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Abstract

With the rapid growth of Earth-observation datasets, geospatial foundation models (FMs)
provide a scalable approach to learn transferable features across diverse satellite sensor data.
However, their cross-sensor adaptation ability needs more exploration. To study this issue, we
present a benchmarking study of SatVision-TOA, an FM pre-trained on over 20 years of
MODIS data, when adapted to the GOES NOAA ABI sensor for four downstream cloud prop-
erties: cloud mask, cloud phase (segmentation), and cloud optical depth (COD) and cloud
particle size (CPS) (regression). We propose a multi-task learning fine-tuning pipeline with
a U-Net-based decoder and a lightweight preprocessor to address band-mismatch handling (14
MODIS bands for pre-training vs. 16 ABI bands for fine-tuning). To evaluate our pipeline, we
benchmark fine-tuned models against from-scratch baselines, evaluate full fine-tuning
(FFT) versus parameter-efficient fine-tuning (PEFT) methods (LoRA, VPT), and com-
pare 14-band versus 16-band inputs. Our experiments show that multi-task learning improves
efficiency and predictive quality in both fine-tuned and from-scratch settings. For the other four
comparisons (FT vs. from-scratch, FFT vs. PEFT, 14-bands vs. 16-bands and loss functions),
the results are mixed and there is no setup that always performs the best for all segmentation
and regression tasks.
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1 Introduction

Cloud property retrieval is essential for understanding Earth’s climate, energy balance, and hydro-
logical cycle [1]. Satellites provide the primary source of global cloud observations, and retrieval
algorithms convert remote sensing measurements into key cloud properties such as cloud mask
(cloudy or not cloudy), cloud phase, top height, and optical thickness.

In recent years, the rapid growth of Earth observation data has motivated the exploration
of Foundation Models (FMs) as a new technique to effectively leverage these large-scale datasets.
Often trained with self-supervised learning, FMs are powerful tools for Earth science remote sensing
for their ability to learn generalizable representations from large-scale satellite imagery [2]. During
pre-training on vast datasets, vision foundation models detect spatial patterns and learn to encode
meaningful feature representations. Vision transformers use attention mechanisms to capture long-
range dependencies and global context.
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The development of FMs involves two key stages: pre-training and fine-tuning. In the pre-
training stage, models are trained on large volumes of satellite data to learn spatial and spectral
features; existing studies on geospatial FMs have primarily focused on this stage [3]. During
fine-tuning, the knowledge acquired during pre-training is transferred to downstream tasks such as
object detection or semantic segmentation. The typical fine-tuning paradigm places the pre-trained
FM as the encoder, followed by an optional decoder and a task-specific head. This approach has
been shown to improve performance on downstream tasks compared to training from scratch [2].
While pre-training is computationally expensive, fine-tuning enables the reuse of learned represen-
tations across multiple tasks, thereby improving efficiency and generalization.

Despite recent advances, current geospatial FMs lack systematic development toward general-
ization across diverse downstream tasks. Unlike regular computer-vision problems with natural
images, which typically have consistent RGB channels, Earth observation data vary substantially
across sensors in terms of spectral bands, modalities, and resolution. Such diversity leads to dis-
crepancies between the data used for FM pre-training and the datasets required for fine-tuning
specific applications. Adapting a geospatial FM to a dataset from a different satellite sensor thus
needs more exploration.

In this work, we conduct a benchmarking study to evaluate how a geospatial FM performs
in cloud property retrieval when fine-tuned on data from an unseen satellite sensor. Specifically,
this work focuses on fine-tuning strategies for SatVision-TOA [4], a recently developed geospatial
FM pre-trained on 20 years of MODIS observations, and adapts it for cloud property retrieval
from a different satellite sensor ABI. A particular challenge arises from the mismatch in spectral
bands when adapting SatVision-TOA to data from a different satellite sensor than its pre-training
source: SatVision-TOA was pre-trained on 14 selected bands of the Moderate-resolution Imaging
Spectroradiometer (MODIS), while Advanced Baseline Imager (ABI) provides 16 spectral bands.
Previous work [4] addressed this mismatch by selecting the 14 ABI bands most similar in wavelength
to the MODIS bands, matching the model’s pre-trained input size, which yielded promising results
in image reconstruction and 3D cloud retrieval. In contrast, we explore whether incorporating all
16 ABI bands through a lightweight preprocessing module can better exploit the additional spectral
information, despite the FM’s original 14-band input.

We assess fine-tuning approaches across four downstream tasks derived from ABI satellite data:
cloud mask and cloud phase segmentation, and cloud optical depth (COD) and cloud particle
size (CPS) regression. Our study examines parameter-efficient techniques to address the size of
the FM, compares multi-task and single-task setups, and benchmarks fine-tuned models against
models trained from scratch to evaluate performance and efficiency. This work makes the following
key contributions:

• Benchmarking Fine-tuning Strategies: We conduct a comprehensive benchmarking
study of fine-tuning strategies for SatVision-TOA, using full fine-tuning, alongside parameter-
efficient fine-tuning methods including Low-Rank Adaptation [5], and Visual Prompt Tun-
ing [6], identifying the most memory-efficient and performance-effective strategies across two
classification and two regression tasks. In addition, we compare performance when using
14 bands and 16 spectral bands, highlighting the trade-offs in leveraging additional spectral
bands.

• Developing a Multi-task Learning Fine-Tuning Pipeline: We design and implement
a multi-task fine-tuning pipeline for cloud property retrieval for optimization across multiple
related tasks. Our pipeline leverages hierarchical classification to exploit interdependencies
among cloud properties, improving predictive accuracy compared to independent single-task
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training. This framework demonstrates enhanced efficiency, scalability, and adaptability of
geospatial foundation models to complex downstream retrieval problems.

2 Related Work

Prior work has benchmarked foundation models on downstream tasks and surveyed their design
and applications, including over fifty remote sensing FMs discussed in [2].

Six models pre-trained on satellite imagery were benchmarked in [7], trained with full fine-
tuning. They reported that FMs exceed or meet baseline performance for tasks like segmentation
and classification, but struggle more with change detection and oriented object detection. This
work is also relevant as they worked with heterogeneous datasets, where the data used for fine-
tuning is different from the data used during pre-training. Finally, this work showed the potential
for multi-task learning to be used simultaneously with fine-tuning – they found success with multi-
task pre-training (MTP), where the encoder outputs different feature representations for each task.
Our work performs similar benchmarking with SatVision-TOA. By evaluating performance on
two classification and two regression tasks, it is valuable to know whether similar task-related
discrepancies between performances can be found.

Rotich et al. studied multi-task pre-training where the encoder is designed specifically for a
downstream multi-task model [7]. In comparison, SatVision-TOA outputs a single feature repre-
sentation, which we use to achieve promising multi-task downstream performance. Li et al. found
success using an end-to-end deep learning model with multi-task learning to predict cloud mask,
cloud phase (classification tasks), and COT (a regression task) [8]. Compared with baseline meth-
ods, their model MT-HCCAR, performed optimally across a variety of datasets and metrics. We
also predict cloud mask and phase with two regression tasks using a multi-task model, building off
of the pre-trained knowledge of the SatVision-TOA encoder.

In contrast to full fine-tuning, parameter-efficient fine-tuning (PEFT) methods leave much of the
FM frozen during training, focusing on a specific subset of parameters. These strategies are often
competitive with full fine-tuning, while requiring much less computational resources. Numerous
different strategies have been used for fine-tuning computer vision models, surveyed in [9], and LoRA
proved to be particularly effective among strategies tested with geospatial foundation models [10].
We evaluate how PEFT can be leveraged for this particular encoder.

The Swin transformer [11], which is the architecture of the FM SatVision-TOA, has been used
with the U-Net in previous work, such as for classification with medium-resolution satellite remote
sensing images [12]. Shortly thereafter, much research discussed the use of the Swin transformer
with U-Net for medical image segmentation [13–17]. This architecture has even been used for
single-task pavement crack detection [18]. More recently, the study in [19] used Swin-U-Net for
multi-task learning for segmentation, image reconstruction, and classification tasks for medical
images. This approach used U-Net decoders connected to a Swin encoder for the segmentation and
reconstruction tasks, while the classification task had a simpler classification head composed of a
global average pooling layer and a linear layer.

Our work builds on the current research by leveraging the use of a pre-trained foundation
model for the Swin transformer in the Swin-U-Net framework. By positioning SatVision-TOA
as the encoder, we use a single decoder connected to lightweight task heads to predict four cloud
variables at once. Where [19] achieved promising results for segmentation and image reconstruction
tasks, we study the compatibility of this architecture with a more complex multi-task environment,
extending the work to a setting with two segmentation and two regression tasks.
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3 Dataset

The source of the dataset used for training and evaluation is GOES-18 Advanced Baseline Imager
(ABI) observations, accessed via the National Oceanic and Atmospheric Administration and Ama-
zon Web Services’ Open Data Registry (NOAA’s AWS) (noaa-goes18 bucket) [20]. The ABI sensor
provides full-disk coverage every 15 minutes from a geostationary orbit, capturing 16 spectral bands
at native resolutions of 0.5 km (bands 1–2), 1 km (bands 3–6), and 2 km (bands 7–16) [21]. Our
model inputs are from Level-1b (L1b) top-of-atmosphere radiances for all 16 spectral bands, with
corresponding Level-2 (L2) cloud properties from the NOAA ABI Cloud Algorithm as model ground
truth. L1b and L2 files were temporally matched to ensure concurrent L1b and L2 observations.

For model training, the dataset consists of 15000 image chips (128× 128 pixels) collected from
the source data spanning March to June in 2023. Full-disk ABI data were divided into 128 ×
128 pixel blocks at 2 km resolution (native for L2 products; L1b bands were resampled by cubic
interpolation to 2 km). Our preprocessing pipeline follows established practices from SatVison-
TOA [4], including: 1) geolocation-based solar zenith angle filtering excluded blocks with angles
> 72 (limiting atmospheric path distortion). 2) converting visible/NIR bands to top-of-atmosphere
(TOA) reflectance and thermal bands to brightness temperature (BT). 3) using a min-max scaler
for data normalization. The generation process is illustrated as Figure 3.1.

Figure 3.1: Data generation process for a single timestamp (May 25, 2023, 17:40:22 UTC), illus-
trated using Channel 01 of the Level-1B radiance data. The workflow includes: (1) Read: reading
the raw data and splitting it into 128 × 128 image chips; (2) Resize: resizing by interpolation if
the spatial resolution is not 2 km; (3) Filter: filtering by discarding chips with NaN values or SZA
> 72; and (4) Scale: scaling by converting to TOA reflectance or brightness temperature (BT),
followed by normalization.

To adapt the pre-trained FM SatVision-TOA to our target task, the first step is to characterize
the spectral differences between the pre-training sensor and the fine-tuning sensor. As noted in the

4



introduction, SatVison-TOA FM was pre-trained on a subset of 14 spectral bands selected out of all
36 bands from MODIS [4], whereas our ABI dataset for fine-tuning contains full 16 bands. Table
3.1 details the alignment between these instruments. While 14 ABI bands have direct spectral
counterparts in the MODIS configuration, the ABI sensor includes two distinct bands—Band 8
(6.19µm) and Band 13 (10.35µm)—that are absent in the MODIS subset for pre-training. These
unmatched bands represent a shift in feature space that our fine-tuning strategy must accommodate.

Table 3.1: Spectral band comparison between the target sensor (ABI) and the source foundation
model sensor (MODIS). The SatVision-TOA model was pre-trained on 14 MODIS bands. Two
ABI bands (08 and 13) have no direct equivalent in the pre-training data. WL (µm) stands for
central wavelength in micrometer.

ABI (Fine-Tuning) MODIS (Pre-Training)

Index Band WL (µm) Description Band WL (µm) Description

1 2 0.64 Red 1 0.659 Land/Cloud/Aerosols Boundaries
2 3 0.864 Vegetation 2 0.865 Land/Cloud/Aerosols Boundaries
3 1 0.47 Blue 3 0.47 Land/Cloud/Aerosols Properties
4 5 1.61 Snow/Ice 6 1.64 Land/Cloud/Aerosols Properties
5 6 2.24 Cloud Particle Size 7 2.13 Land/Cloud/Aerosols Boundaries
6 7 3.90 Shortwave Window 21 3.96 Surface/Cloud Temperature
7 4 1.373 Cirrus 26 1.375 Cirrus Clouds, Water Vapor
8 8 6.19 Upper-level Water Vapor – No Equivalent –
9 9 6.93 Mid-level Water Vapor 27 6.72 Cirrus Clouds, Water Vapor
10 10 7.34 Lower/Mid-level Water Vapor 28 7.33 Cirrus Clouds, Water Vapor
11 11 8.44 Cloud-top Phase 29 8.55 Cloud Properties
12 12 9.61 Ozone 30 9.73 Ozone
13 13 10.33 Clean IR Longwave – No Equivalent –
14 14 11.21 IR Longwave 31 11.03 Surface/Cloud Temperature
15 15 12.29 Dirty IR Longwave 32 12.02 Surface/Cloud Temperature
16 16 13.28 CO2 33 13.34 Cloud Top Altitude

4 Methodology

First, we will introduce some of the modules that are used in either the models from-scratch and/or
the fine-tuning models. We will introduce our multi-task model architectures, strategies used for
fine-tuning, and finally the loss functions and metrics used to evaluate the models.

4.1 Machine Learning Frameworks

Machine learning algorithms are able to capture nonlinear relationships in high-dimensional image
data. Two approaches with image data may be taken, per-pixel analysis and whole image segmen-
tation/regression. In pixel-by-pixel learning, the 16 spectral bands of a pixel are used as input to
predict the four cloud properties. Several machine learning methods that take a one-dimensional
vector as input are suited for this task, such as multi-layer perceptrons (MLPs), random forests,
and histogram gradient boosting. These methods are lightweight and relatively simple, but may
still provide sufficiently accurate results. However, this research primarily works with spatial mod-
els that consider neighboring pixels when determining a pixel’s properties. These models use the
entire image patches, represented as (128, 128, 16) tensors, as input.
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4.1.1 2D Convolution

Convolutional layers form the basis of spatially-aware models, extracting features by sliding small
kernels (e.g., 3×3) across an image with N channels and computing weighted sums. This produces
feature maps that capture rich spatial patterns. Applying multiple kernels yields stacked feature
maps, which can be further processed with activations, normalization, pooling, and dropout to
enhance nonlinearity and reduce overfitting. Compared to fully connected layers, convolutions
handle arbitrary input sizes more efficiently, with faster inference and improved accuracy [22].
Networks built from stacked convolutions, Convolutional Neural Networks (CNNs), are widely
used for image analysis across domains, including atmospheric science.

4.1.2 Encoder Architecture: SwinV2 Transformer

The foundation model encoder we use for fine-tuning, SatVision-TOA, utilizes the hierarchical
SwinV2 Transformer architecture [11]. Swin stands for shifted windows – the input image is di-
vided into non-overlapping windows, and self-attention is performed within each window. Between
consecutive attention layers, these windows are shifted. The hierarchical aspect of this architecture
refers to the stages of the transformer, which output multi-resolution feature maps that can be
leveraged alongside the final output of the transformer. We leverage the different feature maps in
conjunction with decoder structures like the U-Net.

4.1.3 U-Net

Consisting of an encoder, bottleneck, and decoder, the U-Net is a convolutional neural network
architecture designed for pixel-wise prediction tasks. The encoder downsamples an input through
repeated convolutions. Before the decoder, the bottleneck performs two final convolutions. During
this process, the spatial information in the data decreases while feature information grows. At the
bottleneck, the model should theoretically have detected many high-level features.

Finally, features are upsampled through transposed convolutions in the decoder. The key detail
of the U-Net is its use of skip-connections. In between each upsampling step, the corresponding
feature map from the encoder is stacked onto the current feature map. The motivation for this
design choice is that the feature maps are at their smallest spatial size at the bottleneck due to the
repeated convolutions of the encoder. Skip connections from earlier stages of the encoder provide
the missing spatial information. With this architecture, the model learns from the features at every
level. Fine-tuned models used the U-Net with SatVision-TOA as the encoder, whereas the models
trained from scratch used ResNet for the encoder.

4.1.4 Fine-tuning Strategy

Full fine-tuning, where all of the FM’s parameters are trainable, provides performance advantages
but is computationally expensive. In PEFT, much of the foundation model encoder is left frozen
and only a smaller subset of encoder parameters is trained. Often, a much smaller set of new
parameters might be introduced to guide the model’s learning.

VPT is a parameter-efficient fine-tuning method inspired by prompt tuning for LLMs, where
the input to the pre-trained model is wrapped with learnable visual prompts. For vision trans-
former models, the image patches are wrapped with these prompts. In VPT-Shallow, prompts are
added only to the initial patch representations, whereas VPT-Deep adds prompts at multiple layers
throughout the encoder.
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LoRA is an alternative method in which the pre-trained transformer weights are frozen, and
trainable low-rank matrices are inserted to approximate the updates. Conceptually, LoRA relies
upon the hypothesis that updates to weight matrices during training have low intrinsic dimension
during fine-tuning adaptation. Instead of updating the full-rank weight matrices, the low-rank
matrices A and B are trained:

Wupdated = Wfrozen +
(α
r

)
AB.

Weight matrices in the FM’s layers typically have full rank. A lower rank means there are
fewer trainable parameters, resulting in a more computationally efficient method compared to full
fine-tuning. For instance, if the original weight matrix is n × n, A is n × r and B is r × n, where
r << n. This reduces the trainable parameters from n2 to 2nr.

4.2 Model Descriptions

The from-scratch multi-task model uses four U-Net modules; one per each task. Each U-Net
uses the Resnet34 encoder, a pre-trained model on general image classification with around 21m
parameters. Compared to working with large foundation models, this lightweight encoder allows
for greater flexibility when designing and training models.

On the other hand, the fine-tuned multi-task model uses a larger U-Net, connected to SatVision-
TOA as the encoder. SatVision-TOA is a 3 billion parameter foundation model pre-trained on
MODIS data with masked-image-modeling. This pre-trained knowledge offers a unique advantage
compared to ResNet’s general classification training.

Both multi-task models set the loss to be a weighted sum of the four task losses: loss =
λ1CE + λ2 phase loss + λ3MSECOD + λ4MSECPS .

4.2.1 Multi-task Fine-tuned Model

Figure 4.1 shows the architecture for the multi-task model built off of the SatVision-TOA encoder.
The U-Net decoder reconstructs higher-resolution representations of the data while preserving fea-
ture information from the encoder for accurate cloud attribute prediction. The U-Net’s complexity
makes it a good choice for a shared decoder in a multi-task model. Using information from each
stage of the FM encoder, the decoder learns robust representations of the feature data that can be
used for all four lightweight task heads, which are convolutional layers.

The logits from the cloud mask prediction are appended to the decoder outputs used for the
prediction of the other three cloud properties.

4.2.2 From Scratch Multi-task Model Architecture

Among the models trained from scratch, the Multi-task model as in Figure 4.2 demonstrated the
best overall performance. It begins with a single convolutional layer that functions as an encoder,
extracting shared spatial features while progressively increasing channel depth in subsequent convo-
lutions. The initial encoder feature map is then passed through four separate U-Net branches, each
dedicated to one of the target properties. To enhance predictive consistency, the cloud mask logit
matrix is appended to the output feature maps of the other three properties, under the assumption
that when the cloud mask equals zero (indicating no cloud), the remaining properties should also
be zero. Finally, a single convolutional layer serves as the decoder, enabling the cloud mask to
exert a more direct influence on the predictions of cloud phase, COD, and CPS.
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Figure 4.1: Fine-tuned Multi-task Model.

Figure 4.2: Multi-task Model from Scratch.

4.3 Loss Functions

4.3.1 Cross Entropy Loss and Focal Loss

Cross Entropy (CE) Loss, also known as Logarithmic Loss, is the standard loss function for classi-
fication tasks that output a discrete probability distribution for a given input [23].

The main drawback of CE Loss is its limited ability to handle imbalanced class data. Focal Cross
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Entropy (FCE) loss is a variant of CE that is theoretically more suited for the imbalanced Cloud
Mask and Cloud Phase data. Focal loss addresses class imbalance in the dataset by down-weighting
easy predictions, CE loss is modified via multiplication by (1− p)γ .

4.3.2 Dice Loss

The Dice-Sørensen coefficient (DSC) was introduced in two independent papers as a statistic used
to gauge the similarity of two samples [24,25].

The equation for dice loss is 1 - DSC. Considering P to be the model’s segmentation prediction
and G the ground truth,

DSC = 2
|P ∩G|
|P |+ |G|

Dice loss is commonly used for segmentation tasks as it directly considers the overlap between
the model’s prediction and the ground truth, rather than treating each pixel independently as in
CE loss. This makes it a natural choice for segmentation: the dice coefficient is a standard method
of evaluation for medical image segmentation [26].

Dice loss can be considered unstable – for instance, the loss gradient is only zero when there is
zero overlap between the prediction and ground truth, a counterintuitive behavior [26]. Combining
Dice loss with FCE or CE loss allows for a balanced alternative that still provides some of the
advantages that dice loss provides [27,28].

4.3.3 MSE Loss

Mean squared error is a common loss function for regression tasks. Compared to Mean Absolute
Error, MSE trades bias for low variance by penalizing drastically wrong projections more heavily.
Ultimately, MSE rewards predictions that are in the general vicinity of the target while being very
stable.

4.4 Performance Evaluation Metrics

4.4.1 Mean Intersection Over Union (mIOU)

Since pixel accuracy can be misleading for tasks with imbalanced data, we evaluate our models’
performance on classification tasks with (unweighted) mIOU. For a single class a, we consider the
overlap between what is predicted to be in class a and what is not predicted to be class a.

mIOU evaluates the model’s ability to segment the image into meaningful regions, which allows
us to evaluate whether the model is capable of identifying different cloud structures.

4.4.2 R2 Score

Also known as the coefficient of determination, the R2 score is a simple way to evaluate a regression
model. R2 score lies within (−∞, 1]. If a regression model fits perfectly, MSE is 0 and R2 = 1. On
the other hand if R2 = 0, the model is as effective as predicting the mean each time.

5 Experiments

In this section, we first compare the best overall multi-task and individual models across the fine-
tuned models and models designed from scratch, displaying the metrics in Section 4.4. Following
this, we display results to discuss the following topics: 1) Fine-tuned vs. from-scratch for cloud
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property retrieval. 2) Comparison of full-finetuning and parameter-efficient fine-tuning strategies.
3) Using full 14-bands vs. selected 16-bands for fine-tuning. 4) Hyperparameter tuning of from-
scratch model. 5) Loss weights tuning for both fine-tuned and from-scratch models.

As discussed in Section 4.2, both multi-task models leverage the U-Net decoder. The fine-tuned
model uses one large U-Net that positions SatVision-TOA (3B parameters) as the encoder, whereas
the model trained from scratch uses four smaller U-Nets, one per task. The hyperparameters of
fine-tuning and training from scratch models are in Table 5.1. All fine-tuned results besides the

Table 5.1: Multi-task common hyper-parameters.

Images 14973
Train/Validation/Test Split 80/10/10
Optimizer Adam
Batch size 128
Learning rate .00002
Learning rate scheduler Patience=3, Factor=.5
Epochs 100
Loss Weighted sum of individual losses

single-task cloud mask model, which was trained with LoRA, are trained with full fine-tuning.
Single-task fine-tuned models used the following architecture, with only the regression tasks using
the preprocessor: preprocessor → encoder → fully convolutional decoder → single convolutional
layer → prediction.

5.1 Overall Comparison between Fine-Tuning and From-Scratch Models

Table 5.2 compares fine-tuned models with models trained from scratch. First, considering the
single-task models, the fine-tuning models and the models from scratch are very competitive —
fine-tuned single-task models obtain the best results for cloud phase and cloud optical depth, while
the baseline models from scratch excel with cloud mask and cloud particle size. The models trained
from scratch take significantly less time to train, however, which highlights the drawbacks of fine-
tuning with a particularly large foundation model.

The multi-task model from scratch outperformed its fine-tuned counterpart, and multi-task
learning improves the predictions of from-scratch models across all tasks. The fine-tuned multi-task
model also sees significant gains, especially for cloud mask and CPS, where the single-task fine-
tuned model underperformed relative to the from-scratch baseline. Given the high computational
cost of training large foundation model encoders, multi-task learning is especially advantageous.
Instead of training single-task models for each task, some of which take nearly two hours to train,
a single multi-task model is trained for all four tasks in under 2.5 hours. This approach offers a
much more efficient use of time and computation. Moreover, multi-task learning capitalizes on the
expressive capacity of the large encoder, effectively leveraging shared representations across diverse
cloud prediction tasks.

While fine-tuned models are still generally competitive, the models from scratch perform better
in many cases, and are much more pragmatic to train. Future work could study how the different
aspects of the encoder affect performance results. For instance, it is possible that the sheer size of the
FM used (3B parameters) may have affected the ability of the model to make generalizations. Fine-
tuning smaller variants of SatVision, such as SatVision-base (84.5M parameters) and SatVision-huge
(695.3M parameters), could highlight the trade-offs between model size, performance, and training
efficiency.
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Table 5.2: Performance of multi-task and individual models on cloud attribute prediction.

Model Task mIOU Task R2 Train
Time

Multi-task Models
Fine Tuned MT Mask 0.895 COD 0.762 2:30:07

Phase 0.701 CPS 0.793
From Scratch MT Mask 0.909 COD 0.775 45:59

Phase 0.700 CPS 0.786

Individual Models: Classification
Fine Tuned Mask 0.838 1:46:21
Fine Tuned Phase 0.713 1:57:28
Scratch U-Net Mask 0.896 19:47
Scratch U-Net Phase 0.664 20:18

Individual Models: Regression
Fine Tuned COD 0.754 1:51:52
Fine Tuned CPS 0.680 1:41:11
Scratch U-Net COD 0.717 17:07
Scratch U-Net CPS 0.738 17:00

In summary, by comparing FT and from-scratch, in single-task settings, fine-tuning excels on
phase and COD, whereas from-scratch U-Nets lead on mask and CPS. In multi-task settings,
from-scratch baselines are better at most tasks, which indicates the multi-task FT pipeline might
need more hyper-parameter tuning. Figure 5.1 presents example predictions from the models for a
randomly selected image chip in the test set.

5.2 Benchmarking PEFT Fine-Tuning Strategies

This section benchmarks parameter-efficient fine-tuning (PEFT) methods against full fine-tuning
(FFT), and the selection of loss functions. PEFT methods aim to reduce computational and
memory costs by updating only a subset of parameters while maintaining competitive performance
compared to FFT [29]. Table 5.3 summarizes the best results from each strategy across tasks. In
further sections, we discuss the hyperparameters that were adjusted for the fine-tuning strategies.

5.2.1 Overall Comparison of FFT, LoRA, VPT

In Table 5.3, we consider the best performance of each training strategy for each individual task.
Overall, while FFT achieves the strongest performance, LoRA narrows the gap substantially while
reducing training time, and VPT underperformed compared to full fine-tuning and LoRA on metrics
with training time significantly reduced. LoRA struggles to catch up with full fine-tuning when it
comes to Optical Depth and Cloud Phase, but produces competitive results for Particle Size and
Cloud Mask.

In the following subsections, we describe how LoRA and VPT were implemented with the
transformer-based FM encoder and examine the impact of hyperparameter tuning. Low-Rank
Adaptation updates model weights deeper in the encoder compared to VPT, where prompts are
only incorporated at the first transformer layer. With this in addition to hyperparameters such as
both rank and α to adjust, LoRA was more flexible to be experimented with for each task.
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Figure 5.1: Predicted Cloud Properties for Image in Test Set.

5.2.2 Parameter Efficient Fine-Tuning via Visual Prompts

The first stage of SatVision-TOA is the patch embedding layer, where the input image is split into
patches for input to the next transformer layer. Each patch is projected to a fixed-size embedding
vector of size 512 for SatVision-TOA.

We implemented a variant of VPT-Shallow [6] by adding prompts element-wise to the first n
patches of the first patch embedding layer of the encoder, where n is the number of prompts. Each
128× 128 input image corresponds to 1024 patches. Since each prompt corresponds to a patch for
a light-weight fine-tuning strategy, we ideally want n << 1024. Making n too small will reduce
the amount of learning the model can do. As n grows larger, the prompts may cause ”catastrophic
forgetting”, where the patch embedding layer suddenly forgets its pre-trained knowledge. We
experimented with values of n to investigate what number might balance these goals - results are
given in Table 5.4.
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Table 5.3: Best Individual Task Performance for each Fine-Tuning Strategy.

Task Hyperparams Time to Train mIOU/R2

Mask
FFT 1:46:21 0.838
LoRA rank 32 1:11:56 0.816
VPT 300 prompts 1:01:32 0.675

Phase
FFT 1:57:28 0.713
LoRA rank 64 1:12:57 0.614
VPT 300 prompts 1:02:33 0.512

Optical Depth
FFT 1:51:52 0.754
LoRA rank 16 1:09:37 0.645
VPT 200 prompts 0:58:40 0.586

Particle Size
FFT 1:41:11 0.680
LoRA rank 32 1:08:10 0.664
VPT 100 prompts 0:58:55 0.574

Table 5.4: Performance of Fine-tuned Single-task Models with VPT.

Task 100 Prompts 200 Prompts 300 Prompts

Classification mIOU
Mask 0.610 0.670 0.675
Phase 0.496 0.488 0.512

Regression R2 Score
COD 0.512 0.586 0.551
CPS 0.574 0.520 0.508

Performance for classification tasks increases with the larger number of prompts. Results are
more mixed for regression: the R2 score for CPS decreases with more prompts, and the best
performance for COD is achieved with 200 prompts.

5.2.3 Parameter Efficient Fine-Tuning via Low-Rank Adaptation

Moving forward, we examine a PEFT strategy that works more directly with the encoder, SatVision-
TOA. LoRA updates the model weights through a low-rank approximation of the weight matrices.
We implemented LoRA by first applying it to attention query, key, and value layers within the
attention block, as well as to the attention projection layer, an addition that we saw improved
performance. Initial experiments with LoRA held alpha fixed at 16, then we used a consistent
rank:alpha ratio of 1:2, which obtained stronger results.

Following this finding, we spent time adjusting rank. Figure 5.2 shows the results of adjusting
the rank used for LoRA for the single-task models. Due to the large size of the encoder’s layers, it
was expected that the models would prefer higher ranks, but there is overall disagreement regarding
one “best” rank from the tasks. Performance was not very sensitive to rank in general – for each
task, there was not a drastic difference in performance with respect to the three ranks tested.

Finally, we observe how LoRA performs when used to train the fine-tuned multi-task model.
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Figure 5.2: Adjusting LoRA Rank for Individual Fine-tuned Models.

Model Task mIOU Task R2

FFT Mask 0.757 COD 0.754
Phase 0.630 CPS 0.680

LoRA 16 Mask 0.796 COD 0.645
Phase 0.571 CPS 0.653

LoRA 32 Mask 0.816 COD 0.621
Phase 0.600 CPS 0.664

LoRA 64 Mask 0.775 COD 0.629
Phase 0.614 CPS 0.644

Table 5.5: Single-task Models: Full Fine Tuning vs. LoRA.

Table 5.6 shows the best 14-band MT model trained with full fine-tuning compared to the best
14-band MT model trained with LoRA. Task performance decreased by 11.375% on average, with
the most drastic change seen in the R2 score for CPS, which dropped 16.3%. Training time is
reduced significantly, from almost two hours to just under an hour.

Table 5.6: Multi-task Model: Full Fine Tuning vs. LoRA (Rank 16).

Model Task mIOU Task R2 Train Time

FFT Mask 0.895 COD 0.762 1:53:54
Phase 0.701 CPS 0.793

LoRA Mask 0.817 COD 0.672 58:29
Phase 0.591 CPS 0.664

In summary, when comparing FFT and PEFT, FFT delivers the strongest accuracy overall;
LoRA narrows the gap substantially with much lower training time, while VPT is fastest but least
accurate.

5.3 Using 14 or 16 Bands for Model Input

As noted in the introduction, SatVision-TOA was pre-trained on 14 spectral bands from MODIS,
while the target dataset contains 16 spectral bands from ABI. To investigate methods of handling
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this difference, we introduced a lightweight preprocessor that incorporates all 16 ABI bands. We
experimented with convolutional neural networks and multi-layer perceptrons to project the 16-
channel ABI data to 14 channels. The most consistent architecture was a CNN with two hidden
layers, each of dimension 16.

This experiment was designed to test whether leveraging all 16 bands provides an advantage
over simply selecting the 14 ABI bands most similar in wavelength to the MODIS inputs. The two
ABI without a corresponding MODIS band (and were dropped) were band 8 (6.19 µm) and band
13 (10.3 µm). For both strategies, we trained multi-task models under different hyperparameter
settings, and the best results for each are reported in Table 5.7. Performance improved across
all tasks, most notably for cloud phase and optical depth, when using the 14-band input. We
hypothesize that any information gained from using all of the ABI bands does not outweigh the
increased gap between fine-tuning and pre-training data. Learning how to adapt the 16-band input
into a 14-channel input for the encoder was not as efficient nor effective as passing the input directly
to the pre-trained encoder.

Table 5.7: Hyperparameters and Performance of 14-band and 16-band Multi-task Models.

Attribute 14 Bands 16 Bands

Loss Weights 2, 1, 0.75, 0.75 2, 1, 0.75, 0.75
Dice Weight 0.40 0.30
Learning Rate 3e-4 3e-4

Mask mIOU 0.895 (+7.1%) 0.836
Phase mIOU 0.701 (+31.3%) 0.534
COD R2 0.762 (+21.3%) 0.628
CPS R2 0.793 (+18.7%) 0.668

For single-task learning, the 14-band and 16-band models excel at different tasks. We used full
fine-tuning and LoRA for each individual task, adjusting: learning rates, dice weight, and rank (if
training with LoRA). The best results for each task are shown in Figure 5.3 – the 14-band models
obtain stronger performance for segmentation tasks, but lag behind in regression. Considering the
regression tasks are more complex than classification tasks, the preprocessor step may allow the
model to access meaningful information from the additional two bands, an added complexity that
might be beneficial for regression tasks.

Figure 5.3: Single-task FT Models: 14 versus 16 Bands.
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Attribute 14 Bands 16 Bands

Mask mIOU 0.838 (+2.6%) 0.817
Phase mIOU 0.713 (+8.4%) 0.658
COD R2 0.742 0.754 (+1.6%)
CPS R2 0.611 0.680 (+11.3%)

Table 5.8: 14-band vs 16-band Single-task Model Results.

In summary, for band mismatch, 14-band inputs outperform 16-band preprocessing in multi-task
training; in single-task training, 16-bands tend to help regression, while 14-bands favor segmenta-
tion.

5.4 Ablation Studies of From-scratch Experiments

5.4.1 Per-pixel Analysis

As a baseline for spatially aware deep learning models, several preliminary pixel-by-pixel models
were trained on just 200 images, with results displayed in Table 5.9. The first of these was a Multi-
layer Perceptron (MLP) with 3 hidden layers, trained with a learning rate of 0.001, 25 epochs, and
a batch size of 2048 pixels. The same architecture was applied to all four prediction tasks with
only minor modifications to the output layer to match the task.

To further probe the regression tasks (COD and CPS) where the MLP showed weaker perfor-
mance, several algorithm based models were employed such as linear regression, random forest, and
histogram-based gradient boosting. Histogram-based gradient boosting in particular performed sur-
prisingly well compared to the MLPs. However, given the limited sample size, these results should
be interpreted with caution as they may not generalize well to larger datasets. Overall, the pixel
based models provided decent performance all around, but more substantial improvements are
expected from architectures such as U-Nets which incorporate spatial context.

Table 5.9: Per-pixel benchmark evaluation trained from scratch.

Model Task mIOU Task R2

MLP Mask 0.823 COD 0.724
Phase 0.610 CPS 0.640

Decision Tree Mask 0.903
Phase 0.729

Linear Regression COD 0.212
CPS 0.299

Regression Forest COD 0.663
CPS 0.609

Hist Grad Boosting COD 0.786
CPS 0.739

5.4.2 Single U-Net Models

The U-Net was the spatial model of choice leveraged for all four cloud property variables. Each
U-Net utilizes the Resnet-34 encoder with 4 skip connections and consists of approximately 36
million weights. With inputs now as full images, we trained on a full set of 15,000 images with a
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batch size of 128 images. With a learning rate of .00002, the models converged quickly to peak
performance without major fluctuation of the validation accuracy. Results for each task are shown
in Table 5.2.

Overall, the single U-Net models showed modest improvement over the MLPs as performance
for all properties except COD improved. However, the single U-Net models and the subsequently
tested U-Net based multi-task models did not perform as well compared to the Gradient Boosting
model. A possible explanation is that with 75 times more images trained on, there was more
variability in the training data, and spatial patterns became harder to detect.

5.4.3 Multi-task Model Evolution

The first version of the multi-task model from scratch used four U-Nets, one for each task. Cloud
mask logits are appended to the feature map inputs for the other three variables (prior to the
U-Net) to incorporate sequential dependency.

A new multi-task model was designed to make this dependency more explicit. The input first
passes through a single 2D convolution that expands the channel dimension from 16 to 64. As in
the previous version, four U-Nets are then used. The main distinction is that rather than adding
the cloud mask logits at the input stage of the other three tasks, they are appended to the U-Net
outputs before a final convolution layer.

Table 5.10: Evaluation of different multi-task configurations for from-scratch models.

Model Task mIOU Task R2

Logits appended before U-Net Mask 0.819 COD 0.740
Phase 0.642 CPS 0.742

Logits appended after U-Net Mask 0.911 COD 0.767
(without batch normalization) Phase 0.692 CPS 0.776

Logits appended after U-Net Mask 0.915 COD 0.769
(with batch normalization) Phase 0.696 CPS 0.781

As seen in Table 5.10, results improved across all metrics when the cloud mask logits are ap-
pended to the outputs of the U-Nets. This suggests the key design choice is determining which stage
dependencies were introduced. By appending the cloud mask logits after the heavier computation
in U-Nets, this additional channel will operate as an activation switch. This heuristic enforced a
direct relationship between cloud mask prediction and the downstream tasks by reducing the risk
that the dependency is diluted within intermediate feature maps.

Additionally, batch normalization after the first convolutional layer unsurprisingly improved
all metrics, though not as substantially as altering the main model design. Normalization led to
more stable training and faster generalization, resulting in slightly better results through the same
number of epochs.

5.5 Tuning Loss Weights

This subsection discusses hyperparameter tuning of loss weights for different cloud retrieval tasks
for both modeling approaches. Both multi-task approaches – training from scratch and fine-tuning
– were evaluated under different task-weighting schemes. For the fine-tuned model, performance
improved when regression losses were downweighted relative to classification losses. In contrast, the
from-scratch model achieved its best results when regression losses were weighted twice as heavily
as classification losses.
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Incorporating the weighted sum of dice and CE loss caused the performance of the fine-tuned
phase models to improve. Improvements were more marginal for the 14-band and multi-task mod-
els, but alternative fine-tuning strategies – training with 16 bands, LoRA, and VPT – saw more
dramatic improvements. The following sections discuss details on loss-tuning experiments.

5.5.1 Loss Weight Tuning for Fine-Tuned Models

The mIOU values and visualizations of predictions when using CE loss for cloud phase revealed
the models had difficulty handling edges and were adversely affected by the class imbalance in the
dataset. To address this, we changed the phase loss to be a weighted sum of Dice loss and CE loss:
loss = dice weight · dice loss + (1 − dice weight) · CE loss. Results of adjusting the dice weight
are shown in Figure 5.4.

Figure 5.4: Adjusting Dice Weight for Phase Loss.

The model with the biggest improvement is the 16-band full fine-tuning model, whose mIOU
improved from 0.514, lagging behind most other strategies, to 0.649.

5.5.2 Loss Weight Tuning for From-Scratch Models

Table 5.12 shows the results for a selection of different loss weights for the best-performing from-
scratch multi-task architecture.

Prioritizing the cloud mask over regression degraded performance across all tasks, including
cloud mask itself. This was unexpected, since emphasizing cloud mask was expected to improve
accuracy in predicting the other properties. Instead, weighting regression boosted R2 for both
regression tasks, which was expected, as well as cloud phase’s mIOU. While prioritizing regression
led to improvements in 3 out of 4 evaluation metrics, the mIOU and R2 scores are closely clustered
and discrepancies may be explained by model variance rather than the loss weights.

In summary, the experiment finds that combining Dice loss and CE loss improves phase; task-
weighting that emphasizes regression benefits from-scratch multi-task models, while fine-tuned
models prefer relatively higher weights on classification.
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Model Dice Weight Cloud Phase mIOU

MT-FFT 0.00 0.620
MT-FFT 0.25 0.651
MT-FFT 0.30 0.633
MT-FFT 0.40 0.700
MT-FFT 0.50 0.351

FFT 14-bands 0.00 0.657
FFT 14-bands 0.25 0.694
FFT 14-bands 0.27 0.711
FFT 14-bands 0.30 0.719
FFT 14-bands 0.40 0.700

FFT 16-bands 0.00 0.514
FFT 16-bands 0.23 0.649
FFT 16-bands 0.26 0.619
FFT 16-bands 0.30 0.630

LoRA rank-64 (16) 0.00 0.538
LoRA rank-64 (16) 0.20 0.561
LoRA rank-64 (16) 0.23 0.615
LoRA rank-64 (16) 0.25 0.598
LoRA rank-64 (16) 0.26 0.614
LoRA rank-64 (16) 0.30 0.546

VPT 300 prompts (16) 0.00 0.453
VPT 300 prompts (16) 0.20 0.455
VPT 300 prompts (16) 0.25 0.512

Table 5.11: Dice Loss across Finetuned Models Results.

Table 5.12: Adjusting Loss Weights in MT From-Scratch model with logits appended after U-Net.

Weights Task mIOU Task R2 Train Time

(1, 1, 1, 1) Mask 0.915 COD 0.769 44:30
Phase 0.696 CPS 0.781

(2, 2, 1, 1) Mask 0.909 COD 0.767 44:45
Phase 0.689 CPS 0.777

(1, 1, 2, 2) Mask 0.909 COD 0.775 45:59
Phase 0.700 CPS 0.786

(2, 1, 1, 1) Mask 0.887 COD 0.734 38:40
Phase 0.654 CPS 0.743

6 Conclusions and Future Work

Our study offers comprehensive benchmarking of SatVision-TOA for individual and multi-task
cloud property retrieval, exploring its adaptability for both classification and regression tasks across
both single-task and multi-task architectures. From the present work, the following conclusions are
drawn:

1. Fine-tuned models are competitive with models trained from scratch, while multi-task learn-
ing proves itself to be especially effective
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2. From-scratch multi-task models achieve the best results across all four downstream tasks, and
fine-tuned multi-task models outperform their single-task counterparts

3. Multi-task frameworks are able to efficiently share and leverage information across tasks

4. Low-Rank Adaptation was found to be the most competitive parameter-efficient fine-tuning
alternative to full fine-tuning

5. Training directly with the 14 ABI bands most aligned with SatVision-TOA’s bands achieved
substantially better results than projecting all 16 ABI bands into 14 channels.

Future work could study how the different aspects of the encoder affect performance results –
fine-tuning smaller variants of SatVision-TOA would address long training times and reveal the
impact the number of parameters has on performance. The source code for this research can be
accessed through the UMBC Big Data REU Github Repository [30].
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