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Abstract

State‐of‐the‐art distributed‐memory computer clusters contain multicore CPUs

with 16 and more cores. The second generation of the Intel Xeon Phi many‐

core processor has more than 60 cores with 16 GB of high‐performance on‐

chip memory. We contrast the performance of the second‐generation Intel

Xeon Phi, code‐named Knights Landing (KNL), with 68 computational cores

to the latest multicore CPU Intel Skylake with 18 cores. A special‐purpose code

solving a system of nonlinear reaction‐diffusion partial differential equations

with several thousands of point sources modeled mathematically by Dirac delta

distributions serves as realistic test bed. The system is discretized in space by

the finite volume method and advanced by fully implicit time‐stepping, with

a matrix‐free implementation that allows the complex model to have an

extremely small memory footprint. The sample application is a seven variable

model of calcium‐induced calcium release (CICR) that models the interplay

between electrical excitation, calcium signaling, and mechanical contraction

in a heart cell. The results demonstrate that excellent parallel scalability is pos-

sible on both hardware platforms, but that modern multicore CPUs outperform

the specialized many‐core Intel Xeon Phi KNL architecture for a large class of

problems such as systems of parabolic partial differential equations.
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1 | INTRODUCTION

This paper is concerned with demonstrating the scalability that is possible with parallel computer code both on modern
multicore CPUs and many‐core processors such as the Intel Xeon Phi. The demonstration uses an appropriate and mod-
ern numerical method for a system of coupled, nonlinear, time‐dependent partial differential equations (PDEs) that has
the form of reaction‐diffusion equations

∂uðiÞ

∂t
¼ ∇· DðiÞ∇uðiÞ

� �
þ qðiÞðuð1Þ; …; uðnsÞ; x; tÞ i ¼ 1; …; ns; (1)
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for functions u(i)=u(i)(x,t), i=1,…,ns, of space x ∈ Ω ⊂ R3 and time 0≤ t≤ tfin of the ns variables. The diffusivity matrices

DðiÞ ¼ diagðDðiÞ
11 ; D

ðiÞ
22 ; D

ðiÞ
33Þ ∈ R3×3 consist of positive entries. The forcing terms q(i) in (1) contain the nonlinearities in

the application problem of calcium waves in a heart cell as well as many thousands of point sources, modeled mathe-
matically by Dirac delta distributions, on a large lattice of locations throughout the cell, at which calcium ions can be
injected; this injection is turned on and off repeatedly throughout the simulations, based on a probabilistic model.
Despite the fundamentally smooth behavior of this reaction‐diffusion model, these crucial features of the application
are responsible for many of the challenges: (a) The numerical method used as spatial discretization will not be conver-
gent to as high an order as conventional, since the source functions are not sufficiently smooth.1,2 (b) The point sources
are the crucial driver of the physiological effects, thus the domain of the cell needs to be discretized with a fine mesh to
accommodate the thousands of point sources.3,4 (c) Sophisticated time‐stepping is needed to resolve the switching mech-
anism over time.3,4 (d) The code needs to be parallelized to reach desired large final times tfin, ideally eventually on the
scale of laboratory experiments of several minutes. It is point (d) that we focus here in this paper since equations of this
type occur often in mathematical biology and are thus a good example to demonstrate the power of parallel computing.
Specifically, the equations are of parabolic type with key properties of mass conservation and smoothing behavior over
time. The finite volume method (FVM) is the most appropriate discretization for this problem, since it guarantees mass
conservation at the discrete level and will allows the incorporation of an advection term2; by contrast, the finite element
conserves mass but needs more complicated handling of advection.

The concrete test code used in the demonstration is a special‐purpose code that is programmed in C with Message
Passing Interface (MPI) as parallel library for one model of calcium waves in a heart cell. To make such simulations fea-
sible, in particular for higher mesh resolutions and for longer simulation times, an efficient parallelization of the code as
well as state‐of‐the‐art computer hardware are necessary. This work analyzes the performance of our special‐purpose
code for this application on two currently available hardwares, namely of latest multicore Intel Skylake CPUs with
18 cores and the second‐generation many‐core Intel Xeon Phi, code‐named Knights Landing (KNL), with 68 computa-
tional cores. The simulations bear out that long‐time studies for modest meshes are possible up to moderate times like
1 000 ms. Speedup for larger meshes is very good up to large numbers of nodes and using many can facilitate simulations
for fine meshes. This situation poses opportunities for more research into the numerical algorithms, their implementa-
tion, and the choice of computer hardware. Our results also bring out that the second‐generation Intel Xeon Phi KNL,
despite its promise with large on‐chip memory, is not competitive with more customary CPU‐based nodes, though.

This paper is organized as follows: Section 2 details the application problem and the seven variable model used in
this work. Section 3 specifies the numerical method used including its parallelization and implementation. Section 4
contrasts the multicore Skylake and the many‐core KNL processors. Section 5 presents both sample application results
as well as the parallel performance studies on the multicore and many‐core processors. Section 6 collects the conclu-
sions and discusses future work.
2 | DYNAMICS OF A CARDIAC CELL

The leading cause of death in the United States is currently heart disease.5 In order to continue searching for methods to
combat heart disease, it is vital that the heart and its underlying processes are understood with greater depth. The
importance of having a greater understanding of the heart provides the motivation for this research.

The line of work of this project focuses on a single cardiac cell and uses a mathematical model in order to represent
the electrical excitation, calcium signaling, and mechanical contraction components of a cardiomyocyte. The original
model for calcium‐induced calcium release (CICR) was introduced by Izu and et al6,7 with a three‐variable model
and included only calcium signaling. This original model comprises the heart of the calcium signaling component of
the system indicated in Figure 1A. Figure 1B sketches the domain of the simulation. A cell is reasonably modeled by
the hexahedral shape elongated in the z‐direction, since the focus of CICR research is on estimating reasonable physi-
ological parameter values. A key of the model6,7 is to place the calcium release units (CRUs) on a regular lattice of size
15×15×31=6975 throughout the cell; Figure 1B shows three z‐planes of 3×3 CRUs as example. At these many locations,
calcium ions are released from the calcium store in the sarcoplasmic reticulum (SR) into the cytosol of the cell, and
CRUs can open (“fire”) and close repeatedly over time.6,7

The model was extended for the first time to include the electrical excitation component in Figure 1A by Alexander
et al,8 which implemented a one‐way interaction from electrical excitation to calcium signaling indicated by link ➀ in
Figure 1A. Studies with six variables by Angeloff et al9 extended the coupling to include a two‐way cycle between



FIGURE 1 A, The three components of the model and their links labeled ➀ to ➃. B, The calcium release unit (CRU) lattice with spacings

Δxs, Δys, Δzs throughout the three‐dimensional domain
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electrical excitation and calcium signaling by incorporating both links ➀ and ➁ in Figure 1A. The 2016 paper by
Angeloff et al9 also introduced the formulation of the complete eight variable model for all components in Figure 1A,
but not all model variables were used in the simulations, and the studies did not incorporate the mechanical system.

Work by Deetz et al10,11 contained the first simulations that include the mechanical contraction component in
Figure 1A by activating the links ➂ and ➃ in Figure 1A. This is facilitated by adding a buffer species whose concentra-
tion can be related to the contraction of the cell. Thus, this work uses a model with seven variables to represent the
excitation‐contraction coupling (ECC) occurring in the cardiomyocyte, in which CICR is the mechanism through which
electrical excitation is coupled with mechanical contraction through calcium signaling. The results of the simulations by
Deetz et al10,11 allow us to draw two key conclusions about the extension of the model and its implementation: The
model is capable of connecting the voltage to the contraction of the heart cell via the cytosol calcium and the third
buffer species, and a stronger coupling strength from voltage to calcium leads to stronger contraction.

More recent studies by Kroiz et al12 investigate the successive introduction of each of the components in Figure 1A
step‐by‐step using an improved version of the seven variable model. This sets the stage for even longer‐term simulation
up to larger final times; these simulations crucially take advantage of the efficiency studies presented in this paper for
the selection of parallel computing environments and their settings, thus showing how crucial efficient code is to further
the modeling work.

The remainder of this section provides more details of the concrete seven variable model of the form (1) used in
this work. The seven variables of the model are calcium in the cytosol c(x,t), a free or unbound florescent dye

bðcÞ1 ðx; tÞ, a free or unbound contractile protein (troponin) bðcÞ2 ðx; tÞ, the inactive actin‐myosin cross‐bridges

bðcÞ3 ðx; tÞ, calcium in the SR s(x,t), voltage V(x,t), and the potassium gating function n(x,t). The variables with their
units are listed in Table 1 and are modeled by the system of seven time‐dependent, coupled, nonlinear reaction dif-
fusion equations
TABLE 1 Independent and dependent variables of the seven variable model and their initial conditions

Variable Definition Initial Value and Units

x Spatial position variable (x,y,z) μm

t Time variable ms

c(x,t) Calcium in the cytosol c0=0.1 μM

bðcÞ1 ðx; tÞ Free fluorescent dye in the cytosol 45.918 μM

bðcÞ2 ðx; tÞ Free troponin in the cytosol 111.818 μM

bðcÞ3 ðx; tÞ Inactive actin‐myosin cross‐bridges [X] 145.20 μM

s(x,t) Calcium in the SR s0=10,000 μM

V(x,t) Membrane potential (voltage) −50 mV

n(x,t) Fraction of open potassium channels 0.1

Note. The concentration unit M is shorthand for mol/L (moles per liter).

Abbreviation: SR, sarcoplasmic reticulum.
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∂c
∂t

¼ ∇·ðDc∇cÞ þ RðcÞ
1 þ RðcÞ

2 þ JCRU þ Jleak − Jpump
� �þ κJLCC þ Jmleak − Jmpump

� �
; (2)

∂bðcÞ1

∂t
¼ ∇·ðD

bðcÞ1
∇bðcÞ1 Þ þ RðcÞ

1 ; (3)

∂bðcÞ2

∂t
¼ ∇·ðD

bðcÞ2
∇bðcÞ2 Þ þ RðcÞ

2 ; (4)

∂bðcÞ3

∂t
¼ ∇·ðD

bðcÞ3
∇bðcÞ3 Þ þ RðcÞ

3 ; (5)

∂s
∂t

¼ ∇·ðDs∇sÞ−γðJCRU þ Jleak − JpumpÞ; (6)

∂V
∂t

¼ ∇·ðDv∇VÞ þ τv
1
C

Iapp − gLðV − VLÞ−gCam∞ðVÞðV − VCaÞ−gK nðV − VKÞ−ωðJmleak − JmpumpÞ
� �

; (7)

∂n
∂t

¼ ∇·ðDn∇nÞ þ τvλn cosh
V − V3

2V 4

� 	
n∞ðVÞ−nð Þ: (8)

The following provides details on each of the components of the model, the calcium signaling portion of the model,
the electrical excitation that is connected to the calcium signaling in both the feedforward and feedback directions rep-
resented by links ➀ and ➁ in Figure 1A, and the mechanical contraction component that is also connected to the cal-
cium signaling in both the feedback and feedforward directions represented by links ➂ and ➃ in Figure 1A.

Table 1 collects the variables of the model with their units as well as their initial values. The coefficients Dc, DbðcÞi
, Ds,

Dv, and Dn are the diffusivity matrices for each variable12; here, Dv is modeled as a high value for near‐instantaneous
distribution of voltage through the cell, and Dn=0 which localizes the effect of the potassium channels.

The calcium signaling portion of the model consists of the Equations (2) to (6). The reaction terms RðcÞ
i describe the

reactions between calcium and the buffer species. They are the connections between (2) and (5).
More precisely, we have

RðcÞ
1 ¼ −kþ

bðcÞ1

cbðcÞ1 þ k−
bðcÞ1

bðcÞ1;total − bðcÞ1

� �
; (9)

for reaction between cytosol calcium and the fluorescent dye.
When troponin binds to Ca2+, the protein as a whole changes shape: this not only allow actin‐myosin cross‐bridges to

form, but also traps the calcium in its connection to the troponin so that the disassociation rate decreases dramatically. To
account for this, the shortening factor ε describes how the separation of troponin and calcium has been physically, but not

chemically, impaired. Note, again, that RðcÞ
2 remains a function of cytosol calcium concentration c(x,t) by its equation

RðcÞ
2 ¼ −kþ

bðcÞ2

cbðcÞ2 þ k−
bðcÞ2

bðcÞ2;total − bðcÞ2

� � 1
ε

(10)

with

ε ¼ exp Fmax ks
bðcÞ3;total − bðcÞ3 − ½XB�0

bðcÞ3;total − ½XB�0

 ! !
(11)

and ½XB�0 ¼ bðcÞ3;total − bðcÞ3 ðx; 0Þ. This shortening factor ε links➂ and➃ in Figure 1A. It refers back to the concentration of

bðcÞ3 ðx; tÞ, the inactive actin‐myosin cross‐bridges, and to the force that their linkage generates. It is scaled by themaximum
possible contractile force Fmax, the actin stiffness ks, and the proportion of active to inactive actin‐myosin cross‐bridges.
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The contractile proteins in question, though considered as a single species, are the combination of actin and myosin
when linked via cross‐bridges. This linkage is made possible by Ca2+ binding to troponin, the cytosol buffer species

bðcÞ2 ðx; tÞ: it is this binding that allows the actin‐myosin cross‐bridges to form. The cytosol species, bðcÞ3 ðx; tÞ, describes
these actin‐myosin cross‐bridges and constructs a third cytosol reaction term

RðcÞ
3 ¼ −kþ

bðcÞ3

bðcÞ2;total−b
ðcÞ
2

bðcÞ2;total

 !2

bðcÞ3 þ k−
bðcÞ3

ðbðcÞ3;total − bðcÞ3 Þ: (12)

Notice that this is not the same as the generic pattern for buffer species reaction terms from the initial model. There
is no immediately clear dependence on cytosolic calcium c(x,t). However, while c(x,t) is not explicitly included, it is

present in the proportion involving troponin, bðcÞ3 ðx; tÞ, which itself depends explicitly on cytosol calcium levels; RðcÞ
3 ,

like the other two reaction equations, does in fact depend on the cytosol calcium concentration.
These two reaction terms (10) and (12) connect the three components of our model. The calcium signaling is linked

to the pseudo‐mechanical contraction through the cross‐bridge term, and the pseudo‐mechanical contraction is in turn
connected to the calcium signaling through the inclusion of the cytosol calcium concentration in the modified reaction
equation for troponin. Thus all links ∿➀, ➁, ➂, and ➃ in Figure 1A are established, and thus the three systems of the
model are fully linked.

Note that in the reaction rates (9) and (10), bi
ðcÞ is the amount of unbound buffer known as “free” buffer. The con-

stant bðcÞi;total denotes the total bound and unbound calcium, thus leaving the difference seen in (9) and (10) to be the

bound calcium. Since the model uses no‐flux boundary conditions, no buffer species escapes or enters the cell, thus

we only need to track the “free” buffer species and use bðcÞi;total − bi
ðcÞ for the bound species.

The flux terms JCRU,Jleak, and Jpump in (2) describe the calcium‐induced release of Ca2+ into the cytosol from the SR,
the continuous leak of Ca2+ into the cytosol from the SR, and the pumping of Ca2+ back into the SR from the cytosol.
The terms JLCC; Jmleak , and Jmpump describe the fluxes of calcium into and out of the cell via the plasma membrane. The

coupling between (2) and (6) is achieved by the three flux terms shared by both.
More precisely, JLCC, Jmleak , and Jmpump in (2) describe the fluxes of calcium into and out of the cell via the plasma

membrane. Jpump replenishes the calcium stores in the SR; it increases SR calcium concentration by decreasing cytosol
calcium concentration. Jleak is a continuous leakage of those SR calcium stores into the cytosol; it increases cytosol con-
centration by decreasing SR calcium concentration. The pump term

JpumpðcÞ ¼ Vpump
cnpump

Knpump
pump þ cnpump

 !
(13)

is thus a function of cytosol calcium c(x,t) and consists of the maximum pump velocity Vpump multiplied against the
relationship between c(x,t) and the pump sensitivity Kpump; the exponent npump refers to the Hill coefficient (quantifying
the degree of cooperative binding) for the pump function. This has the practical effect of multiplying the maximum pos-
sible pump velocity against a number between 0 and 1, exclusive. The leak term Jleak is a constant defined by

Jleak ¼ Jpumpðc0Þ; (14)

which balances Jpump(c) at basal level c0=0.1 μM of cytosol calcium. As noted, Jpump has two roles, namely to balance
Jleak in the absence of sparking, but also to balance JCRU under conditions of active calcium release.

The term JCRU in (2) is the Ca2+ flux into the cytosol from the SR via each individual point source at which a CRU
has been assigned. The effect of all CRUs is modeled as a superposition such that

JCRUðc; s; x; tÞ ¼ ∑
x̂ ∈

Ωsσ̂
sðx; tÞ
s0

Oðc; sÞδðx − x̂Þ; (15)

with
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Oðc; sÞ ¼ 1 if urand ≤ Jprob;

0 if urand > Jprob;

(
(16)

where

Jprobðc; sÞ ¼ Pmax
cnprobc

K
nprobc
probc

þ cnprobc

 !
snprobs

K
nprobs
probs

þ snprobs

 !
: (17)

The effect of each CRU is modeled here as a product of three terms: (a) Similarly to how in Jpump the maximum
pump rate is scaled against the concentration of available cytosol calcium, the maximum pump rate is scaled against
the concentration of available cytosol calcium; the maximum rate of Ca2+ release σ̂ is scaled here against the ratio of
calcium concentration in the SR. (b) Following the same pattern, a maximum value multiplied against some scaling pro-
portion between 0 and 1 the gating function Oðc; sÞ has the practical effect of “budgeting” the calcium SR stores such
that when the stores are low; the given CRU becomes much less likely to open; each CRU is assigned a uniformly dis-
tributed random value urand, which is compared with the single value returned by the CRU opening probability Jprob to
determine whether or not the given CRU will open. (c) The Dirac delta distribution δðx − x̂Þmodels each CRU as a point

source for calcium release, which is defined by requiring δðx − x̂Þ ¼ 0 for all x ≠ x̂ and ∫R3ψðxÞδðx − x̂Þdx ¼ ψðx̂Þ for
any continuous function ψ(x).

The calcium signaling portion of the model consists of the equations (7) and (8). The membrane potential of the cell
depends on both the cytosol calcium ion concentration and also on the cytosol potassium ion (K+) concentration.13,14 In
our model, the ω term in (7) quantifies a dependence of V on c to complete the coupling from the chemical to the elec-
trical systems in link ➁ in Figure 1A,9 after c in (2) already contains several terms that depend on V to implement link ➀

in Figure 1A.
The connection between (2) and (7), link ➀ in Figure 1A, the link from the electrical system to the calcium system,

comes through

JLCC ¼ τf lux
2F

SgCam∞ðVÞðV − VCaÞ; (18)

the only calcium flux term to involve voltage. Note the parameter κ in (2), which is an external scaling factor for JLCC
rather than an intrinsic physiological component; if the value of κ is set to 0, the connection, link ➀ in Figure 1A, is
effectively switched off and the calcium dynamics are then modeled as though voltage were not involved. The surface
area, S, of the cell is included in light of the fact that JLCC describes the influx of calcium through L‐type calcium chan-
nels (LCCs), which are present in the enclosing plasma membrane of the cell: the surface area of the cell is the surface
area of the membrane.

We model the effect of the cytosol calcium concentration on the voltage by treating the calcium efflux term
ðJmpump − Jmleak ) as equivalent to the sodium‐calcium exchanger current: In this case, sodium concentration is treated rea-

sonably as a fixed concentration and absorbed into the appropriate constants. Converting the calcium ion efflux using
Faraday's constant, we are thus able to approximate a current generated by the sodium‐calcium exchange as a function
of simple calcium loss.

The individual components of the calcium efflux term are near‐duplicates in form of the earlier Jpump and Jleak func-
tions in (13) and (14), respectively. As Jpump described the removal of calcium from the cytosol and its transfer into SR
stores,

JmpumpðcÞ ¼ Vmpump

cnmpump

K
nmpump
mpump þ cnmpump

 !
(19)

describes the removal of calcium from the cytosol and its transfer to outside the cell across the membrane. The leak
term Jleak described a gradual leak of calcium into the cytosol from the SR, while JCRU described an abrupt, high‐
concentration (high relative to the leak) release of calcium into the cytosol from the SR. Similarly,
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Jmleak ¼ Jmpumpðc0Þ (20)

describes a gradual leak of calcium into the cytosol from outside the cell via the plasma membrane, while JLCC describes
a sudden spike of calcium release into the cytosol via the LCCs.
3 | NUMERICAL METHOD

In order to do calculations for the CICR model, we need to solve a system of time‐dependent parabolic PDEs. These
PDEs are coupled by several nonlinear reaction and source terms. The current simulations use ns=7 physiological var-
iables. The domain in our model is a hexahedron with isotropic CRU distribution, as shown in Figure 1B. A typical cell
has on the order of 15×15×31=6975 CRUs throughout the cell. A cell is reasonably modeled by the hexahedral shape
elongated in the z‐direction, since the focus of CICR research is on estimating reasonable physiological parameter
values. Taking a method of lines (MOLs) approach to spatially discretize this model, we use the FVM as the spatial
discretization to ensure mass conservation on the discrete level and also to accommodate advection terms in the future,
with N=(Nx+1) (Ny+1) (Nz+1) control volumes. Applying this to the case of the ns PDEs results in a large system of ordi-
nary differential equations (ODEs). A MOL discretization of a diffusion‐reaction equations with second‐order spatial
derivatives results in a stiff ODE system. The time step size restrictions, due to the CFL condition, are considered too
severe to allow for explicit time‐stepping methods. This necessitates the use of a sophisticated ODE solver such as
the family of implicit numerical differentiation formulas (NDFk). Our stiff ODEs, which needs to use an implicit
ODE method, require the solution of a nonlinear system. We use Newton's method as the nonlinear solver, and at each
Newton step, we use the biconjugate gradient stabilized method (BiCGSTAB) or other Krylov subspace methods as the
linear solver. Complete details of the numerical method can be found in Schäfer et al.2 Another possible numerical
approach to a problem of reaction‐diffusion type is the finite element method.15-17 The problem considered in these ref-
erences only needs to resolve one CRU, which also does not switch on and off, so a relatively coarse mesh and large time
steps are sufficient due to the smoothness of the parabolic PDE. By contrast, our focus here is on parallel computing,
needed both to resolve the large number of CRUs throughout the cell and their switching on and off, ie, constant
changes in the forcing terms throughout the simulation.

While the form of the PDEs in (2) to (8) is customary, the thousands of point sources at the CRUs in the forcing terms
imply that standard codes have difficulty. This explains why our research centered around creating a special‐purpose
code.1-3,18 Additionally, we leverage the regular 3‐D shape of the domain to program all methods in matrix‐free form.
Table 2 demonstrates, thus, how despite fully implicit time‐stepping, even relatively fine meshes use only modest
amounts of memory. This provides the key benefit now for the complete complex model with complete sophisticated
numerical method stack, even with seven or eight variables, to fit into the high‐performance memory of a KNL or a
GPU. The table also shows how large the number of degrees of freedom (DOF) is, that is, the number of variables that
have to be computed at every time step. With even modest meshes, there are millions of unknowns, and possibly hun-
dreds of millions for fine meshes. This characterizes the numerical problem that needs to be tackled to resolve the large
number of thousands of CRUs in a cell.

The implementation of this model is done in C using MPI and OpenMP to parallelize computations. Parallelization is
accomplished through block‐distribution all large arrays to all MPI processes. We split of the mesh in the z‐direction
TABLE 2 Sizing study with ns=7 variables using double precision arithmetic, listing the mesh resolution Nx×Ny×Nz, the number of control

volumes N=(Nx+1) (Ny+1) (Nz+1), the number of DOF neq=ns N, the number of time steps taken by the ODE solver up to final time

tfin=100 ms, and the predicted and observed memory usage in GB for a one‐process run

Mesh Resolution N DOF neq Time Steps Memory (GB)
Nx×Ny×Nz Predicted Observed

32×32×128 140 481 983 367 2667 0.125 <1

64×64×256 1 085 825 7 600 775 3295 0.963 1.093

128×128×512 8 536 833 59 757 831 3867 7.569 8.476

256×256×1024 67 700 225 473 901 575 4470 60.024 67.103

Abbreviations: DOF, degrees of freedom; ODE, ordinary differential equation.
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with one subdomain on each of the parallel processes. MPI commands such as MPI_Isend and MPI_Irecv, which are
nonblocking point‐to‐point communication commands, send messages between neighboring processes. The collective
command MPI_Allreduce is used for the computation of scalar products and norms.
4 | STATE ‐OF ‐THE ‐ART MULTI ‐CORE AND MANY ‐CORE PROCESSORS

Modern CPUs feature growing number of computational cores, such as, for instance, 18 cores in an Intel Xeon Gold
6140 Skylake CPU from 2017. Contrasted to these state‐of‐the‐art multicore CPUs with the most modern cores,
many‐core processors have even more cores, for instance, 68 cores in an Intel Xeon Phi 7250 KNL processor. The cores
in a many‐core processor typically feature a lower clock rate, eg, 1.4 GHz vs 2.3 GHz, but their larger number of cores
with their rich connectivity in a 2‐D mesh network and the fact that significantly more high‐performance memory is
available on the chip itself offer the potential for better performance.

We use the Stampede2 cluster at the Texas Advanced Computing Center (TACC) at The University of Texas at Austin
for the KNL studies and the taki cluster in the University of Maryland, Baltimore County (UMBC) High Performance
Computing Facility (hpcf.umbc.edu) for the Skylake nodes. But our results do not depend on the specific clusters and
apply to similar type of multicore vs many‐core processors.

We use the Intel compiler version 18.0 and the Intel MPI implementation version 18.0, which is capable to provide
optimized code for both types of processors in one executable. One of the key advantages of the KNL is that it can serve
as stand‐alone processor (not as coprocessor as a GPU) and it has an Œ86 architecture, therefore existing code can
immediately be ported from CPU to KNL just by giving additional compile options. We want to leverage this simplicity
here and therefore restrict our comparison with these two platforms; by contrast, to use GPUs as coprocessor would
require significant changes to the code and thus presents a hurdle for users.
4.1 | Multi‐core processor: Intel 6140 Skylake

The taki cluster in HPCF at UMBC introduced the Intel Xeon Gold 6140 Skylake CPUs in 2018, clocked at 2.3 GHz and
with 24.75 MB L3 cache. These chips contain 18 cores, totaling 36 cores on a two‐socket node. Figure 2 illustrates the
layout of a dual‐socket Skylake node. This node has 384 GB of memory available in 12 DIMMs of 32 GB DDR4 memory,
attached to each CPU via six memory channels per CPU. The memory of a Skylake node is larger than that available on
a KNL node; see below. However, the Skylake's on‐chip L3 cache of 24.75 MB is dramatically smaller, by nearly three
orders of magnitude, than the KNL's 16 GB of high‐speed multi‐channel DRAM (MCDRAM) that the KNL chip has.
The cluster taki in HPCF has 42 Skylake nodes, each with two 18‐core Skylake CPUs. These nodes in the taki cluster
are connected by an enhanced data rate (EDR) InfiniBand interconnect (100 Gb/s bandwidth, 90 ns latency).
FIGURE 2 Intel Xeon Skylake

schematic

hpcf.umbc.edu
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4.2 | Many‐core processor: Intel Xeon Phi 7250 KNL

Figure 3 illustrates the layout of one Intel Xeon Phi 7250 KNL processor, whose cores are clocked at 1.4 GHz. Each KNL
core is capable of four hardware threads. This model of the KNL on Stampede2 contains 68 cores, which are arranged in
pairs of two in a so‐called tile that share the connection to the two‐dimensional mesh network that connects all tiles.
Each core has an L1 cache, while the two cores of a tile share an L2 cache. Each box without text inside (in red color)
in Figure 3 indicates one tile with two cores and their shared L2 cache in the center of the tile between the cores. Inside
the KNL are 16 GB of MCDRAM, arranged in eight blocks of 2 GB each, shown on top and bottom of Figure 3. Outside
of the socket, the KNL is connected to 96 GB of DDR4 memory, arranged in six DIMMs of 16 GB each, shown connected
to their memory controllers (MCs) on the left and right of Figure 3. This MCDRAM is located directly inside the KNL
chip and is up to five times faster than the DDR4 memory installed on the node because of its 3‐D arrangement.19

The KNL uses three distinct memory modes, which determines how the processor treats the MCDRAM: as L3 cache,
RAM, or a mixture of both. The KNL also offers three distinct cluster modes that ensure all cores possess the most cur-
rent data among other processes, whether from main memory or MCDRAM. The differences between these cluster
modes allow users to vary the amount of explicit control of memory management. For our studies, we chose to use
the “cache” memory mode and “quadrant” cluster mode. The Stampede2 cluster at TACC has over 4200 KNL nodes,
each with one KNL processor. All nodes in the Stampede 2 cluster are connected through an Intel Omni‐Path (OPA)
interconnect with speeds of 100 Gb/s.
5 | RESULTS

This section shows the results of simulations for the seven variable models (2) to (8) with variables specified in Table 1.
Section 5.1 gives an impression of the physiological output that is possible through long‐time computational simulations
in three spatial dimensions to a final time large enough to include several calcium waves, while Section 5.2 conducts
parallel performance studies (up to a smaller reference final time that covers one wave). Both the high dimension of
the space and the needed large final times lead to the need for efficient parallel computing for this problem.
5.1 | Long‐time application studies to tfin=1,000 ms

This section shows the results of simulations for the seven variable model to the large final time tfin=1000 ms. Such a
large final time is vital in order to capture the behavior of several waves of increasing calcium concentration to move
through the cell, caused by the refractory period for the CRUs modeled as 100 ms.
FIGURE 3 Intel Xeon Phi Knights Landing (KNL) schematic



10 of 17 BARAJAS ET AL.
The first set of plots, in Figure 4, display the locations of open CRUs by a fat dot. Themore dark dots are visible, themore
CRUs are open at that specific time. More specifically, since one open CRU tends to promote neighboring CRUs to open
through the diffusion of calcium, a clustering of dots indicates a region of several open CRUs. Note that we start with initial
conditions in Table 1 for which there are no open CRUs and the right‐hand sides of all equations in (2) to (8) are zero. Thus,
these simulations represent a study in spontaneous sparking, in which some CRUs happen to open according to the prob-
abilistic model in (15) to (17). This model embodies the effect of a higher concentration of cytosol calcium increasing the
probability for a CRU to open in (17). The result of this spontaneous self‐initiation is seen in the first sub‐plot in Figure 4,
where a number of CRUs in one region of the cell have opened by t=100 ms. The study of self‐initiation was the original
purpose of this model of CICR6,7 and only required modest final times. The extension of the simulations to larger final
times allows to study if the opening and closing of CRUs self‐organizes into a sustained wave. This is seen in the following
sub‐plots in Figure 4. The model requires CRUs to close for 100 ms after opening for 5 ms, thus the sub‐plots indicate that
the original cluster of open CRUs travels in both directions through the elongated direction of the cell and roughly repeats
every 100 ms. Movies of the full results including intervening times confirm this behavior.
FIGURE 4 Open calcium release units throughout the cell
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Figure 5 shows a collection of isosurface plots for calcium concentration in the cytosol. An isosurface plot displays
the surface in the 3‐D cell, where the species concentration is equal to a critical value, stated in the caption of the figure,
here 65 μM for the concentration of cytosol calcium c(x,t). Due to the connection with open CRUs through the effect of
CICR, calcium concentration in the cytosol in Figure 5 is high in the same areas of the cell where the CRUs are open in
Figure 4 at that time.

In order to demonstrate the capability of themodel and its implementation, we show the example of one additional spe-
cies, selected as the latest additional species in the model and because of its connection to the mechanical contraction in

Figure 1A as the latest addition to the model,12 the concentration of the inactive actin‐myosin cross‐bridges bðcÞ3 ðx; tÞ
throughout the cell in Figure 6. This species interacts with with the buffer species bðcÞ2 through RðcÞ

3 in (12), which in turn

reacts with the cytosol calcium c(x,t) through the reaction rateRðcÞ
2 in (10). An increasing calcium concentration c(x,t) pro-

motes the activation of the actin‐myosin cross‐bridges, thus the concentration of the inactive cross‐bridges bðcÞ3 ðx; tÞ
decreases from the high value in Table 1 at the initial time t=0 ms, still visible at time t=100 ms in the first subplot of
FIGURE 5 Concentration of c(x,t) throughout the cell with a critical value of 65 μM



FIGURE 6 Concentration of bðcÞ3 ðx; tÞ throughout the cell with a critical value of 50 μM
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Figure 6, where it is indicated by near‐uniform color along the entire boundary of the domain, to lower values than the

critical isolevel value of 50 μM in areas behind the calcium wave. The empty areas in the plots of bðcÞ3 indicate the concen-
tration of the inactive cross‐bridges as low, hence a high concentration of the active ones.
5.2 | Parallel performance studies to tfin=100 ms

The solution of PDEs of the type in (2) to (8) requires sophisticated numerical methods.2-4,18 Recent developments in
parallel computing architectures includes the use of graphics processing units (GPUs) as a massively parallel accelera-
tors in general purpose computing and many‐integrated‐core (MIC) architectures like the Intel Xeon Phi. The second
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generation of the Intel Xeon Phi, code‐named KNL, is not limited to working as an accelerator with a CPU any more,
but can be installed as a stand‐alone CPU. Besides the larger number of computational cores, for instance 68 cores for
the KNL, the key difference to a CPU is the significant on‐chip memory in a KNL or GPU, on the order of several GB.
For this application and its implementation in a special‐purpose code with matrix‐free linear solves, this is ideal since
even relatively fine meshes fit into the memory of a KNL or a GPU; see Table 2 above. However, state‐of‐the‐art
multicore CPUs such as the Intel Skylake CPU are available with, for instance, 18 cores, but their on‐chip L3 cache
is significantly smaller than the high‐performance memory in the KNL chip, thus the CPU needs to rely on the memory
installed on the node for all calculations.

The purpose of this section is to demonstrate the parallel scalability of the MPI code as well as to compare its perfor-
mance on Skylake CPUs vs. KNLs. To avoid excessive run times for the performance studies in this subsection, we run
the performance studies in this section to a final time of 100 ms, rather than the full simulation time of 1000 ms used for
the CICR model in the application subsection above.

As the mesh size N increases, the run times increases as well but the quality of the results improves with a finer mesh.
Since there is a trade‐off of quality with time due to finermeshes, there is a need to try and find the optimal running scheme
with which we can see the best run time for the finer meshes. So, we will also vary the mesh size in order to see the full
breadth of the impact of mesh density on performance time.

Table 3 collects the results of the performance studies for three meshes run on combinations of nodes from 1 to 32 by
powers of 2 and processes per node from 1 to 32 by powers of 2. The table summarizes the observed wall clock time
(total time to execute the code) in HH:MM:SS (hours:minutes:seconds) format. The numerical mesh in 3‐D with reso-
lution Nx×Ny×Nz is divided onto the p parallel processes by dividing in the last dimension with Nz elements. This
TABLE 3 Parallel performance study on Skylake nodes of taki: wall clock time in HH:MM:SS for combinations of number of nodes and

numbers of processes per node

(a) Mesh resolution Nx×Ny×Nz=32×32×128, system dimension 983 367
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 00:21:22 00:11:17 00:06:20 00:03:49 00:02:36 00:02:00

2 processes per node 00:11:19 00:06:20 00:03:50 00:02:37 00:02:01 00:01:43

4 processes per node 00:06:34 00:03:58 00:02:40 00:02:05 00:01:46 00:01:37

8 processes per node 00:04:13 00:02:50 00:02:09 00:01:50 00:01:41 N/A

16 processes per node 00:02:52 00:02:12 00:01:51 00:01:42 N/A N/A

32 processes per node 00:02:27 00:02:04 00:01:53 N/A N/A N/A

(b) Mesh resolution Nx×Ny×Nz=64×64×256, system dimension 7 600 775

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 04:33:47 02:18:40 01:09:59 00:35:40 00:19:04 00:10:27

2 processes per node 02:19:40 01:10:17 00:35:48 00:19:00 00:10:30 00:06:23

4 processes per node 01:13:49 00:37:36 00:20:15 00:11:01 00:06:44 00:04:33

8 processes per node 00:38:38 00:20:51 00:11:25 00:06:59 00:04:44 00:03:36

16 processes per node 00:21:46 00:11:54 00:07:13 00:04:47 00:03:39 N/A

32 processes per node 00:13:43 00:08:19 00:05:30 00:04:08 N/A N/A

(c) Mesh resolution Nx×Ny×Nz=128×128×512, system dimension 59 757 831

1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes

1 process per node 68:58:40 33:53:17 17:14:28 08:26:30 04:17:03 02:15:29

2 processes per node 34:43:21 17:03:16 08:30:27 04:18:29 02:14:30 01:11:13

4 processes per node 18:06:38 08:56:06 04:34:48 02:19:28 01:15:14 00:41:51

8 processes per node 09:08:44 04:41:48 02:21:23 01:19:02 00:43:30 00:26:44

16 processes per node 04:55:07 02:32:33 01:21:24 00:45:54 00:27:41 00:18:48

32 processes per node 03:00:11 01:34:39 00:53:07 00:31:36 00:21:36 N/A

Abbreviation: HH:MM:SS, hours:minutes:seconds.
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minimizes the size of the interfaces between subdomains that need to be communicated between neighboring process
pairs. For Nz to be divided into p processes, p cannot be larger than Nz, and cases with p>Nz are marked as N/A in the
table. For the mesh resolutions 32×32×128, 64×64×256, and 128×128×512, a serial run on one node is feasible as basis
for comparisons. For an additional mesh with 256×256×1024 mesh points, this is not reasonable any more, but using
32 nodes with 32 processes per node, a run is possible in a little over 3 hours (03:23:03). Recall from Table 2 that a
seven‐variable model on the four meshes listed above requires time‐stepping as well as the solutions of a system of non-
linear and eventually of linear equations with nearly one million (983 367), nearly eight million (7 600 775), nearly
60 million (59 757 831), and nearly 500 million (473 901 575) variables, respectively.

Reading along the first column of a subtable, we observe that by doubling the number of processes from 1 to 2, we
approximately halve the runtime from each column to the next. We observe the same improvement from 2 to 4 pro-
cesses as well as from 4 to 8 processes. We also observe that by doubling the number of processes from 8 to 16 processes,
there is still a significant improvement in runtime, although not the halving we observed previously. Finally, while the
decrease in run time from 16 to 32 processes is small, the run times still do decrease, making the use of all available
cores on a node advisable. We observe that the behavior is analogous also in all other columns for the subtables. This
behavior is a typical characteristic of memory‐bound code such as this. The limiting factor in performance of memory‐
bound code is memory access, so we would expect a bottleneck when more processes on each CPU attempt to access the
memory simultaneously than the available six memory channels per CPU; see Figure 2.

Reading along each row of the mesh subtables, we observe that by doubling the number of nodes used, and thus also
doubling the number of parallel processes, we approximately halve the runtime all the way up to 32 nodes, at least for
the larger meshes. This behavior observed for increasing the number of nodes confirms the quality of the high‐
performance interconnect between the nodes. Also, we can see that the timings for antidiagonals in Table 3 are about
equal, that is, the run time for nodes = 2 and and processes per node = 1 is almost same as for nodes = 1 and processes
per node = 2, for instance. Thus, it is advisable to use the smallest number of nodes with the largest number of processes
per node.

Parallel scalability is often visually represented by plots of observed speedup and efficiency. The ideal behavior of
code for a fixed problem size N using p parallel processes is that it be p times as fast as serial code. If Tp(N) denotes
the wall clock time for a problem of a fixed size parameterized by N using p processes, then the quantity Sp=T1(N)/
Tp(N) measures the speedup of the code from 1 to p processes, whose optimal value is Sp=p. The efficiency Ep=Sp/p
characterizes in relative terms how close a run with p parallel processes is to this optimal value, for which Ep=1. The
behavior described here for speedup for a fixed problem size is known as strong scalability of parallel code.

Table 4 organizes the results of Table 3 in the form of a strong scalability study, that is, there is one row for each
problem size, with columns for increasing number of parallel processes p. Table 4A lists the raw timing data, like
TABLE 4 Parallel performance study on Skylake nodes: strong performance study for difference numbers of MPI processes

(a) Wall Clock Time Tp in HH:MM:SS
N p=1 p=2 p=4 p=8 p=16 p=32 p=64 p=128 p=256 p=512

32 00:21:22 00:11:19 00:06:34 00:04:13 00:02:52 00:02:27 00:02:04 00:01:53 N/A N/A

64 04:33:47 02:19:40 01:13:49 00:38:38 00:21:46 00:13:43 00:08:19 00:05:30 00:04:08 N/A

128 68:58:40 34:43:21 18:06:38 09:08:44 04:55:07 03:00:11 01:34:39 00:53:07 00:31:36 00:21:36

(b) Observed Speedup Sp=T1/Tp

N p=1 p=2 p=4 p=8 p=16 p=32 p=64 p=128 p=256 p=512

32 1.00 1.89 3.25 5.08 7.44 8.75 10.36 11.30 N/A N/A

64 1.00 1.96 3.71 7.09 12.58 19.97 32.94 49.71 66.18 N/A

128 1.00 1.99 3.81 7.54 14.02 22.97 43.72 77.92 130.98 191.63

(c) Observed Efficiency Ep=Sp/p

N p=1 p=2 p=4 p=8 p=16 p=32 p=64 p=128 p=256 p=512

32 1.00 0.94 0.81 0.63 0.46 0.27 0.16 0.09 N/A N/A

64 1.00 0.98 0.93 0.89 0.79 0.62 0.51 0.39 0.26 N/A

128 1.00 0.99 0.95 0.94 0.88 0.72 0.68 0.61 0.51 0.37

Abbreviation: HH:MM:SS, hours:minutes:seconds.
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Table 3, but organized by numbers of parallel processes p. Table 4B and 4C shows the numbers for speedup and effi-
ciency, respectively, that will be visualized in Figure 7A and 7B, respectively. There are several choices for most values
of p, such as for instance for p=4, one could use 1 node with 4 processes per node, 2 nodes with 2 processes per node, or
4 nodes with 1 process per node. In all cases, we use the smallest number of nodes possible, with 32 processes per node
for p≥ 32; for p<32, only one node is used, with the remaining cores idle. Comparing adjacent columns in the raw
timing data in Table 4A confirms our previous observation that performance improvement is very good from one to
two processes and from two to four processes, but not quite as good from four to eight processes. The speedup numbers
in Table 4B help reach the same conclusions when speedup is very good for p≤ 8, before it degrades slowly. We observe
clearly that for larger meshes, the speedup remains much better for larger p. The efficiency data in Table 4C can bring
out these effects more quantitatively, namely efficiency is near‐optimal for p≤ 8, and remains very good for larger p for
the larger meshes.

The plots in Figure 7A and 7B visualizes the numbers in Tables 4B and C, respectively. These plots do not provide
new data but simply provide a graphical representation of the results in Table 4. It is customary in results for fixed prob-
lem sizes that the speedup is better for larger problems, since the increased communication time for more parallel pro-
cesses does not dominate over the calculation time as quickly as it does for small problems. This is born out generally by
both plots in Figure 7. Specifically, the speedup in Figure 7A appears near‐optimal in the beginning for each line and
then slowly degrades, later for larger meshes. One would expect that the efficiency plot in Figure 7B would not add
much clarity, since its data are directly derived from the speedup data. But the efficiency plot can provide insight into
behavior for small p, here showing that some loss of efficiency does occur there already. Beyond small p, Figure 7B
shows a slow degradation of efficiency, but remaining good longer for finer meshes.

Finally, Table 5 gives the performance results for using KNL nodes on Stampede2 is the same format as Table 3.
Since each core in a KNL is not a very powerful processor and runs at a low clock rate, it only makes sense to use a
large number of cores per node. Thus, we run immediately with 64 processes per node, leaving a few cores of the avail-
able 68 for the operating system and management of OMB‐Path Architecture (OPA) traffic, as recommended in Rosales
et al.20 We leave some cores free as is recommended in Rosales et al20 for the management of OPA traffic and improves
scalability. The KNL allows for up to four hardware threads per core, but using more than one proved detrimental to
performance, in fact, hence we restrict the studies to single‐threading. The numbers for the two meshes in Table 5 bear
out that one KNL is faster than a serial job on a Skylake node, but when utilizing more cores on a Skylake node, the
code is faster than on a KNL node. The speedup by doubling the number of KNL nodes is good, but runs on Skylake
nodes are faster in all cases.
FIGURE 7 Parallel performance study

on Skylake nodes:strong performance

study for difference numbers of MPI

processes (A) (B)

TABLE 5 Parallel performance study on KNL nodes of Stampede2: wall clock time in HH:MM:SS for several number of nodes

(a) Mesh Resolution 32×32×128
1 node 2 nodes 4 nodes

64 processes per node 00:15:02 00:13:43 N/A

(b) Mesh Resolution 64×64×256

1 node 2 nodes 4 nodes

64 processes per node 00:57:45 00:39:25 00:30:05

Abbreviation: HH:MM:SS, hours:minutes:seconds.
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6 | CONCLUSIONS AND FUTURE WORK

We detailed a seven variable model for the ECC occurring in the cardiomyocyte, in which calcium CICR is the mech-
anism through which electrical excitation is coupled with mechanical contraction through calcium signaling. The chal-
lenges of simulations for this application include the need for a fine mesh to resolve the large number of thousands of
CRUs as point sources combined with a need for long‐time simulations to match the laboratory time scales of minutes.
The simulations shown here bear out that long‐time studies for modest meshes are possible up to moderate times like
1000 ms, but it still poses challenges to reach several minutes. Higher‐resolution meshes, however, still need large num-
bers of nodes in a parallel computing cluster.

This situation poses opportunities for more research into the numerical algorithms, their implementation, and the
choice of computer hardware. Our results bring out that the second‐generation Intel Xeon Phi KNL, despite its promise
with large on‐chip memory, is not competitive with more customary CPU‐based nodes, though. The results on multiple
nodes with Intel Skylake CPUs show very good speedup up to 32 nodes and also demonstrate that using essentially all
cores on a node is beneficial.

The seven variable model used here as application example for the broader class of systems of nonlinear time‐
dependent parabolic PDEs also requires more work. For one thing, additional chemical species should be included.
For another, larger final times are needed to take advantage of the model's ability to study long‐time behavior. For these
goals, far more significant numbers of studies are needed to determine reasonable ranges of parameters, so that the
model shows realistic behavior. This is also an example of uncertainty quantification, since the code contains both a
random number generator as well as repeated studies are needed to address uncertainty in the parameter values in
the simulations. We note that an efficient parallel code is vital to facilitate larger numbers of studies, the possibility
for which we demonstrated with the performance study here.
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