave behavior

4.1 1-D Characterization

The deterministic aspect of the one-dimensional model helps in defining conditions that
dictate types of behaviors exhibited by the model. Hence, the dynamics fall into one of the
following three categories: blow-up, no-wave, and wave. Specifically, a blow-up scenario
occurs when an initial forced release of calcium at a particular CRU triggers the opening
of its neighboring CRUs; and after the CRU refractory period, further calcium release
occurs due to calcium concentration being above threshold level; this dynamic results
in an overall calcium concentration growth without bound. A dynamic is classified as a

9
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no-wave when an initial release of calcium does not result in any triggering of neighboring
CRUs; this dynamic results in no wave propagation. A dynamic is classified as a wave
when a forced release of calcium at a particular CRU triggers the opening of neighboring
CRUs resulting in a wave propagation and after the CRU refractory period, calcium
concentration has lowered to basal level. Based on the deterministic aspect of the 1-D
model, we can express the above dynamics in terms of CRU opening times. Defining Tm

p

as in Equation (8) to be the mth release occurrence of CRU at position x̂p forced to
release at time T 1

p , a no-wave scenario corresponds to the condition

{Tm
p |m ≥ 2} ∪ {Tm

p±1|m ≥ 1} = ∅, (18)

where neither a second firing at the pth CRU nor a firing of an adjacent CRU occurs. A
blow-up scenario corresponds to the condition

for all m, there exists Tm+1
p such that Tm+1

p > Tm
p , (19)

so there will always occur a next firing at the pth CRU. A wave scenario corresponds to
the condition

there exists T 1
p±1 and there does not exist T 2

p±1, (20)

so the neighbors of the pth CRU will fire exactly once; Tm
p±1 are opening times of

neighboring CRUs located at x̂p±1. Since the model is deterministic, we restrict tfin to
120 ms; tfin defined as such allows the model to capture a CRU releasing calcium, enter-
ing refractory period, and potentially re-releasing calcium. Hence, conditions (18), (19),
(20) over a period of 120 ms simplify to there does not exist T 1

p±1; there exists T 2
p ; and

there exists T 1
p±1, but there does not exist T 2

p±1 respectively. Characterization of wave
phenomena is another reason why the use of a lower dimensional and deterministic model
is useful in exploring wave-sensitive parameters, as the process of classifying behaviors
in the system can be automated.

With the dynamics being well-defined, we explore wave-sensitive parameters (Vpump,
and σ) using a method similar to the bisection method; that is to say, for each value
of Vpump, our algorithm increases or decreases σ according to the obtained simulation
behavior in order to locate threshold values above and below which the model displays
wave, blow-up, and no-wave characteristics.

4.2 1-D Results

We have performed a parameter study on the 1-D model (6) without buffer species
(R1 = R2 = 0); Figures 2(a)–(d) show a simulation run resulting in blow-up behavior.
In Figure 2(a), a forced spark is initiated for the CRU located at x = 2 µm; Figure 2(b)
shows subsequent CRU firings due to calcium diffusion causing calcium concentration
to climb above firing threshold at the neighboring CRUs. In Figure 2(c), no further
firing occurs due to CRUs being in their refractory periods (t ≤ 100 ms); Figure 2(d)
shows more firing occurring due to calcium concentration being above threshold level
(t > 105 ms). Running the simulation for a longer period in this scenario will result
in the same behavior repeating itself at higher calcium concentration. A wave behavior
scenario would be similar to Figures 2(a)–(c); however, at time t ≥ 105 ms the calcium
concentration would be below threshold level and no subsequent firing would occur. In
a no-wave scenario, a peak of calcium (spark) as shown in Figure 2(a) would occur, but

10
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Figure 2. Instance of a blow-up behavior. (a) Initial condition of simulation: forced activation of CRU at position
x = 2 µm. (b) Wave propagation caused by firing of subsequent CRUs due to calcium concentration crossing
threshold. (c) Uptake of calcium; no firing due to CRUs being in resting period. (d) Re-firing of CRU after resting
period due to calcium concentration still above threshold level.

propagation would not go as far as the next CRU position resulting in the single forced
CRU firing.

The results of our parameter search in the buffer-free version of the model is shown in
Figure 3. The graph in Figure 3 shows the model behaviors as a function of σ (release
strength) and Vpump (pump strength); higher values of Vpump (greater than 0.1 µM/ms)
increases the region of transitional behaviors between the no-wave region located in the
lower part region of Figure 3, the wave region (middle part of Figure 3) and the blow-
up-wave region (upper part of the region Figure 3). More importantly, Figure 3 shows
that for Vpump < 0.1 µM/ms, only a transition from no-wave behaviors to blow-up-wave
behaviors is possible, and no wave behaviors are obtainable. We will refer to the point
on Figure 3 where we transition from having two types of wave behaviors to three types
as codimension-two point.

The result of including buffer species in the model is summarized in Figure 4. The
addition of buffers has the effect of shifting up and to the right the wave regions previ-
ously obtained in Figure 3. The shift in the position of the codimension-two point shows
that buffers have the intuitive effect of requiring a higher level of release to get a wave
propagation. The introduction of buffers in the model also has the effect of increasing
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Figure 3. Diagram of Dynamic Behavior for 1-D Model without Buffers. Parameter region for no waves (∇) and
blow–up waves (∆) characterize behavior for pump values below the co-dimesion two point (square outline) beyond
which a wave parameter region (◦) is apparent contiguously between no waves and blow–up. Vpump is measured
in µM/ms and σ is measured in µM µm3/ms.

the range of Vpump and σ for which there is no wave propagation with recovery.
The shift in Vpump and σ can be explained through the expression of the reaction term

R1 + R2. Indeed the term k+
1 c f + k+

2 c b acts as a sink of calcium and is on the order of
100 µM/ms around CRUs, while the term k−

1 (FT − f) + k−

2 (BT − b) acts as a source of
calcium is on the order of 10 µM/ms. If we consider the critical values of the codimension-
two point in the plane, the values of the reaction term acting as sink and source explain
both the direction and magnitude of shift from the unbuffered (Vpump ≈ 0.1µM/ms and
σ ≈ 2µM/ms) to the buffered model (Vpump ≈ 5µM/ms and σ ≈ 170µM/ms).

4.3 3-D Characterization

In 3-D, our method of characterizing simulation runs is done using computational line
scans produced from integrating calcium concentration along a specific plane running in
the longitudinal axis of the 3-D domain. Line scans are experimentally used visualization
tools that summarize in a single figure the overall behavior of the simulation. Examples
of computational line scans can be seen in Figure 5; the horizontal axis corresponds to
time (from 0 ms to 1000 ms), while the vertical axis corresponds to the longitudinal axis
taken from the cell domain. Each computational line scan plots calcium concentration
(using a colorbar) at various times of the simulation along points of the longitudinal axis.
Mathematically, a computational line scan corresponds to the surface plot of cL(y, z, t)

12
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Figure 4. Diagram of Dynamic Behavior for 1-D Model with Buffers. Parameter region for no waves (∇) and
blow–up waves (∆) characterize behavior for pump values below the co-dimesion two point (square outline) beyond
which a wave parameter region (◦) is apparent contiguously between no waves and blow–up. However, the co-
dimension two point has shifted in Vpump and σ compared to Fig 3. Vpump is measured in µM/ms and σ is
measured in µM µm3/ms.

at a particular y = yL, with cL(y, z, t) defined as:

cL(y, z, t) =
1

12.8

∫ 6.4

−6.4
c(x, y, z, t) dx, (21)

where c(x, y, z, t) corresponds to the calcium component of the solution of the 3-D model.
We now use stochastic calcium release and do not force release at any given CRU. In
the three-dimensional case, a run is classified as blow-up if the resulting computational
line scan shows waves peaking at increasing values and/or no clear recovery can be
seen as shown in Figures 5(a) and 5(b); a run is classified as no-wave if the overall
calcium concentration stays near basal level almost everywhere as shown in Figures 5(c)
and 5(d); and a run is classified as wave when it is neither blow-up nor no-wave as shown
in Figures 5(e) and 5(f). We express the above behavior descriptions mathematically. Let
Pi,m be the local maximum occurring at time ti of cL(yL, zm, t) the computational line
scan at the plane y = yL and at points z = zm,m = 1, 2, . . . be defined for i = 1, 2, . . .
as

Pi,m = max
t∈[0,tfin]

{
cL(yL, zm, t) | cL > cini, (ti − ti−1) ≥ tclosed if ti−1 exists

}
. (22)
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A blow-up scenario corresponds to the condition

for all m, Pi+1,m > Pi,m; (23)

the above condition is based on the fact that if a blow-up occurs, peaks defined as in
Equation (22) will be monotonic increasing and will occur at all points zm. A no-wave
scenario corresponds to the condition

there exists m, such that Pi,m does not exist; (24)

the above condition is satisfied when there are points zm at which cL(yL, zm, t) is still
at basal level cini or in other words, sparks occur but do not organize into waves. A
wave occurs when neither blow-up conditions (23) nor no-wave conditions (24) have
been satisfied. Note that in the 3-D study, we do not force any spark to occur; the large
number of CRUs (6,975) along with the non-uniform Poisson process governing their
firing (see Equations (5) and (4)) is sufficient to determine that within our simulation
runtime, a spark will occur with probability close to 1. Furthermore, to account for the
stochastic aspect of the 3-D model, for each set of parameters Vpump and σ, we run the
simulation 5 times and confirm that the appropriate classification is always consistent.

4.4 3-D results

The 1-D parameter study shows that the region of wave propagations with recovery
(wave region) broadens for large values of Vpump and σ. Previous simulation work ([6]
and [4]) shows behaviors that can be categorized as no-wave and blow-up. The 1-D
results presented in Section 4.2 suggests that the previous 3-D simulations may have
been restricted to the region in parameter space where only no-wave behaviors or blow-
up behaviors are observed.

The result of the parameter search in 3-D is displayed in Figure 6. Similar to the 1-D
results (shown in Figure 4), there exists a region within which wave propagation with
recovery does not occur (0 µM/ms ≤ Vpump < 4 µM/ms), but only no-wave and blow-
up behaviors occur. From the results obtained in Figure 6, we see that the wave region
appears and broadens as Vpump increases above 4 µM/ms. More importantly, there exists
a region within which the model displays waves with recovery previously unobserved in
the 3-D model. An example of a wave with recovery (also seen experimentally) is shown
in Figure 7. This figure displays average calcium concentration along a longitudinal plane
(this would be the equivalent to experimental confocal images) at various points of time
in the simulation. We can see in Figures 7(a) and 7(b) the occurrence of few sparks (upper
left corner near x = 5, z = −30) later on organizing into a wave which then propagates
downward right through the cell; Figure 7(c) shows sparks on the middle right side of
the cell (near z = 10) organizing into a second wave. In Figures 7(d) and 7(e), we see the
first and second wave colliding; Figure 7(f) shows a recovery of calcium concentration.
The dynamics shown in Figure 7 is an example of a sustainable traveling wave with
recovery. Figure 8 shows isosurface plots of the calcium concentration throughout the
three-dimensional cell domain with a critical isolevel of 65 µM; the processed data is
from the same simulation that produced Figure 7, the computational line scan of which
is shown in Figure 5(f).
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(a) Vpump = 3 µMs−1, σ = 100 µmol s−1.
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(b) Vpump = 1 µMs−1, σ = 80 µmol s−1.
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(c) Vpump = 4 µMs−1, σ = 100 µmol s−1.
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(d) Vpump = 4 µMs−1, σ = 100 µmol s−1.
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(e) Vpump = 6 µMs−1, σ = 130 µmol s−1.
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(f) Vpump = 8 µMs−1, σ = 150 µmol s−1.

Figure 5. Computational line scans showing calcium concentration. (a) and (b) show computational line scans of
simulations resulting in a blow-up dynamics; no clear recovery can be seen over the duration of the simulation. (c)
and (d) show computational line scans of simulations resulting in a no-wave dynamics; few sparks are observed. (e)
and (f) show computational line scans of simulations resulting in a wave dynamics; multiple waves and recovery
can be observed over the 1,000 ms simulations pan. Computational line scans show calcium concentration.
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Figure 6. Wave region obtained from parameter study in the three-dimensional stochastic model with buffers.
The rectangular box shows the parameter region used in [4, 6, 9]. Vpump is measured in µM/ms and σ is measured
in µM µm3/ms.

−32 32
−6.4

6.4  

Cell z−axis in µm

Average calcium concentration
along y−axis at t=31ms.

 

C
el

l x
−

ax
is

 in
 µ

m

0

100

200

300

(a)

−32 32
−6.4

6.4  

Cell z−axis in µm

Average calcium concentration
along y−axis at t=76ms.

 

C
el

l x
−

ax
is

 in
 µ

m

0

100

200

300

(b)

−32 32
−6.4

6.4  

Cell z−axis in µm

Average calcium concentration
along y−axis at t=91ms.

 

C
el

l x
−

ax
is

 in
 µ

m

0

100

200

300

(c)

−32 32
−6.4

6.4  

Cell z−axis in µm

Average calcium concentration
along y−axis at t=141ms.

 

C
el

l x
−

ax
is

 in
 µ

m

0

100

200

300

(d)

−32 32
−6.4

6.4  

Cell z−axis in µm

Average calcium concentration
along y−axis at t=161ms.

 

C
el

l x
−

ax
is

 in
 µ

m

0

100

200

300

(e)

−32 32
−6.4

6.4  

Cell z−axis in µm

Average calcium concentration
along y−axis at t=191ms.

 

C
el

l x
−

ax
is

 in
 µ

m

0

100

200

300

(f)

Figure 7. Confocal images obtained from a simulation run resulting in a wave propagation with recovery (see Fig-
ure 5(f)). (a) shows calcium sparks on the upper left corner of the cell. (b) shows sparks organizing into a wave.
(c) shows wave propagation (followed by recovery); a few calcium occur on the right side of the cell. (d) shows
a second wave originating from the left side of cell. (e) shows first and second wave colliding. (f) shows recovery.
Vpump = 8 µM/ms and σ = 150 µM µm3/ms.
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Figure 8. Isosurface plots of the calcium concentration throughout the three-dimensional cell domain with critical
isolevel of 65 µM. Wave propagation with recovery occurs. (a) shows calcium at basal level. (a) and (b) show calcium
sparks. (d) sparks organize into waves. (e) and (f) show propagation of the wave (followed by recovery) towards
the right end of the cell. Vpump=8 µM/ms and σ = 150µM µm3/ms.
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5. Discussion

We have shown that system features, such as elongated geometry, can generate a small
parameter that we can exploit to reduce the dimension of the system. Coupling this with
turning calcium release from having a stochastic threshold to having a deterministic
one further simplifies a complex system. Then, rather than a 3-D system that requires
hours to simulate multiple trials for long enough times, we are able to guide behavior
prediction with a 1-D deterministic system within minutes. This template for parameter
location from the 1-D system then informs the focused search in 3-D leading to detection
of critical parameters and their boundaries. We see this as one viable strategy to reduce
complicated systems and yet guide discovery in the full system.

We can provide a concrete example for the dramatic advantage of this approach: Fig-
ures 3 and 4, using 1-D simulations, were used to narrow the range of parameter values
in the 3-D simulations for Figure 6. Figures 3 and 4 contain results from hundreds of
simulation runs, each taking typically about 5 minutes (as described in Section 3.2), thus
an exhaustive study of the entire parameter region and most importantly the boundaries
between qualitatively different behaviors is computationally feasible. The 3-D simula-
tions underlying Figure 6 by contrast take 21 hours each in serial or still on the order of
20 minutes even when using 8 compute nodes with two quad-core processors in a parallel
cluster (as described in Section 3.1), so it is vital to have a reliable plot for this figure
with as few simulations as possible. In the case of Figure 6, only two dozens simulations
were needed to capture the bounds of qualitatively different behavior, thus the figure
could be feasibly obtained.

Additionally, the study presented in this paper suggests that a wave initiation, propa-
gation, and recovery is likely to occur for release strength larger than 100 µM µm3/ms
(corresponding to a CRU current larger than 20 pA). This result supports the claim
of Izu in [8], suggesting that calcium sparks originate from multiple ryanodine receptor
currents (more than 30) of smaller intensity. Additionally, the large current has to be
coupled with a large pump strength (larger than 4 µM/ms). This value is on the order
of 10 times larger than the one measured experimentally and published in [1]. Increas-
ing the buffers’ sensitivity reduces the necessary pump rate to achieve recurrent calcium
waves, although not by an order of magnitude. However, other, de facto, calcium stores
such as mitochondria or nuclei could serve to reduce the necessary pump strength. Also
the rate of the SERCA pump is also sensitive to phospholamban and its inactivation by
β-adrenergic stimulation [12]. This reinforces the necessity to unfold the dynamics in this
parameter.

Furthermore, we do not account for emptying of SR stores of calcium which may reduce
the recurrence if not the initiation of spontaneous calcium waves, but σ can be interpreted
as combination of release amplitude and driving force from the calcium store. Thus, for
a sufficiently high effective pump rate and a σ value that does not support waves, stores
can be over filled either experimentally or pathologically driving σ higher and perhaps
into a wave initiation regime of parameter space. On occasion, initiated waves may not
be recurrent without refilling a depleted SR. Our Figure 4 describes this situation if we
rewrite σ as σ = −g (C − CSR) ≈ g CSR splitting the spark current into a conductance
and SR dependent driving force for calcium release. Therefore, if store calcium is lost
during a normal regular release, an overfull store with σ in the wave or even blow-up
region may fall below the wave/no-wave threshold for a given Vpump, restricting further
release prior to re(over)filling the store.

And importantly, while the 1-D buffered system qualitatively and even quantitatively
indicates parameter regions of certain dynamic behavior, the 1-D analysis cannot com-
pletely capture fundamentally higher dimensional behavior. For example, at the lower
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boundary between waves being and not being generated, in Figure 6, there is greater com-
plexity where we see the emergence of spiral or scroll waves that appear with parameter-
dependent probability. But the 1-D analysis does suggest where transitions, and therefore
sites of potentially interesting dynamics, may be found.

In summary, the one-dimensional leading to the three-dimensional parameter searches
presented in this paper have given a map that can be used to pick pump and release
values in order to obtain biophysical behaviors. First, we see that there are cases when
pump strength dominates the release strength and no propagation occurs (this is still
a valid biophysical behavior). Second, we see that there exist combinations of pump
strength and release strength for which a non-biophysical behavior can occur; when this
combination is picked, simulation, though resulting in wave propagation, sees calcium
concentration increasing without bound. Third, we see that there exist combinations of
pump and release strength for which wave propagation with recovery occurs (behavior
seen experimentally). Furthermore, the 1-D wave region presented in Figure 4 is a good
map to the 3-D wave region shown in Figure 6 in the sense that it captures the global
characteristics of the 3-D wave region.
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