
Study of Free Alternative
Numerical Computation Packages

Matthew W. Brewster (bmatt3@umbc.edu)

Department of Mathematics and Statistics, University of Maryland, Baltimore County

Abstract

Matlab is the most popular commercial package for numerical computations in
mathematics, statistics, the sciences, engineering, and other fields. Octave, FreeMat,
and Scilab are free numerical computational packages that have many of the same
features as Matlab. They are available to download on the Linux, Windows, and Mac
OS X operating systems. We investigate whether these packages are viable alternatives
to Matlab for uses in teaching and research. We compare the packages under Linux
on one compute node with two quad-core Intel Nehalem processors (2.66 GHz, 8 MB
cache) and 24 GB of memory that is part of an 86-node distributed-memory cluster.
After performing both usability and performance tests on Matlab, Octave, FreeMat,
and Scilab, we conclude that Octave is the most usable and most powerful freely
available numerical computation package. Both FreeMat and Scilab exhibited some
incompatibility with Matlab and some performance problems in our tests. Therefore,
we conclude that Octave is the best viable alternative to Matlab because not only was
it fully compatible with Matlab, but it also exhibited the best performance. This paper
reports on work done while working for the REU Site: Interdisciplinary Program in
High Performance Computing at the University of Maryland, Baltimore County.

1 Introduction

There are several numerical computation packages that serve as educational tools and are also
available for commercial use. Of the available packages, Matlab is the most widely used. The
focus of this study is to introduce three additional numerical computation packages: Octave,
FreeMat, and Scilab, and provide information on which package is most compatible to Matlab
users. To evaluate Octave, FreeMat, and Scilab we use a comparative approach based on a
Matlab user’s perspective. To achieve this task, we perform both basic and complex studies
on Matlab, GNU Octave, FreeMat, and Scilab. The basic studies in Section 2 include testing
basic operations such as solving systems of linear equations, computing the eigenvalues and
eigenvectors of a matrix, and two-dimensional plotting. The basic operations test also serves
to highlight the differences in syntax between the all of the numerical computation packages.
The complex studies in Section 3 include direct and iterative solutions of a large sparse
system of linear equations resulting from finite difference discretization of an elliptic test
problem illustrating the differences in power and performance between each package.

Numerical computation packages see usage both in teaching and in research. In teach-
ing, the use of Matlab is becoming widespread in many college courses in mathematics and
other fields. For instance, professors might demonstrate facts using Matlab or assign home-
work/projects that state “Use Matlab . . . ”. But the commercial package Matlab is often
only available on campus in specific computer labs maintained by the institution. Most

1

students find it much more convenient to do homework on their own laptops or other com-
puters. The question is then if one of the free alternatives such as Octave, FreeMat, or Scilab
could be used by the student, since these can readily be downloaded to the student’s own
computer. Section 2 is designed to study this.

In a research context, an individual researcher is often very concerned with the portability
of research code and reproducibility of research results obtained by that code. This concern
applies over long periods of time, as the researcher changes jobs and affiliations. The software
Matlab, while widely available at many academic institutions, might not be available outside
of academia due to its high license fees there. Or even if it is available, it is often limited to
a particular computer (as fixed-CPU licenses tend to be cheaper than floating license keys).
Freely downloadable packages are an important alternative, since they can be downloaded
to the researchers own desktop for convenience or to multiple machines for more effective
use. The more complex test case in Section 3 is thus designed to give a feel for a research
problem. Clearly, the use of alternatives assumes that the user’s needs are limited to the
basic functionalities of Matlab itself. Matlab has a very rich set of toolboxes for a large
variety of applications or for certain areas with more sophisticated algorithms. If the use of
one of them is profitable or integral to the research, the other packages are likely not viable
alternatives.

The computations for this study are performed using Matlab R2011a, Octave 3.0.4,
FreeMat v4.0, and Scilab-5.3.1 under the Linux operating system RedHat Enterprise Linux 5
on one node of the

(www.umbc.edu/hpcf). This cluster has a total of 86 nodes, each node featuring two
quad-core Intel Nehalem X5550 processors (2.66 GHz, 8 MB cache) with 24 GB of memory.

2 Basic Operations Test

In this section we report on a basic operations test using Matlab, Octave, FreeMat, and
Scilab. Basic functionalities of these software packages include (i) the solution of a system
of linear equations by Gaussian elimination, (ii) finding eigenvalues and eigenvectors of a
matrix, and (iii) plotting in two dimensions [3]. These operations were chosen to highlight the
operations that one might see in a basic linear algebra course for which Matlab was originally
designed, such as linear system solutions and eigenvalue computations. Additionally, we
demonstrate and compare the plotting from data given in a file and the full annotation of
plots from computed data, both of which are also typical basic tasks.

2

2.1 Basic operations in Matlab

2.1.1 Solving Systems of Equations in Matlab

The first example we will consider in this section is solving a linear system. Consider the
equations

−x2 + x3 = 3,

x1 − x2 − x3 = 0,

−x1 − x3 = −3,

where the solution to this system (1,−1, 2)T can be found by row reduction techniques from
basic linear algebra courses, referred to by its professional name Gaussian elimination. To
solve this system with Matlab, let us express this linear system as a single matrix equation

Ax = b, (2.1)

where A is a square matrix consisting of the coefficients of the unknowns, x is the vector of
unknowns, and b is the right-hand side vector. For this particular system, we have

A =

 0 −1 1
1 −1 −1
−1 0 −1

 , b =

 3
0
−3

 .

First, the matrix A and vector b are entered using the commands

A = [0 -1 1; 1 -1 -1; -1 0 -1]

b = [3;0;-3].

Then use the backslash operator to solve the system by Gaussian elimination by x = A\b.
The resulting vector which is assigned to x is

x =

1

-1

2

which agrees with the known exact solution.

2.1.2 Calculating Eigenvalues and Eigenvectors in Matlab

Now, we will consider another important function: computing eigenvalues and eigenvectors.
Finding the eigenvalues and eigenvectors is a concept first introduced in a basic Linear
Algebra course and we will begin by recalling the definition. Let A ∈ Cn×n and v ∈ Cn. A
vector v is called the eigenvector of A if v 6= 0 and Av is a multiple of v; that is, there exists
a λ ∈ C such that

Av = λv,

3

where λ is the eigenvalue of A associated with the eigenvector v. We will use Matlab to
compute the eigenvalues and a set of eigenvectors of a square matrix. Let us consider the
matrix

A =

[
1 −1
1 1

]
which is a small matrix that we can easily compute the eigenvalues to check our results.
Calculating the eigenvalues using det(A − λI) = 0 gives 1 + i and 1 − i. Now we will use
Matlab’s built-in-function eig to compute the eigenvalues. First enter the matrix A and
then calculate the eigenvalues using the following commands:

A = [1 -1; 1 1];

v = eig(A)

The following are the eigenvalues that are obtained for matrix A using the commands stated
above:

v =

1.0000 + 1.0000i

1.0000 - 1.0000i

To check if the components of this vector are identical to the analytic eigenvalues, we can
compute

v - [1+i;1-i]

and it results in

ans =

0

0

This demonstrates that the numerically computed eigenvalues have in fact the exact integer
values for the real and imaginary parts, but Matlab formats the output for general real
numbers.

In order to calculate the eigenvectors in Matlab, we will still use the eig function by
slightly modifying it to [P,D] = eig(A) where P will contain the eigenvectors of the square
matrix A and D is the diagonal matrix containing the eigenvalues on its diagonals. In this
case, the solution is:

P =

0.7071 0.7071

0 - 0.7071i 0 + 0.7071i

and

D =

1.0000 + 1.0000i 0

0 1.0000 - 1.0000i

4

Calculating the diagonalization enables us to express the matrix A as

A = PDP−1, (2.2)

where P is the matrix of eigenvectors and D is a diagonal matrix as stated above. To
check our solution, we will multiply the matrices generated using eig(A) to reproduce A as
suggested in (2.2).

A = P*D*inv(P)

produces

A=

1 -1

1 1

where inv(P) is used to obtain the inverse of matrix P . Notice that the commands above
lead to the expected solution, A.

2.1.3 2-D Plotting from a Data File in Matlab

Two-dimensional plotting is a very important feature as it appears in all mathematical
courses. Since this is a very commonly used feature, let us examine the 2-D plotting feature
of Matlab by plotting f(x) = x sin(x2) over the interval [−2π, 2π]. The data set for this
function is given in a data file matlabdata.dat and is posted along with the technical
report [3] at www.umbc.edu/hpcf under Publications. Noticing that the data are given in
two columns, we will first store the data in a matrix A. Second, we will create two vectors,
x and y, by extracting the data from the columns of A. Lastly, we will plot the data.

A = load (’matlabdata.dat’);

x = A(:,1);

y = A(:,2);

plot(x,y)

The commands stated above result in the Figure 2.1 (a). Looking at this figure, it can be
noted that our axes are not labeled; there are no grid lines; and the peaks of the curves are
rather coarse.

2.1.4 Annotated Plotting from Computed Data in Matlab

The title, grid lines, and axes labels can be easily created. Let us begin by labeling
the axes using xlabel(’x’) to label the x-axis and ylabel(’f(x)’) to label the y-axis.
grid on can be used to create the grid lines. Let us also create a title for this graph using
title (’Graph of f(x)=x sin(x^2)’). We have taken care of the missing annotations,
so let us try to improve the coarseness of the peaks in Figure 2.1 (a). We use length(x) to
determine that 129 data points were used to create the graph of f(x) in Figure 2.1 (a). To
improve this outcome, we can begin by improving our resolution using

5

(a) (b)

Figure 2.1: Plots of f(x) = x sin(x2) in Matlab using (a) 129 and (b) 1025 equally spaced
data points.

x = [-2*pi : 4*pi/1024 : 2*pi];

to create a vector 1025 equally spaced data points over the interval [−2π, 2π]. In order to
create vector y consisting of corresponding y values, use

y = x .* sin(x.^2);

where .* performs element-wise multiplication and .^ corresponds to element-wise array
power. Then, simply use plot(x,y) to plot the data. Use the annotation techniques men-
tioned earlier to annotate the plot. In addition to the other annotations, use
xlim([-2*pi 2*pi]) to set limit is for the x-axis. We can change the line width to 2 by
plot(x,y,’LineWidth’,2). Finally, Figure 2.1 (b) is the resulting figure with higher resolu-
tion as well as the annotations. Observe that by controlling the resolution in Figure 2.1 (b),
we have created a smoother plot of the function f(x). The Matlab code used to create the
annotated figure is as follows:

x = [-2*pi : 4*pi/1024 : 2*pi];

y = x.*sin(x.^2);

H = plot(x,y);

set(H,’LineWidth’,2)

grid on

title (’Graph of f(x)=x sin(x^2)

xlabel (’x’)

ylabel (’f(x)’)

xlim ([-2*pi 2*pi])

6

2.2 Basic operations in Octave

2.2.1 Solving Systems of Equations in Octave

Let us begin by solving a system of linear equations. Just like Matlab, Octave defines the
backslash operator to solve equations of the form Ax = b. Hence, the system of equations
mentioned in Section 2.1.1 can also be solved in Octave using the same commands:

A = [0 -1 1; 1 -1 -1; -1 0 -1];

b = [3;0;-3];

x= A\b

x =

1

-1

2

Clearly the solution is exactly what was expected. Hence, the process of solving the system
of equations is identical to Matlab.

2.2.2 Calculating Eigenvalues and Eigenvectors in Octave

Now, let us consider the second operation of finding eigenvalues and eigenvectors. To find
the eigenvalues and eigenvectors for matrix A stated in Section 2.1.2, we will use Octave’s
built-in-function eig and obtain the following result:

A = [1 -1; 1 1];

v = eig(A)

v =

1 + 1i

1 - 1i

This shows exactly the integer values for the real and imaginary parts. To calculate the
corresponding eigenvectors, use [P,D] = eig(A) and obtain

P =

0.70711 + 0.00000i 0.70711 - 0.00000i

0.00000 - 0.70711i 0.00000 + 0.70711i

D =

1 + 1i 0

0 1 - 1i

After comparing this to the outcome generated by Matlab, we can conclude that the solutions
are same but they are formatted slightly differently. For instance, matrix P displays an extra
decimal place when generated by Octave. The eigenvalues in Octave are reported exactly

7

same as the calculated solution, where as Matlab displays them using four decimal places for
real and imaginary parts. Hence, the solution is the same but presented slightly differently
from each other. Before moving on, let us determine whether A = PDP−1 still holds.
Keeping in mind that the results were similar to Matlab’s, we can expect this equation to
hold true. Let us compute PDP−1 by entering P*D*inv(P). Without much surprise, the
outcome is

ans =

1 -1

1 1

An important thing to notice here is that to compute the inverse of a matrix, we use the
inv command. Thus, the commands for computing the eigenvalues, eigenvectors, inverse of
a matrix, as well as solving a linear system, are the same for Octave and Matlab.

2.2.3 2-D Plotting from a Data File in Octave

Now, we will look at plotting f(x) = x sin(x2) using the given data file. The load command
is used to store the data in the file into a matrix A. use x = A(:,1) to store the first column
as vector x and y = A(:,2) to store the second column as vector y. We can create a plot
using these vectors via entering plot(x,y) command in the prompt. Note that to check the
number of data points, we can still use the length command. It is clear that this process is
identical to the process in Section 2.1.3 that was used to generate Figure 2.1 (a).

Clearly, the Figure 2.2 (a) is not labeled at all; the grid is also not on; as well as the
coarseness around the peaks exists. Therefore, the only difference between the two graphs
is that in Figure 2.2 (a) the limits of the axes are different than in Figure 2.1 (a). The rest
appears to be same in both of the plots.

2.2.4 Annotated Plotting from Computed Data in Octave

Let us try to label the axes of this figure using the label command and create the title using
the title command. In order to create a smooth graph, like before; we will consider higher
resolution. Hence, x = [-2*pi : 4*pi/1024 : 2*pi]; can be used to create a vector of
1025 points and y = x .* sin(x.^2); creates a vector of corresponding functional values.
By examining the creation of the y vector, we notice that in Octave .* is known as the
“element by element multiplication operator” and .^ is the “element by element power
operator.” After using the label to label the axes; title to create a title; and grid on to
turn on grid. We obtain Figure 2.2 (b).

Clearly, Figure 2.2 (b) and Figure 2.1 (b) are identical. We can simply put together all
the commands in a script file to generate Figure 2.1 (b).

8

(a) (b)

Figure 2.2: Plots of f(x) = x sin(x2) in Octave using (a) 129 and (b) 1025 equally spaced
data points.

2.3 Basic operations in FreeMat

2.3.1 Solving Systems of Equations in FreeMat

We will begin by first solving a linear system. Let us consider matrix A as defined in
Section 2.1.1. We can use the same commands a Matlab to produce a result.

A = [0 -1 1; 1 -1 -1; -1 0 -1];

b = [3;0;-3];

x = A\b

which results in

x =

1

-1

2

as we had expected. Like Matlab and Octave, FreeMat also uses the backslash operator to
solve linear systems.

2.3.2 Calculating Eigenvalues and Eigenvectors in FreeMat

Now, we will consider the second important operation, computing eigenvalues and eigen-
vectors. For our computations, let us use matrix A stated in Section 2.1.2. We will use
FreeMat’s built-in-function eig and obtain the following result:

P =

0.7071 + 0.0000i 0.7071 - 0.0000i

0.0000 - 0.7071i 0.0000 + 0.7071i

D =

9

1.0000 + 1.0000i 0

0 1.0000 - 1.0000i

The outcome is identical to Matlab’s results. Just to confirm, we compute A = PDP−1

which results in the matrix A as following:

ans =

1.0000+0.0000i -1.0000+0.0000i

1.0000+0.0000i 1.0000+0.0000i

A key point here is that FreeMat uses inv to compute inverse of matrices. So the commands
used to solve systems of operations, calculate eigenvalues and eigenvectors, and computing
matrix inverse are same as Matlab.

2.3.3 2-D Plotting from a Data File in FreeMat

Now we would hope to see an agreement in the plotting and annotation commands. To
examine the plotting feature of FreeMat, we will consider f(x) = x sin(x2). Let us begin
by examining the load command. Just like Matlab and Octave, we can load the data in
a matrix A with A = load(’matlabdata.dat’) command and use x = A(:,1) to create
vector x and y = A(:,2) to create y. Now, use plot(x,y) to generate Figure 2.3 (a) using
vector x and y. Clearly, the load command and plot command have same functionality as
in Matlab.Without much surprise, Figure 2.3 (a) and Figure 2.1 (a) are same.

2.3.4 Annotated Plotting from Computed Data in FreeMat

To annotate Figure 2.3 (a), we will use the same commands as Matlab. So to label the axes
use label command, grid on create grid lines, title command to create title. To create a
smooth graph, we will create another vector x consisting of more data points and a vector y
for the corresponding functional values. Use x = [-2*pi : 4*pi/1024 : 2*pi]; to create
x and y = x .* sin(x.^2); to create vector y. As in the earlier sections, we hope that
higher resolution will improve our plot. Let us plot this data using plot(x,y);. Applying
the annotation techniques, we generate Figure 2.3 (b).

2.4 Basic operations in Scilab

2.4.1 Solving Systems of Equations in Scilab

Once again, let us begin by solving the linear system from Section 2.1.1. Scilab follows the
same method as GNU Octave and Matlab in solving the system of equations, i.e., it uses the
backslash operator to find the solution using the system mentioned in Section 2.1.1, we use
the following commands in Scilab:

A = [0 -1 1; 1 -1 -1; -1 0 -1];

b = [3;0;-3];

x= A\b

10

(a) (b)

Figure 2.3: Plots of f(x) = x sin(x2) in FreeMat using (a) 129 and (b) 1025 equally spaced
data points.

to set up the matrix A and vector b. Using the backslash operator, we obtain the result:

x =

1.

-1.

2.

Once again, the result is exactly what is obtained when solving the system using an aug-
mented matrix.

2.4.2 Calculating Eigenvalues and Eigenvectors in Scilab

Now, let us determine how to calculate the eigenvalues and eigenvectors for the matrix A
stated in Section 2.1.2. Scilab uses the spec command which has the same functionality as
eig command to compute eigenvalues. Hence, v = spec(A) results in

v =

1. + i

1. - i

Clearly, the outcome is exactly what we had expected but the outcome is formatted slightly
different from Matlab. When we calculate the a set of corresponding eigenvectors using
[P,D] = spec(A) and the following result is obtained:

D =

1 + i 0

0 1 - i

P =

0.7071068 0.7071068

-0.7071068i 0.7071068i

By comparing P , the matrix of eigenvectors computed in Scilab, to P , the matrix in Sec-
tion 2.1.2, we can see that both packages produce same results but they are formatted
differently. Let us check our solution by computing PDP−1 using the inv command to
compute the inverse of the matrix.

11

(a) (b)

Figure 2.4: Plots of f(x) = x sin(x2) in Scilab using (a) 129 and (b) 1025 equally spaced
data points.

P*D*inv(P)

ans =

1. - 1.

1. 1.

which is our initial matrix A. Note that one important factor in computing the eigenvalues
and eigenvectors is the command used in these computations, spec, and that the eigenvectors
found in Scilab and Matlab agree up to six decimal places.

2.4.3 2-D Plotting from a Data File in Scilab

Now, we will plot f(x) = x sin(x2) in Scilab. To load the text file matlabdata.dat into a
matrix, we use the Scilab command A = fscanfMat(’matlabdata.dat’). This is specifi-
cally a command to read text files, while Scilab’s load command is only for reading binary
files; by contrast, Matlab uses load for both purposes. Then we use x = A(:,1) to store
the first column vector as x and y = A(:,2) to store the second column as a vector y. We
can create a plot using these vectors via entering plot(x,y). Notice that the Figure 2.4 (a)
is not labeled and it is rather coarse.

2.4.4 Annotated Plotting from Computed Data in Scilab

Let us improve our resolution by creating vector x using

x = [-2*%pi : 4*%pi/1024 : 2*%pi]

and let y = x .* sin(x.^2) to create a corresponding y vector. Unlike Matlab and
Octave, we have to use %pi to enter π in Scilab. The operator, .* and .^ still per-
form the element-wise operations in Scilab. Another factor that remains unchanged is the
length command. We can generate the plot using the plot(x,y) command which cre-
ates the Figure 2.4 (a). Once again, we can use xlabel and ylabel to label the axes;

12

title(’Graph of f(x)=x sin(x^2)’) to create a title; and xgrid to turn on grid. To plot
and create x-axis bounds, use

plot2D(x,y,1,’011’,’’,[-2*%pi,y(1),2,*%pi,y($)])

Notice that we can put together these commands into a sci-file in Scilab to generate a
plot. The resulting script for creating Figure 2.4 (a) is as follows:

x = -2*%pi:(4*%pi)/1024:2*%pi;

y = x .* sin(x.^2);

plot2d(x,y,1,’011’,’’,[-2*%pi,y(1),2*%pi,y($)])

set(gca(),"axes_visible","on")

set(gca(),"grid",[1,1])

title("Graph of f(x) = x sin(x^2)")

xlabel("x")

ylabel("f(x)")

Notice that some of the Matlab commands are not compatible with Scilab. One easier
approach to handle this issue is to use the “Matlab to Scilab translator” under the Ap-
plications menu or by using mfile2sci command. The translator is unable to convert
xlim([-2*pi 2*pi]); which we can take care of replacing the plot with plot2d command
above. Using this script file, we obtain Figure 2.4 (b) which is similar to Figure 2.1 (b).

2.5 Comparison

After performing the basic operations in Matlab, we repeated the same operations in the
other numerical computation packages. The backslash operator works identically for all of the
packages to produce a solution to the linear system given. The command eig has the same
functionality in Octave and FreeMat as in Matlab for computing eigenvalues and eigenvectors,
whereas Scilab uses the equivalent command spec to compute them. Plotting is another
important feature we analyze by an m-file containing the two-dimensional plot function
along with some of the common annotation commands discussed above. Once again, Octave
and FreeMat use the exact commands for plotting and similar ones for annotating as Matlab,
whereas Scilab requires several changes. For instance in Scilab, the constant pi is defined
using %pi, and the command grid from Matlab is replaced with xgrid. To accomplish these
conversions, we find that we can use the Matlab-to-Scilab translator provided by Scilab,
which takes care of these command differences for the most part. However, the translator
is unable to convert the xlim command from Matlab to Scilab. To rectify this, we must
manually specify the axis boundaries in Scilab using additional arguments in Plot2d. This
issue brings out the major concern for Scilab that despite the existence of the translator,
there are some functions that require manual conversion.

The small sample code below tests whether basic programming elements including if-
statements and for-loops work the same way in all the numerical computation packages,
with both snippets outputting the same sequence of numbers 1, 0.75, 0.5, 0.25, 0:

13

for c = 1.0 : -0.25 : 0.0

c

end

c = 1.0

while (c > 0.0)

c = c - 0.25

end

Executing these snippets in all packages also confirms that non-integer and negative loop
increments are legal and work in the same way in all of them. The format of a function
interface in all languages is [out1, out2] = function foo (in1, in2, in3) with output
arguments on the left [in brackets] and input arguments on the right (in parentheses). Other
programming elements like break from a loop and return from a function are also available
in all packages and work in the same way.

Next, to assess how compatible the languages are, we compiled a list of 30 common
mathematical functions in Table 2.1. The table divides the functions into six categories: basic
linear algebra functions, matrix decomposition/factorization functions, iterative solvers for
systems of equations, sparse matrix functions, polynomial, interpolation, and other functions,
and basic statistics functions. The results show that Octave is capable of performing all of the
functions listed and has essentially the same syntax. FreeMat lacks several basic commands
that Matlab and Octave are capable of executing but it uses the same syntax as Matlab and
Octave for the functions that it is able to execute. Scilab was capable of executing all of the
basic functions, but some of its functions are named differently and have a different syntax
than the functions in Matlab, Octave, and FreeMat.

Another important feature to test would be the ODE solvers in the packages under consid-
eration. For non-stiff ODEs, Matlab has three solvers: ode113, ode23, and ode45 implement
an Adams-Bashforth-Moulton PECE solver and explicit Runge-Kutta formulas of orders 2
and 4, respectively. For stiff ODEs, Matlab has four ODE solvers: ode15s, ode23s, ode23t,
and ode23tb implement the numerical differentiation formulas, a Rosenbrock formula, a
trapezoidal rule using a “free” interpolant, and an implicit Runge-Kutta formula, respec-
tively. According to their documentations, Octave and Scilab solve non-stiff ODEs using
the Adams methods and stiff equations using the backward differentiation formulas. These
are implemented in lsode in Octave and ode in Scilab. The only ODE solver in FreeMat
is ode45 which solves the initial value problem probably by a Runge-Kutta method. It be-
comes clear that all software packages considered have at least one solver. Matlab, Octave,
and Scilab have state-of-the-art variable-order, variable-timestep methods for both non-stiff
and stiff ODEs available, with Matlab’s implementation being the richest and its stiff solvers
being possibly more efficient. FreeMat is clearly significantly weaker than the other packages
in that it does not provide a state-of-the-art ODE solver, particularly not for stiff problems.
Since the ODE capabilities of the packages vary too widely and use very different numerical
methods, a detailed, performance-oriented comparison between them is not practical.

14

Table 2.1: This table shows equivalent commands in Matlab, Octave, FreeMat, and Scilab.
The notation N/A indicates that the specific function does not exist in the respective software
package.

Function Matlab Octave FreeMat Scilab
Basic linear algebra functions:
Determinant det det det det
Matrix inverse inv inv inv inv
Kronecker product kron kron N/A kroneck
Matrix rank rank rank rank rank
Matrix condition number cond cond cond cond
Orthogonal basis orth orth N/A orth
Kernel/nullspace of a matrix null null N/A kernel
Pseudoinverse pinv pinv pinv pinv
Matrix decomposition/factorization functions:
Eigenvalues of a matrix eig eig eig spec
Schur decomposition schur schur N/A schur
Singular value decomposition svd svd svd svd
QR decomposition qr qr qr qr
LU decomposition lu lu lu lu
Cholesky factorization chol chol N/A chol
Iterative solvers for systems of equations:
Conjugate gradient method pcg pcg N/A pcg
GMRES gmres gmres N/A gmres
BiCG-STAB bicgstab bicgstab N/A bicgstab
Sparse matrix functions:
Create sparse matrix sparse sparse sparse sparse
Sparse identity matrix speye speye speye speye
Sparse random matrix sprand sprand sprand sprand
Polynomial, interpolation, and other functions:
Roots of polynomial roots roots roots roots
Linear interpolation interp1 interp1 interplin1 interpln
Cubic spline spline spline N/A splin
Greatest common demoninator gcd gcd N/A gcd
Least common multiple lcm lcm N/A lcm
Basic statistics functions:
Mean mean mean mean mean
Median median median N/A median
Standard deviation std std std st deviation
Variance var var var variance
Covariance covar cov N/A covar

15

3 Complex Operations Test

This section tests the software packages on a classical test problem from partial differential
equations both in terms of performance and memory consumption [1, 3, 4, 6–9]. This paper
differs from similar work such as [6–8]. In [6], only the conjugate gradient method is im-
plemented, and it uses the source code language C; in fact, the focus of [6] is on studying
the performance of the parallel communications library MPI. In [7,8], the studies comparing
Matlab, Octave, FreeMat, and Scilab were run on a personal computer; furthermore, the
present paper extended these to include the conjugate gradient method in FreeMat.

The problem considered in this section can appear in several contexts of undergraduate
classes, namely either as a linear algebra test problem or as an introductory example of
numerical method for partial differential equations. In both cases, students are often required
to write code that solves the overall problem.

3.1 The Test Problem

The Poisson problem with homogeneous Dirichlet boundary conditions is given as

−4u = f in Ω,
u = 0 on ∂Ω.

(3.1)

on a given open region Ω ⊂ R2. Here, ∂Ω denotes the boundary of the domain Ω, and the
Laplace operator is defined as

4u =
∂2u

∂x2
+

∂2u

∂y2
.

We consider the problem on the domain Ω given by the open two-dimensional unit square
Ω = (0, 1)× (0, 1) ⊂ R2. Since u = 0 on the boundary ∂Ω in (3.1), we have a homogeneous
Dirichlet boundary condition. Thus, (3.1) can be restated as

−∂2u

∂x2
− ∂2u

∂y2
= f(x, y) for 0 < x < 1, 0 < y < 1,

u(0, y) = u(x, 0) = u(1, y) = u(x, 1) = 0 for 0 < x < 1, 0 < y < 1,
(3.2)

where the function f is given by

f(x, y) = −2π2 cos(2πx) sin2(πy)− 2π2 sin2(πx) cos(2πy).

The test problem is designed to admit a closed-form solution as the true solution

u(x, y) = sin2(πx) sin2(πy).

Let us define a grid of mesh points Ωh = {(xi, yj) = (ih, jh), i, j = 0, . . . , N + 1} with
uniform mesh width h = 1

N+1
. By applying the second-order finite difference approximation

to the x-derivative at all the interior points of Ωh, we obtain

∂2u

∂x2
(xi, yi) ≈

u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj)

h2
. (3.3)

16

If we also apply this to the y-derivative, we obtain

∂2u

∂y2
(xi, yi) ≈

u(xi, yj−1)− 2u(xi, yj) + u(xi, yj+1)

h2
. (3.4)

Now, we can apply (3.3) and (3.4) to (3.2) and obtain

− u(xi−1, yj)− 2u(xi, yj) + u(xi+1, yj)

h2

− u(xi, yj−1)− 2u(xi, yj) + u(xi, yj+1)

h2
≈ f(xi, yj).

(3.5)

Hence, we are working with the following equations for the approximation ui,j ≈ u(xi, yj):

−ui−1,j − ui,j−1 + 4ui,j − ui+1,j − ui,j+1 = h2fi,j, i, j = 1, . . . , N,
u0,j = ui,0 = uN+1,j = ui,N+1 = 0

(3.6)

The equations in (3.6) can be organized into a linear system Au = b of N2 equations for
the approximations ui,j. Since we are given the boundary values, we can conclude there are
exactly N2 unknowns. In this linear system, we have

A =

S −I
−I S −I

.

−I S −I
−I S

 ∈ RN2×N2

,

where

S =

4 −1
−1 4 −1

.

−1 4 −1
−1 4

 ∈ RN×N and I =

1

1
. . .

1
1

 ∈ RN×N

and the right-hand side vector has components bk = h2fi,j where k = i + (j − 1)N . The
matrix A is symmetric and positive definite [4,9]. This implies that the linear system has a
unique solution and it guarantees that the iterative conjugate gradient method converges.

To create the matrix A, we use the observation that it is given by a sum of two Kronecker
products [4, Section 6.3.3]: Namely, A can be interpreted as the sum

A =

T

T
. . .

T
T

 +

2I −I
−I 2I −I

.

−I 2I −I
−I 2I

 ∈ RN2×N2

,

where

17

T =

2 −1
−1 2 −1

.

−1 2 −1
−1 2

 ∈ RN×N

and I is the N×N identity matrix, and each of the matrices in the sum can be computed by
Kronecker products involving T and I, so that A = I⊗T +T ⊗I. This idea is used to set up
the matrix A in our codes that performs Gaussian elimination to solve the linear system of
equations. To store the matrix A efficiently, all packages provide for a sparse storage mode,
in which only the non-zero entries are stored.

One of the things to consider to confirm the convergence of the finite difference method is
the finite difference error. The finite difference error is defined as the difference between the
true solution u(x, y) and the numerical solution uh defined on the mesh points by uh(xi, yj) =
ui,j. Since the solution u is sufficiently smooth, we expect the finite difference error to
decrease as N gets larger and h = 1

N+1
gets smaller. Specifically, the finite difference theory

predicts that the error will converge like ‖u− uh‖ ≤ C h2, as the mesh width h tends to zero
h → 0, where C is a constant independent of h [2, 5]. For sufficiently small h, we can then
expect that the ratio of errors on consecutively refined meshes behaves like

Ratio =
‖u− u2h‖
‖u− uh‖

≈ C (2h)2

C h2
= 4. (3.7)

Thus, we will print this ratio in the following tables in order to confirm convergence of the
finite difference method. Here, the appropriate norm for the theory of finite differences is
the L∞(Ω) function norm, defined by ‖u− uh‖ = sup(x,y)∈Ω |u(x, y)− uh(x, y)| [2, 5].

3.2 Results

3.2.1 Gaussian Elimination

Figure 3.1 (a) shows the numerical solution of the system solved with a mesh resolution of
32×32. Figure 3.1 (b) shows the error at each mesh point, which is computed by subtracting
the numerical solution uh from the analytical solution u. Notice that the maximum error at
the center. When the mesh resolution is 32× 32, the maximum error in Figure 3.1 (b) that
occurs is approximately 3.0× 10−3.

Now we want to solve the Poisson problem on finer meshes in order to obtain a more
precise solution. The results of this are summarized in Table 3.1, which lists the mesh size
of the discretization N ×N , the dimension of the linear system N2, the norm of the absolute
finite difference error ‖u− uh‖ , and the ratio of the absolute errors. Table 3.1 shows that
the finite difference error converges toward zero and the ratio of the consecutively refined
meshes is approaching four. Because the finite difference error tends to zero and the ratio
behaves as predicted by (3.7), this shows that our code is working correctly.

Since the easiest way to solve the linear system Au = b is by Gaussian elimination, we
begin by solving the linear system arising from the Poisson problem by this method in each

18

(a) (b)

Figure 3.1: Mesh plots for N = 32 in Matlab (a) of the numerical solution and (b) of the
numerical error.

of the different software packages. Here we use the sparse storage mode in all packages, in
which only non-zero entries are stored. Table 3.2 lists the mesh resolution N , the dimension
of the linear system, and the observed wall clock time is HH:MM:SS for the different software
packages. By looking at Table 3.2, it can be concluded that the Gaussian method built into
the backslash operator successfully solves the problem up to a mesh resolution of 4,096×4,096
in both Matlab and Octave, before running out of memory. The fundamental reason for
running out of memory is that Gaussian elimination turns most of the zero entries in A
to non-zero numbers, thus continuously increasing the memory requirements during the
algorithm. The Gaussian elimination method built into the backslash operator in FreeMat
successfully solves the problem up to a mesh resolution of 2,048×2,048. The wall clock results
show that Matlab was faster than Octave, but both could solve the same mesh resolutions.

Table 3.1: Convergence results for the finite difference method. The table lists the mesh
resolution N , the number of degrees of freedom N2, the finite difference norm ‖u− uh‖ , and
the ratio of consecutive errors.

N ×N N2 ‖u− uh‖ Ratio
32× 32 1,024 3.0128e-3 N/A
64× 64 4,096 7.7811e-4 3.8719

128× 128 16,384 1.9765e-4 3.9368
256× 128 65,536 4.9797e-5 3.9690
512× 512 262,144 1.2494e-5 3.9856

1,024× 1,024 1,048,576 3.1266e-6 3.9961
2,048× 2,048 4,194,304 7.8019e-7 4.0075
4,096× 4,096 16,777,216 1.9353e-7 4.0313
8,192× 8,192 67,108,864 4.7400e-8 4.0829

19

Table 3.2: Performance comparison for Gaussian elimination. The table lists the mesh
resolution N , the number of degrees of freedom N2, and the observed wall clock time in
HH:MM:SS for Matlab, Octave, FreeMat, and Scilab. The abbreviation O.M. stands for
“out of memory.”

N ×N N2 Matlab Octave FreeMat Scilab
32× 32 1,024 <00:00:01 <00:00:01 <00:00:01 <00:00:01
64× 64 4,096 <00:00:01 <00:00:01 <00:00:01 <00:00:01

128× 128 16,384 <00:00:01 <00:00:01 <00:00:01 00:00:11
256× 256 65,536 <00:00:01 <00:00:01 00:00:04 00:03:19
512× 512 262,144 00:00:01 00:00:02 00:00:28 00:39:04

1,024× 1,024 1,048,576 00:00:31 00:00:16 00:03:15 08:32:20
2,048× 2,048 4,194,304 00:00:27 00:01:57 00:14:29 O.M.
4,096× 4,096 16,777,216 00:02:07 00:15:37 O.M. O.M.
8,192× 8,192 67,108,864 O.M. O.M. O.M. O.M.

In turn, Octave was faster and was able to solve a higher mesh resolution than both FreeMat
and Scilab. Scilab was the slowest and could not solve the same mesh resolution as the other
packages. The Scilab code used to create the tables utilizes the command stacksize("max")

to allow it to use all available memory when running the code; the other packages have
this behavior as default without given an explicit command. In fact, without the use of
stacksize("max"), Scilab can only solve the problem up to 256 × 256 and runs out of
memory already for 512× 512 [3].

3.2.2 Conjugate Gradient Method

Now, we use the conjugate gradient method to solve the Poisson problem. This iterative
method is an alternative to using Gaussian elimination to solve a linear system. We use the
zero vector as the initial guess and a tolerance of 10−6 on the relative residual of the iterates.
To solve the problem for larger meshes, we use a so-called matrix-free implementation of the
method to save a significant amount of memory. This implementation takes advantage of
the fact that the conjugate gradient method does not need the system matrix A itself, but
only its action on a vector in a matrix-vector product. Hence, we do not set up A at all,
but provide a function that returns v = Au for an input vector u. By saving the memory
for A, we expect to solve the problem for larger meshes. Table 3.3 lists the mesh resolution
N × N , the degree of freedom N2, the number of iterations taken by the iteration method
to converge (iter), and the observed wall clock times for the different software packages.
All packages gives the same number of iterations and produced identical results to within
round-off.

Table 3.3 shows that the conjugate gradient method is indeed able to solve for mesh
resolutions as large, or larger, than those solved using Gaussian elimination. The matrix-
free implementation of the conjugate gradient method allows us to solve a mesh resolution

20

Table 3.3: Performance comparison for the conjugate gradient method. The table lists the
mesh resolution N , the number of degrees of freedom N2, the number of iterations (iter)
indicates the number of iterations needed to solve the linear system of equations, and the
observed wall clock times in HH:MM:SS for Matlab, Octave, FreeMat, and Scilab. The
abbreviation E.T.R stands for “excessive time requirement.”

N ×N N2 iter Matlab Octave FreeMat Scilab
32× 32 1,024 48 <00:00:01 <00:00:01 <00:00:01 <00:00:01
64× 64 4,096 96 <00:00:01 <00:00:01 00:00:03 <00:00:01

128× 128 16,384 128 <00:00:01 <00:00:01 00:00:23 <00:00:01
256× 256 65,536 387 00:00:02 00:00:03 00:03:07 00:00:04
512× 512 262,144 783 00:00:40 00:00:27 00:15:21 00:00:36

1,024× 1,024 1,048,576 1,581 00:05:47 00:04:23 03:24:25 00:06:57
2,048× 2,048 4,194,304 3,192 00:50:26 00:40:07 03:52:24 00:48:12
4,096× 4,096 16,777,216 6,452 07:46:24 05:52:11 E.T.R 06:03:58
8,192× 8,192 67,108,864 13,033 69:42:45 40:44:32 E.T.R O.M.

up to 8,192× 8,192 for Matlab and Octave. With the matrix-free implementation, Scilab is
able to solve the system for a resolution up to 4,096× 4,096. In FreeMat, we wrote our own
cg function because it does not have a built-in function and we were able to solve the system
for a resolution of 2,048×2,048, before the time became excessive. The wall clock times show
that Octave was slightly faster than Matlab. The results also show that FreeMat was slower
than Octave, Matlab, and Scilab, and was not able to solve as large of a system before
the time required to solve the problem became excessively long. Scilab performed better
than FreeMat and was able to solve the system comparably as fast as Octave and Matlab.
However, the conjugate gradient method in Scilab ran out of memory for 8,192 × 8,192,
despite the use of stacksize("max").

4 Conclusions

We tested the four software packages Matlab, Octave, FreeMat, and Scilab for two criteria:
usability and performance. In Section 2, we analyzed the software packages’ usability by
comparing the syntax and functions to Matlab. The more similar a software package was to
Matlab, the more usable it was. Octave was determined to be the most usable, because it
uses the same commands and syntax as Matlab for all of our tests. Scilab exhibited the most
differences in both syntax and commands. For example, instead of using the eig function
like Matlab, Octave, and FreeMat to compute eigenvalues, Scilab uses a function called spec.

In Section 3, we tested the performance of the software packages by using both Gaussian
elimination and the conjugate gradient method to solve the linear system of equations result-
ing from the finite difference discretization of the Poisson equation in two spatial dimensions.

• The results from Table 3.2 reveal that Matlab performed the best when solving the

21

system via Gaussian elimination. Octave was significantly slower than Matlab for large
problems, but performed the best of all the free software packages tested and was able
to solve the same size systems as Matlab, albeit somewhat slower. Scilab’s performance
was the weakest and was much slower, compared to Matlab and Octave.

• The results from Table 3.3 reveal that Matlab, Octave, and Scilab were all able to
solve the system comparably fast, but Scilab was not able to solve as large a system as
Octave or Matlab. FreeMat was the weakest and could not solve the system for mesh
resolutions larger than 2,048× 2,048 without requiring an excessive amount of time.

Comparing Tables 3.2 and 3.3, we find that for large sparse linear systems the conjugate gra-
dient method can solve larger problems than Gaussian elimination, but Gaussian elimination
is generally faster when it does work, potentially by orders of magnitude. Among the three
free numerical computation packages, Octave is the most powerful one, even outperforming
Matlab sometimes.

After considering usability and performance, it can be concluded that Octave is the most
powerful of the free numerical computation packages, and the easiest to use.

Acknowledgments

The author acknowledges support as undergraduate assistant from the REU Site: Interdisci-
plinary Program in High Performance Computing (www.umbc.edu/hpcreu) at the University
of Maryland, Baltimore County (UMBC) in Summer 2011. Furthermore, the author would
like to thank Dr. Matthias K. Gobbert (gobbert@umbc.edu, director of the REU Site) for
providing the research opportunity, guidance, and support. The hardware used in the com-
putational studies is part of the UMBC High Performance Computing Facility (HPCF). The
facility is supported by the U.S. National Science Foundation through the MRI program
(grant no. CNS–0821258) and the SCREMS program (grant no. DMS–0821311), with ad-
ditional substantial support from UMBC. See www.umbc.edu/hpcf for more information on
HPCF and the projects using its resources.

References

[1] K. P. Allen, Efficient parallel computing for solving linear systems of equations, UMBC
Review: Journal of Undergraduate Research and Creative Works, 5 (2004), pp. 8–17.

[2] D. Braess, Finite Elements, Cambridge University Press, third ed., 2007.

[3] M. Brewster and M. K. Gobbert, A comparative evaluation of Matlab, Octave,
FreeMat, and Scilab on tara, Tech. Rep. HPCF–2011–10, UMBC High Performance Com-
puting Facility, University of Maryland, Baltimore County, 2011.

[4] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

22

[5] A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cam-
bridge Texts in Applied Mathematics, Cambridge University Press, second ed., 2009.

[6] A. M. Raim and M. K. Gobbert, Parallel performance studies for an elliptic test
problem on the cluster tara, Tech. Rep. HPCF–2010–2, UMBC High Performance Com-
puting Facility, University of Maryland, Baltimore County, 2010.

[7] N. Sharma, A comparative study of several numerical computational packages. M.S. the-
sis, Department of Mathematics and Statistics, University of Maryland, Baltimore
County, 2010.

[8] N. Sharma and M. K. Gobbert, A comparative evaluation of Matlab, Octave,
FreeMat, and Scilab for research and teaching, Tech. Rep. HPCF–2010–7, UMBC High
Performance Computing Facility, University of Maryland, Baltimore County, 2010.

[9] D. S. Watkins, Fundamentals of Matrix Computations, Wiley, third ed., 2010.

23

