Using Neural Networks to Sanitize Compton Camera Simulated
Data through the BRIDE Pipeline for Improving Gamma Imaging
in Proton Therapy on the ada Cluster

REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering

Michael O. Chen!, Julian Hodge?, Peter L. Jin3, Ella Protz*, Elizabeth Wong?,
Ruth Obe®, Ehsan Shakeri?, Mostafa Cham”, Matthias K. Gobbert?, Carlos A. Barajas?,
Zhuoran Jiang®, Vijay R. Sharma®, Lei Ren?, Sina Mossahebi?, Stephen W. Peterson!’, and
Jerimy C. Polf!!

!Departments of Mathematics, Dartmouth College, USA
2Department of Mathematics and Statistics, University of Maryland, Baltimore County, USA
3James M. Bennett High School, Salisbury, MD, USA
4Department of Mathematics and Sciences, Florida Atlantic University, USA
SDepartment of Mathematics, Brookdale Community College, USA

6 Department of Computer Science, University of Houston—Clear Lake, USA

"Department of Information Systems, University of Maryland, Baltimore County, USA
8Department of Radiation Oncology, Stanford University, USA
9Department of Radiation Oncology, University of Maryland School of Medicine, USA
0Department of Physics, University of Cape Town, South Africa
HMS3D, Inc., USA

Technical Report HPCF-2024-5, hpcf .umbc.edu > Publications

Abstract

Precision medicine in cancer treatment increasingly relies on advanced radiotherapies, such
as proton beam radiotherapy, to enhance efficacy of the treatment. When the proton beam in
this treatment interacts with patient matter, the excited nuclei may emit prompt gamma ray
interactions that can be captured by a Compton camera. The image reconstruction from this
captured data faces the issue of mischaracterizing the sequences of incoming scattering events,
leading to excessive background noise. To address this problem, several machine learning mod-
els such as Feedfoward Neural Networks (FNN) and Recurrent Neural Networks (RNN) were
developed in PyTorch to properly characterize the scattering sequences on simulated datasets,
including newly-created patient medium data, which were generated by using a pipeline com-
prised of the GEANT4 and Monte-Carlo Detector Effects (MCDE) softwares. These models
were implemented using the novel ‘Big-data REU Integrated Development and Experimenta-
tion’ (BRIDE) platform, a modular pipeline that streamlines preprocessing, feature engineering,
and model development and evaluation on parallelized GPU processors. Hyperparameter studies
were done on the novel patient data as well as on water phantom datasets used during previous
research. Patient data was more difficult than water phantom data to classify for both FNN and
RNN models. FNN models had higher accuracy on patient medium data but lower accuracy
on water phantom data when compared to RNN models. Previous results on several different
datasets were reproduced on BRIDE and multiple new models achieved greater performance
than in previous research.

Key words. Proton beam therapy, Compton camera, Classification, Recurrent neural network,
PyTorch, Distributed Data Parallelism, ada

hpcf.umbc.edu

1 Introduction

In precision medicine, the medical records of a patient are evaluated as a tool for health care
providers to deliver personalized treatment to meet individual needs of a patient. Having emerged
as a common personalized treatment plan for cancer, radiotherapy involves delivery of a clinically
determined dose of X-ray, electron, or proton radiation for the targeted destruction of a tumor.
X-ray radiotherapy involves a high initial dose to the tumor target, which often results in side
effects that impact adjacent normal tissue. Off-target effects could result in DNA damage, which
may increase cell-aging termed senescence or undesirable symptoms such as inflammation, nausea,
and vomiting [7].

A safety margin aims to deliver maximum exposure of treatment to all regions of the tumor but
may include healthy tissue. Unlike the traditional radiotherapy options, proton beam therapy has
shown promise in sharply reducing off-target effects of radiation due to the high energy proton
beam ending at Bragg peak [17,27]. Determination of the proton range for the Bragg peak of the
prompt gamma radiation is needed for dose determination. In application, this has the potential to
translate into real time images that will help clinicians avoid damaging healthy tissue. Uncertainty
emerges due to the Compton camera being unable to identify the sequence of scattering interactions
that result from the prompt gamma radiation [5]. To optimize the safety margin, deep learning has
been used to address the background noise in the images reconstructed by the Compton camera.

Refs. [1], [12], and [25], each offer a unique contribution to the application of deep learning to
the prompt gamma imaging problem. In [1], extensive hyperparameter studies demonstrate the
efficacy of deep fully connected networks (FCN) in this application. [12] finds that recurrent neural
networks (RNNs) offer a much faster and more compact solution, even if slightly less accurate.
And [25] leveraged multi-process computation to dramatically increase the speed at which models
are trained and deployed.

However, all 3 studies use the same dataset derived from Monte Carlo simulations of a water
phantom (WP), a constant density water medium, in their training and testing of models. Re-
cent improvements have allowed for real patient (RP) simulations to be generated, which can be
processed into entirely new datasets to train and test on, as in Section 4.2. The value of using
simulated data more consistent with reality is clear. It is not a given, though, that the results
in [1], [12], and [25] will instantly transfer to this new data.

Hence, this work aims to test the extensibility of these previous results to the new RP data. In
particular, we first improve the implementation of [25]’s multi-process training so rigorous tests on
many datasets can be performed. Next, we refine the best models of [1] and [12] on WP data in
our multi-process environments with improvements in architecture and model tuning. Finally, we
perform an original hyperparameter study on the new RP data for both FCN and RNN models,
and compare our results with WP data results.

The remainder of this report is organized as follows: Section 2 covers the background information
on proton beam radiotherapy, Compton camera imaging, scatter types, and the need for machine
learning models. Section 3 starts with technical background on the machine learning used in this
work. It then does a deeper review of related works, focusing on the three aforementioned stud-
ies. Finally, it describes the physical and software resources used to execute the machine learning
research. Section 4 covers how data was generated through GEANT4 and Monte-Carlo Detector
Effects, and explains the significance of the new RP data. It then discusses preprocessing, our
datasets, and feature engineering. Section 5 describes how we refined the multi-process implemen-
tation of [25]. It discusses key challenges of parallelizing training, and goes into detail about our
solution, BRIDE. Section 6 covers the results of our tests on both WP and RP data, and provides
a comparison of the two. Section 7 summarizes additional studies done in this research including

2

hybrid datasets and feature engineering. Section 8 concludes our findings, challenges encountered
during our research, and potential clinical applications.

2 Prompt Gamma Imaging Background

2.1 Proton Beam Radiotherapy

Radiation therapy is one of the most common cancer treatments. X-ray therapy is a type of
radiotherapy that delivers a high dosage of radiation to eradicate cancerous cells. However, the
radiation dosage that is delivered to the tumor is often insufficient because the full dosage of
radiation is delivered upon entering the body. Furthermore, X-rays will continue to travel posterior
into the human body, thus causing excessive radiation exposure.

A relatively novel radiotherapy technique that can avoid the prior stated problems is proton beam
therapy. Unlike X-ray therapy, proton beams in this type of radiotherapy deposit the vast majority
of the radiation at the tumor site. Furthermore, the proton beam does not travel further than the
tumor site, thus minimizing radiation exposure to healthy tissue. Hence, this treatment is widely
considered to be more effective for some types of cancer. In proton beam therapy, ionizing radiation
travels towards the target tissue; the energy level peaks at a location called the Bragg peak, and
then sharply declines. Importantly, utilizing the Bragg peak allows for treatment plans that deliver
radiation precisely to the tumor and avoid surrounding healthy tissue. However, the small distance
between healthy and tumor tissue requires the Bragg peak to be accurately located. Clinicians
need real-time information to determine the location of the Bragg peak so that it can be used to
target the tumor as shown in Figure 2.1 [17].

Tumour

—Photon (MV)
SOBP (MeV)
Proton (MeV)
Electron (MeV)

100 /

o
o
N

Relative dose (%)
@
8

B
)

~

\'\\

20 4

v v .
15 20 25 30
Depth in tissue (cm)

Figure 2.1: Spread-out Bragg peak (SOBP) [17]

During treatment, clinicians will create a safety margin, which is an enlarged treatment area
which ensures that the entire tumor will receive the dosage of radiation. The safety margin will
also account for any movement the patient may undergo during the treatment time, as well as
the difference of positioning that the patient may have between treatment sessions. In Figure 2.2,
both (a) and (b) represent two localized safety margins for treating a lung tumor, which minimize
damage to the heart but may impact healthy lung tissue (b). At this point, clinicians would opt
to safely proceed with the treatment with fewer proton beams and less damage to healthy tissue,
resulting in a preference for (a), a single beam which avoids damage to healthy lung tissue over
(b), two proton beams that unnecessarily damages the healthy lung tissue [31].

Figure 2.2: a: Optimal proton treatment beam, (dashed) targeting a tumor (green) with safety
margin (orange) that overlaps with the healthy heart tissue (magenta). b: Suboptimal treatment
plan of two beams which does not overlap with heart [31]

With real-time information about the trajectory of the proton beam, clinicians can then provide
improved treatment to the patient. The safety margin could be smaller and the optimal path of
Figure 2.2 (a) could be used. One of the proposed methods of real-time data acquisition is with the
use of a detector called the Compton camera. When high energy proton beams collide with atomic
nuclei and electrons in patient matter, radiation in the form of prompt gamma rays is emmitted;
Compton cameras have the ability capture these prompt gamma rays [31]. This then leads to
information about the path of the proton beams and the Bragg peak.

2.2 Compton Camera and Image Reconstruction

For the monitoring of proton radiotherapy treatment, prompt gamma radiation can be recorded
using a Compton camera, a multistage detector that produces data to visualize prompt gamma
radiation and scattering events. Prompt gamma radiation is emitted at a specific angle of displace-
ment, which is determined from the energy levels of the proton collision with the nucleus. Prompt
gamma rays interact with the camera; for each interaction, the camera will calculate (x;,v;, 2;)
coordinates and the energy level e; of the scatter. The Compton cone of emission is used to project
the potential trajectories that this collision could occur as shown in 2.3 [28]. Using this cone of
emission, the origin of the gamma is mathematically determined [30].

Compton cone

Imaging Plane

Gamma source

Scatterer
Detector

=== Compton cones superimpose
; to estimate gamma source
Absorber

Detector

mec?E,

=1-
cosig E2(E1+E3)

Figure 2.3: Compton cone of emission [28]
After the collection of the scattering events, image reconstruction algorithms recover a visualization
of the path of the proton beam. However, the Compton camera has a major problem; due to its

nature, the Compton camera has a finite time resolution. It does not explicitly record the sequential
order of the prompt gamma rays, resulting in the camera being unable to detect the true ordering

4

of interactions. This causes noise in the reconstructed images, rendering them sometimes unusable
in a medical setting [30].

2.2.1 Scatter Types

Due to prompt gamma radiation emission at approximately the speed of light, the sequence of the
scattering events becomes distorted, creating background noise that plagues image reconstruction.
To help identify false events that creates noise within the image, scattering events are organized as
scatter types. There are 13 types of scatterings, of which can be grouped into true triples, doubles
to triples (DtoT), and false triples as displayed in Figure 2.4.

True Triples: True triples are three sequential interactions with the Compton camera. The
ordering of the interactions can be one of six combinations: 123, 132, 213, 231, 312, and 321. Out
of these, only the 123 combination is currently usable for image reconstruction purposes.

Doubles to Triples (DtoT): DtoT events are double and single interactions that occur indepen-
dently of each other but are detected as one event by the Compton camera. There are six possible
combinations of this event: 124, 134, 214, 234, 324, and 314, where the ”4” refers to the second
prompt gamma interaction in the misdetection events.

False Triples: False triples are events that are detected as a true triple, but in reality are com-
prised of three independent events. These false events may result in images with noise and must
be discarded [5,21, 30].

—

X X

(a) True Triple scatter path of prompt gamma de- (b) Possible True Triple scatter path detected by

tected by Compton camera. Compton camera.
z z

1 1

A | 3 4 3

e 9p

2 2
O Y O Y
X X

(c) Possible Double-to-Triple path of prompt gamma (d) False triple path of prompt gamma detected by
detected by Compton camera. Compton camera.

Figure 2.4: Scatter events [12]

2.2.2 The Need for Machine Learning

In order to make real-time proton radiotherapy more effective, real time imaging is required for
treatment in order to verify the dosage of the proton beam and location of the Bragg Peak. There
have been multiple different classical methods developed that attempt to ”de-noise” or sanitize the
reconstructed images. Applying a specific filter to the image to reduce blurring and artifacts is one
such common technique; in [23], distance between each image pixel’s center and the Compton cone
was calculated, and pixel values and thresholds were then set to the respective distances, ”cleaning”
the image.

Machine learning in the field of computer vision, however, has the ability and potential to capture
and exploit much deeper patterns than a filter. Machine learning can classify the different scatter
events based on data from the Compton camera. The classified false events can then be removed,
creating a sanitized image to be used for proton beam therapy treatment verification.

3 Machine Learning: A Solution

3.1 Technical Background on Machine Learning

Machine learning, a field of study in artificial intelligence, uses algorithms to analyze, identify,
and generalize from specific trends and patterns within data. The main form of machine learning
employed in this work are Neural Networks (NN). NNs have experienced an explosion of usage in
multiple domains of science due to their ability to ‘learn’ to identify underlying trends and patterns
in data and then extrapolate from data of the same form to perform sophisticated predictions. The
specific type of machine learning used in this work is known as supervised learning, in which the
NN is ‘trained’ on data that has a certain label of interest known as the class. It is then designed
to predict this label through training, in which it may discover complex relationships between each
observation of data and its label.

Neural networks were originally designed to emulate the ability of the human brains’ neurons
connections to memorize, recall, and adapt to novel information. They are composed of layers of
neurons, which each take in a series of weighted inputs from training data and output a newly
weighted transformation of input data, that is composed with a nonlinear activation function into
the next layer of neurons. Thus, the layers of neurons learn from the training data by progressively
updating the weights of the matrices that scale and shift the activation function output from each
neuron in a layer unto the next neuron; this then continues into the next layer of neurons.

The composition of many such matrices that scale and shift the transformations of input data
according to activation functions allow for the approximation of any continuous function which
may exist as a relationship between a particular feature of the data and its output (in our case a
class of particular scatter type). This idea is known as the Universal Approximation Theorem [14].
Though, it is not guaranteed that a particular algorithm can find the exact weights and sequence of
necessary functional compositions that allow for a perfect deterministic relationship between input
and output data. Even so, the optimizer algorithm and suitable loss function are designed to
attempt to approximate this theoretical relationship to a numerical precision.

The two main types of neural networks applied in this work are Feed Forward neural networks
and Recurrent neural networks, as they have shown some success in past work [34].

3.1.1 Feed Forward Neural Networks

The simplest deep learning model is the Feed Forward neural network (FNN). FNNs involve unidi-
rectional flow of information, channeling the input through the hidden activation layer(s) to become
output [33], as shown in Figure 3.1. Each neuron in one layer is connected to every neuron in the
next layer, forming a fully-connected layer; in other words, the output of a neuron in a layer serves
as the inputs for all of the neurons on the subsequent layer. These models are widely used for many
machine learning applications, including search engines, image classification, economic forecasting,
and language translation.

INPUT

DATA HIDDEN LAYERS OUTPUT

* 511121314 |- somomwe

| LAYER LAYER LAYER LAYER

NETWORK

Figure 3.1: An example structure of a Feed Forward Neural Network [1]

3.1.2 Recurrent Neural Networks

Recurrent neural networks (RNN) are multi-directional networks with recurrent units and equal
weights in each layer. Each recurrent unit has forward activation units with a memory state needed
to store information about the network at particular epoch and a backward propagation for training
the network. While remembering the last input, the memory state is updated continuously with
new information [34]. Some drawbacks to this type of model include that they are very sensitive
to hyperparameter changes and are prone to exploding gradient issues, among others. A variety of
models, including FNNs and RNNs, were tested on the simulated data [33]. Building upon Clark
et al. research that has shown 74.6% accuracy using a LSTM with 256 fully connected layers, a
plethora of models were implemented such as this RNN in hopes of achieving the clinical standards
of 90% or higher validation accuracy [12]. This will be addressed in Section 6.1.

Long-Short Term Memory (LSTM) Neural Network A type of RNN is the Long Short
Term Memory (LSTM) model, which features long-term dependencies. In addition to the defaults
in RNNs, information of an LSTM can be sent to the input gate for memory, discarded in the forget
gate, or produced as output from memory as shown in Figure 3.2 [34]. These three gates are part of
a unique aspect of an LSTM model called a memory cell; this memory cell stores information that
may be needed later in the model training process. Though LSTMs are typically used for natural
language processing and time series forecasting, the model was thought to be able to perform
well on our datasets due to its robust learning capabilities. The implementation of LSTM will be
discussed in Section 6.2.2.

output gate
-’1yr.h!fi~ 1|J "151.4_‘_‘/i—1|‘1

forget gate

.-1.n__u‘i'5|j Ayeyia {_,'

input gate

‘_l.l'! ‘T‘f 3
-4,1'1,--T'a + -"“.t,lv,l].ifl ‘ i

Figure 3.2: LSTM gates [34]

Gated Recurrent Neural Network As shown in Figure 3.3, the gated recurrent neural net-
work (GRU), a type of RNN, factor in short-term dependencies with a reset gate by using a linear
interpolation between the previous activation function value and the current one. GRUs are regu-
lated by two gates: an update gate, which selects candidate hidden state activation function and
continuously updates the network, and a reset gate, which sequesters unnecessary input that will
not be used to update the hidden state [34]. A GRU is essentially a streamlined version of the LSTM
model; however, unlike the LSTM, it does not contain separate memory cells. The implementation
of the GRU will be discussed in Section 6.1.

p(c(wolwi™) plwrle(ws), wi™)
class layer [@ | | | o] | output layer

recurrent lilyL‘T

input layer

wi—1

Figure 3.3: GRU diagram [34]

3.2 Related Works

In recent years, significant progress has been made in the application of machine learning to image
reconstruction from prompt gamma radiation. Three relevant works are the research in [1], [12],
and [25].

[1] focuses on optimizing deep fully connected neural networks (FCNs) for image reconstruction.
The authors demonstrated that FCNs have a reasonable ability to classify events across various
classes. They showed accuracy’s that were at best 75%, which is not desirable for clinical use. In
order the achieve this result, there was a comprehensive hyperparameter study involving 288 ex-
periments. These studies identified promising configurations that could lead to better performance

9

in future application. There is also a strong emphasis on developing more compact neural networks
that can achieve similar or superior performance while utilizing fewer parameters. RNNs were
briefly tested. It is important to note that [1] utilized a residual architecture for their FCNs. This
means they were able to train very deep networks with hundreds of layers without running into
exploding gradients or other such problems. The best FCNs without residuals, which [3] explored,
achieved a peak accuracy of 63.9%.

The research in [12] had a primary contribution related to RNNs. While deep residual FCNs
achieved slightly higher accuracy, RNNs demonstrated comparable performance with a key advan-
tage: they have a simpler architecture and fewer hidden layers. This allows for faster loading times
and enhances usability. This also makes it more efficient for real time applications in a clinical
setting. They completed a comprehensive hyperparameter study indicating that hybrid models,
one specific example being a model with 4 LSTM layers and 2 FCN layers, could have load times
as fast as 7 seconds but still achieve 73% accuracy. The team also implemented a learning rate
scheduler which improved model accuracy and efficiency.

[25] builds upon the past 2 works and used distributed learning via PyTorch to improve training
times. The peak accuracy of their models were notably lower than past years, which is under-
standable considering they started on a new code base. Their highest LSTM model was 4-layer
model that reached 66.5% accuracy.

Finally, importantly, all three of the aforementioned studies were done using essentially the same
simulated data originating from a water phantom. [25] and [12] used a slightly different preprocess-
ing routine, leading to the the datasets they trained on being approximately 1.4 million records,
while [1]’s data was approximately 1.8 million records long.

Hence, to summarize the key results from experiments using water phantom data:

e FCNs with residual blocks achieve 75% accuracy
e FCNs without residual blocks achieve 64% accuracy (3.1)

e RNNs achieve 73% accuracy but with much simpler model architecture

3.3 Hardware and Software

For this research, we utilized the Graphics Processing Units (GPU) in the ada cluster maintained
by the UMBC High Performance Computing Facility (hpcf.umbc.edu). The ada GPU cluster
consists of four nodes with eight 2018 Ti GPUs each, seven nodes with eight RTX 6000 GPUs each,
and two nodes with eight RTX 6000 GPUs and an additional 384 GB of memory each.

The machine learning models were built and implemented using PyTorch v2.3.1 (https://PyTorch.
org). For data preprocessing and manipulation, we used scikit-learn v1.3.0 (https://scikit-learn.
org/stable/), pandas v2.2.2 (https://pandas.pydata.org/), and numpy v1.26.4 (https://
numpy .org/). To visually display our results, we used matplotlib v3.8.4 (https://matplotlib.
org/) and seaborn v0.13.2 (https://seaborn.pydata.org/). Our models were built inside of the
python environment Anaconda3 (https://www.anaconda.com/).

3.3.1 Parallelization

Parallelization is widely used in various computing aspects, where multiple nodes work on distinct
aspects of a problem simultaneously. Among several of the benefits of parallelization include speed
and efficiency: a larger task is broken down into smaller tasks that are processed at the same time,

10

hpcf.umbc.edu
https://PyTorch.org
https://PyTorch.org
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://pandas.pydata.org/
https://numpy.org/
https://numpy.org/
https://matplotlib.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://www.anaconda.com/

leading in an optimal situation to an approximately linear increase in speed. With parallelization,
greater tasks can be tackled while keeping runtime to a minimum, an important advantage in
its many usage areas including data processing, scientific computing, and specifically, machine
learning and artificial intelligence. However, though, there are some limitations in implementing
parallelization; parallel processing codes are more complex, leading to a higher bar for programmers
and more errors, as is later discussed. This complexity may not required for more simple tasks
where a serial system may be sufficient. In short, parallelization and parallel computing can be
broken down into task parallelism and data parallelism. Task parallelism works by distributing
tasks between processors while using the same data, where the various tasks run simultaneously.
Data parallelism, however, is distinct from task parallelism. It distributes data between processors,
rather than using the same data.

Massively parallel processing is a parallelization paradigm where a large number of processors
perform coordinated computations at the same time. Using multiple GPUs is a massively parallel
architecture, as they contain tens of thousands of threads. In modern machine learning, distributing
data batches among several GPUs and training a singular machine learning model based on all of
the devices is a popular way to increase the speed and efficiency of model implementation. Training
a model over multiple GPUs is much faster compared to on a single GPU, as a clear benefit of
parallelizing computations.

11

4 Real Patient Data: A New Challenge

Recently, new simulated data originating from patient tissue rather than water phantom has become
available. A key contribution of this work is gaining insights on this new data. First, it is necessary
to present background on the Process of how simulated data is created and transformed into ready-
to-train data.

4.1 The Preprocessing Pipeline

Preprocessing, in machine learning, generally refers to the aspect of preparing input data and
target classes to be fed into an specific machine learning algorithm [18]. As mentioned, [1], [12],
and [3] all utilized the same preprocessing pipeline which can be divided into two broad steps: Data
Generation and Further Preprocessing.

4.1.1 Data Generation

Due to the measurement limitations encountered during clinical proton beam delivery, the state-
of-the-art GEANT4 toolkit is used to perform high fidelity simulations of the interactions of the
protons in a proton beam with the target matter, which produces prompt gamma ray data and
their energy deposition in a pre-clinical Compton camera, in lieu of direct measurement. After
prompt gamma interactions with the Compton camera are simulated with GEANT4, the resulting
data is then fed into the Monte-Carlo Detector Effects (MCDE) modeling package which employs
probabilistic (Monte-Carlo) models of the prompt gamma rays, alongside known signal processing
timing effects in the Compton camera. This is to help determine the most likely type of scattering
that took place and the most likely order for the scattering (to then assign class labels for the
machine learning model).

GEANT4 A virtual experimental setup is designed by incorporating CT images from Duke
University into the GEANT4 simulation toolkit. As per design, a Compton camera detector placed
below the patient bed captures prompt gamma events from the patient [30]. Data generation has
been carried out at different energies and locations, referred to as layers and spots, respectively.
For instance, layer 1 denotes a proton beam energy of 198.7 MeV, consisting of 16 spots. The data
is stored in a tree named ”scatterData”, with 11 tuples packed in ROOT format. Furthermore,
the prompt gamma events captured by the Compton camera are organized based on their energy
deposition, distinguishing events that originate from positron annihilation (511 keV), and events
from singles, doubles and triples.

Each spot generates two types of data files: Prompt Gamma Emissions and 511 keV Annihilation
Gammas. Prompt Gamma Emissions result from the proton interactions with patient anatomy,
while 511 keV Annihilation Gammas are produced when positrons annihilate with electrons, emit-
ting gamma rays at 511 keV. The distribution of spots across items is as follows: Item 1 has 16
spots, Item 3 has 67 spots, Item 5 has 87 spots, Item 7 has 153 spots, Item 9 has 168 spots, Item
11 has 174 spots, Item 13 has 180 spots, Item 15 has 185 spots, Item 17 has 159 spots, Item 19 has
104 spots, and Item 21 has 13 spots.

To automate the submission of slurm jobs on the taki cluster for this data generation, we developed
a Bash script named automation_Sbatch Final.sh. This script processes up to 30 input files in
one run, significantly streamlining the workflow. It reads from an input file, ‘inputspots.txt‘, which
lists the slurm job files to be submitted. The script logs progress and completion statuses in

12

‘progress.log‘ and ‘completed_jobs.log‘, respectively. This dual-logging mechanism ensures that we
can track the progress of each job and identify any issues that may arise during execution.

The core functionality of the script is encapsulated in the submit_job_with_retry function; this
is responsible for submitting jobs and is designed to be resilient against transient cluster issues.
If a job submission fails due to the temporary unavailability of resources, the function waits for
a specified period of time before retrying, up to 40 times. This ”retry” mechanism is crucial for
maintaining the continuity of the data generation process, as it ensures that temporary disruptions
do not halt the workflow.

Logging and status tracking are integral to the scripts operation. Each submission attempt and
its outcome are logged, providing a detailed record of the scripts’ activities. Successful submissions
are recorded in the ‘completed_jobs.log* file to prevent reprocessing, ensuring that each job is only
processed once. This feature not only prevents redundant processing but also allows for easy status
checks through log files such as ‘keepeye.log’ and ‘progress.log‘.

To ensure uninterrupted execution, the script can be run in the background using the nohup com-
mand. This capability is crucial for long-running processes on shared computing resources as it
allows the script to continue running even if the user disconnects from the terminal. This back-
ground execution is particularly important for high-performance computing environments, where
long-running jobs are common.

By automating the submission of slurm jobs and incorporating robust retry mechanisms, the script
effectively manages the generation of the large datasets needed for the training of machine learning
models. Automation reduces manual intervention and optimizes resource usage on the HPCF
cluster, facilitating efficient and reliable data processing. This detailed implementation and its role
in our data generation pipeline underscore the importance of automation and error handling in
high-performance computing environments, particularly for machine learning projects that require
extensive computational resources.

Monte-Carlo Detector Effects As mentioned above, prompt gamma interactions in the Comp-
ton camera as simulated by GEANT4 are fed to the Monte-Carlo Detector Effects (MCDE) model.
The interaction data is then post-processed to include the intrinsic detector and electronics readout
properties of the prototype Compton camera. It has been demonstrated that the MCDE model
provides a reasonable simulation of actual prompt gamma interactions and readout of the detector,
making the simulated data a valid representation of the data recorded during clinical proton beam
treatment [21]. In addition, one key advantage of utilizing simulated data is that we are able to
generate large volumes of raw data using this GEANT4-MCDE pipeline. This has allowed us to
create entirely new datasets this year, in addition to having access to past years’ training data.

The final MCDE output are data files that includes single, double, and triple scatter events as
they would have been captured by the Compton camera under the beam delivery conditions of the
modeled experiment, such as irradiation field size, irradiation time, and beam intensity.

MCDE generated triples scatter data has 12 columns of data: 3 sets of energy and spatial coordi-
nates data (e;, zi, yi, ;). The most important impact of MCDE modeling in our data generation is
that it employs a model of the Compton scattering and signal processing timing effects to determine
the most likely scatter ordering; therefore, our class labels are originally produced in this stage of
data generation. Thus, the MCDE data is treated as our raw data for propagation through the pre-
processing pipeline. This pipeline is due to the nature of the MCDE data as we cannot simply use
it to train a machine learning model. First, every MCDE run does not generate the same amount
of data; second, the proportion of true triple, DtoT, and false events vary at different dosages,
resulting in imbalanced data which may not be appropriate for model training. In particular, a

13

higher dose rate means that the radiation dose is delivered more quickly, which can have different
biological effects compared to a lower dose rate where the same total dose is delivered over a longer
period.

4.1.2 Further Preprocessing

In this research, we focus only on the triple events. As mentioned, the raw MCDE scatter data
has 12 columns, which are 3 sets of individual prompt-gamma ray detections of energy and 3D
spatial coordinates (e;, z;,¥i, 2;). Each row of the data corresponds to one triple chain scattering
interaction. We first unite each row of data with its proper class label as given by MCDE simulation.
This gives a scattering label to each triples interaction that reveals its proper ordering in the case
that it is a true triples event. With the DtoT event. the class label corresponds to the proper
ordering of the double and the event that is a false detection. Lastly, in the case of a false triples
event, the label shows that the scatter is actually a series of decoupled single events as opposed
to one chain reaction. Overall, the MCDE data unified with the class label gives the initial data
format as shown in Fig. 4.1.

Class Interaction 1 Interaction 2 Interaction 3
123 € X1 » zZ1 [} X2 | ¥ 53 €3 X3 Y Z3
132 e X, " Zy e X3 J2) Z3 e X Y2 Z
213 e X5 Y2 Zs € X » Z; e X3 ya Z3
231 € X2 Y2 Z2 €3 X3 Y3 Z3 € Xy b2 Z
312 e | X3 | ¥3 & e | x| N & | e X | Y %
321 €3 X3 3 Z3 [} X2)2 Z € 1N Z
124 ey | x| n z e X Y single
214 € X2 ¥z 22 e x1 »1 z1 single
134 e x1 Y1 zZ1 single e X Y Z2
314 e | x| Z single e, X N z)
234 single e x Y Z e X2 Y2 Z
324 single e, ¥ Z e X N z;
444 single single single

Figure 4.1: Merged MCDE Data Format Interaction data creates 12 initial features while the class
label is scatter type.

We then have to balance the dataset by classes in order to have viable training data, as most
machine learning models generally perform poorly in a classification task with data whose classes
are not properly balanced. The imbalance here is, for example, when there are more true triples
than DtoT or no false event data. This imbalance of classes has primarily been observed to correlate
with the simulated dosage rates. It has been seen that at lower dosage rates (less than 1kMU),
the data is almost exclusively true triples, while at higher dosage rates, there is a much greater
amount of doubles-triples and false events [4,5]. MCDE data was generated at multiple kMU dosage
rates, including at 0kMU /min, the clinical minimum of 20kMU /min, 100kMU /min, and the clinical

14

maximum of 180kMU /min. For training purposes, we then combine a large volume of MCDE data
at varying dosage rate with the same beam energy (150MeV), prune rows of the data so that we
have an equal frequency of classes (according to the minimum occurring class), and then shuffle all
the data, creating merged, shuffled data.

The last step in the preprocessing pipeline is to normalize the data as this presented numerical
optimization advantages to the calculations done by neural networks. Neural networks generally
perform best (converge more quickly) when the feature columns are normalized by scaling/centering
the distribution of each feature, as well as removing outliers which may over-influence learned
behavior. During normalization, each feature column was scaled/centered, outliers were removed,
and the data was transformed to a normalized range (scaling to a mean of 0 and a unit standard
deviation). To normalize the spatial variables i.e (z;, y;, 2;), this study used the MaxAbsScaler from
the sklearn library; the PowerTransformer (Yeo-Johnson) was utilizted to standardize the energy
deposition values [5].

The output of this ‘Further Preprocessing’ section of the pipeline is ready-to-train data.

4.2 Real Patient Data

The new ”real patient” data is fed into the current preprocessing pipeline very early: instead of
incorporating CT images constructed using a water phantom, CT images made using real patient
tissue measurements are used. The ‘water phantom’ is the simulated experiment area that is filled
with mass where the simulated protons are colliding. This simulated mass has the uniform density
parameter of water. Contrarily, the real patient replacement has a simulated mass with variable
density based on measurements of patient tissues. Moreover, the new post-MCDE data is thus
divided into ‘layers’ which each correspond to different densities and energies, similar to the aspect
that patient tissue varies [29].

Hence, the same basic architecture of preprocessing pipeline is used, but a change based on shifting
from a water phantom to a real patient early in the pipeline creates a ready-to-train dataset that
presumably has a substantially different underlying order.

4.2.1 Datasets

Below, we introduce the ready-to-train datasets that were utilized in this study. This, however,
does come with an important and rather convoluted caveat: one of the key contributions of this
work is producing an overhaul of the entire code base, which includes the preprocessing pipeline.
Thus, the datasets below are not made using precisely the same pipeline that is described in the
preceding sections!. However, the changes to the pipeline are almost entirely ‘refactoring’ changes,
and so the datasets are nearly identical to the datasets that would have been made by the original
pipeline.

1. barajas: this is data based off of a water phantom. It was originally created in [4] and was
generated from preprocessing simulated experimental data of 20kMU, 100kMU, and 180kMU
dosage rates with a 150MeV energy proton beam. It contains approximately 1.8 million
observations.

2. shakeri-obe: this is data based off of real patients. This was generated using the process
described in Subsection 4.2 with the parameters in Fig. 4.22. It contains approximately
499,000 observations.

1t is different from both the pipeline before and after the real patient data changes
2Tt must be noted that during a few MCDE simulations for layers 3, 5, 7, and 9, the values 190, 192, 194, and
198 were mistakenly used for beam energy, which are not the same as the actual beam energies for these layers. The

15

3. mothership: this is a hybrid of the water phantom and real patient data. The dataset
was constructed by combining all of the post-MCDE data that were preprocessed into the
barajas and shakeri-obe, before ‘Further Preprocessing’. It contains approximately 3.8
million observations.

Layer | Beam Energy (MeV) | SimProtons | Dose Rate (kMU/min) | MU delivered
1 198 3.00E+08 20 5.00E+04
1 198 3.00E+08 20 5.00E+04
1 198 3.00E+08 180 5.00E+04
3 194 3.00E+08 20 5.00E+04
3 194 3.00E+08 20 5.00E+04
3 194 3.00E+08 60 5.00E+02
5 190 1.00E+10 100 5.00E+04
5 190 1.00E+10 100 5.00E+04
5 190 3.00E+09 60 5.00E+03
5 190 3.00E+08 20 5.00E+04
5 190 3.00E+09 140 5.00E+03
5 190 3.00E+09 100 5.00E+04
5 190 3.00E+10 40 5.00E+03
5 190 3.00E+09 140 5.00E+04
5 190 3.00E+10 20 5.00E+03
5 190 3.00E+10 60 5.00E+04
7 186 3.00E+09 100 5.00E+03
7 186 3.00E+10 100 5.00E+03
7 186 3.00E+10 100 5.00E+04
7 186 3.00E+09 20 5.00E+03
7 186 3.00E+09 140 5.00E+03
7 186 3.00E+09 140 5.00E+04
7 186 3.00E+10 40 5.00E+03
7 186 3.00E+09 40 5.00E+03
7 186 3.00E+09 40 5.00E+04
7 186 3.00E+10 60 5.00E+04
9 182 3.00E+08 20 5.00E+03
9 182 3.00E+08 60 5.00E+03
9 182 3.00E+08 20 5.00E+04
9 182 3.00E+09 40 5.00E+04

Figure 4.2: MCDE Parameters. The parameter layer represents the density of the tissues
being irradiation by the gamma-ray. The beam energy (MeV) refers to the kinetic energy carried
by protons when accelerated to high speeds. SimProtons represent the total number of simulated
protons used in the simulation study. The dose rate refers to the amount of radiation dose delivered
per unit of time. MU (Monitor Units) delivered are a measure used to quantify the amount of
radiation delivered to a patient.

4.3 The Task at Hand

Given the new shakeri-obe dataset (based off of real patients), the task naturally arises to study
it. We did the following;:

simulation will be repeated with the actual beam energy values in our future works, and the table will be modified
accordingly.

16

e We perform a dedicated hyperparameter study on both FCNs and RNNs with the real patient
data to determine results analogous to ”Equation” 3.1. This is Subsection 6.3.

e After attaining these results, we will compare them with those of previous works summarized
in ”Equation” (3.1). This is subsection 6.4.

e Finally, we found that the work in [25] in terms of its parallelized learning implementation
had flaws, causing completion of the preceding 2 tasks impossible. Thus, we implemented an
entirely new parallelized learning system, discussed in subsection 5.3.

We note at this point that we do not expect past results to transfer cleanly to the new data.
Importantly, data based off of real patients is likely more complex than water phantom data;
hence, models may have more trouble learning patterns in real patient data in general, and may
not perform as well. Though, due to differences in underlying order, certain architectures may also
be of advantage.

Though a water phantom has been used in some cases in research to simulate an actual patient,
there is neither sufficient evidence in practice nor a mathematical proof that one can actually fully
represent the other [2]. In a sense, two assumptions need to be taken to utilize a water phantom
instead of a patient: a homogeneous water phantom fully represents a heterogeneous actual patient,
and a water phantom can be ”developed” into the shape of an actual patient. This is hence a key
difference between using a water phantom versus real patient data.

17

5 Parallelized Learning

5.1 Challenges and Advantages of Parallelization

Distributed machine learning, as discussed in subsection 3.3, is one of the most exciting areas of
development in machine learning today. The advantages of parallelizing computations in a machine
learning context are many, but the most obvious one is the speed at which more complex models can
be trained on increasingly large datasets (see [19]). For example, consider the design of the research
in [1]: the hyperparameter study was necessarily split into two stages, the first with shorter baseline
studies and the second with elongated studies because of the time and resources it took to perform
runs for 4000 epochs. With our newly implemented parallelized system covered in subsection 5.3,
we regularly completely studies with 8000 epochs with 4 GPUs, and could run jobs with 32 GPUs
(given the node space). Though the resources constraint still exists, parallelized learning removes
much of the time constraint that limits research, for example [1].

However, distributed learning comes with a host of challenges [35]. Many of these are related
to low level implementation that a library such as PyTorch can wrap and "hide away” from the
end user. [25] utilized PyTorch’s Distributed Data Parallel (DDP) to train models across multiple
GPUs. In fact, the ease of developing models over multiple processors in PyTorch is a significant
benefit of the library over other deep learning libraries such as Tensorflow. The DDP process
involves distributing the input data in unique subsets among the various GPUs; each processor
then uses its given set of data to construct a model. With forward and backward passes, gradients
among the GPUs are synchronized and averaged, and weights are updated on the entire model.
Our parallelized learning implementation also uses DDP (albeit, one level up).

Unfortunately, challenges for the end user persist even with wrappers like DDP. In fact, the authors
of [3] — citing a host of implementation problems including “configuration difficulties”, “synchro-
nization bottlenecks”, and “complexities related to memory management and data distribution”
— opted for single-GPU training, only setting up a working DDP system in [25]. The following
subsection covers one such challenge in the form of an elusive bug, that, in fact, also plagued [25]
unbeknownst to them; the discovery of this bug is a contribution of our work.

5.2 The Validation-Test Gap

We detected the ‘Validation-Test Gap’ immediately after implementing our new parallelized learn-
ing system, BRIDE, which is covered in subsection 5.3. In short, one of the key limitations of the
code base we inherited from [25] was the lack of a testing set: there was only ever a validation set.
Because no hyperparameter tuning was being performed, a validation set and test set should have
been interchangeable, as both were simply holdout sets from the training data. (In other words,
during hyperparameter tuning models may be selected based on validation set metrics, effectively
invalidating their ‘unseen’ status, but in our case this does not apply.) For scalability and rigor,
however, we implemented a test set.

But, what we noticed, among several models, was that the validation accuracy was very high
(approximately 90%) on both BRIDE and the old code base. However, the testing accuracy on
BRIDE was very low in comparison (around 60%). For instance, the same run with the accuracy
learning curve in Figure 5.1 had the confusion matrix in Figure 5.2: validation accuracy is 88.2%,
while testing accuracy is significantly lower at 62.6%. This difference in accuracy came to be
known as the Validation-Test Gap. In our initial analysis of the bug, we accepted a ‘dichotomy
hypothesis’: either the validation accuracy was correct and the testing accuracy was incorrect, or
the testing accuracy was correct and the validation accuracy was incorrect (as any other situation
was very unlikely). Importantly, our implementation of the validation-train split was completely

18

max train acc: 0.9154483079910278, max val acc: 0.8823853731155396 —— train_acc
val_acc
accuracy
0.9
0.8 -
0.7 A
0.6 -
[=
&
0.5 |
0.4 4
0.3 A
0.2 A
0 1000 2000 3000 4000 5000 6000 7000 8000
epoch

Figure 5.1: Accuracy training curve of a certain model. See Figure 5.2

Confusion Matrix Accuracy: 0.626

E 0.053 0.03 0.044 0.043 0.031 0062 0.01 0.0053 0.0012 0043 0.019 0.0075
E 0.059 0.042 0.0044 0.001 0.068 0.01 0.021 0.042 0.0079 - 06
E 0.034 0.041 ELEERN 0.058 0.045 0.011 0.066 0.046 0.022 0.0062 0.0011 0.0079
E 0.045 0.028 0.051 m 0.044 0.028 0.0019 0.0063 0.019 0.046 0.071 0.0093 0.0071 03
% 0.042 0.029 0.03 0.03 ﬂ 0.053 0.039 0.017 0.01 0.067 0.00071 0.0047 0.0055
a 0.033 0.04 0.042 0.037 0.059 ﬂ 0.02 0.036 0.0014 0.0063 0.01 0.065 0.0088
g E 0.073 0.0062 0.011 0.0026 0.05 0.021 XS 0.11 0.01 0.0073 0.01 0018 0.069
B
E 0.011 0.0018 0.075 0.0061 0.024 0.046 0.11 AN 0.009 0.016 0.01 0.0081 0.072
E 0.0059 0.069 0.043 0.021 0.012 0.0012 0.011 0.0091 0.11 0.018 0.0069 0.069
E 0.0019 001 0.018 0.042 0.073 0.0062 00089 0.017 0.11 0.0084 0.011 0.07
E 0.042 0.019 0.0057 0.069 0.0023 0.01 0.0092 0.011 0.021 0.0¢ 0.63 0.11 0.067
& 0.023 0.047 0.0016 0.011 0.0054 0.071 0.02 0.01 0.01 0.11 0.61 [EeAeryN
% 0.0069 0.0076 0.008 0.0071 0.0069 0.07 0.068 0.065 0.059 007 0.068
123 132 213 231 312 321 124 214 134 314 234 324 44‘14
predictions

Figure 5.2: Confusion matrix of the model in Figure 5.1. There is a significant difference in accuracy
between these two plots.

19

independent of the old code base’s. Therefore, it seemed unlikely that the same bug would afflict
two completely different implementations, which gave us false intuitions from the start of our
experiments.

In the BRIDE platform, the train-test split happens in a file named pp2.py using sklearn’s
train_test_split method, while the train-validation split happens in a different file later in the
pipeline called utils.py using PyTorch’s random_split method. PyTorch Lightning, the high
level wrapper we utilized, has a dedicated method to pass in the validation set and a another
distinct method to pass in the test set. As previously stated, the two data splits taking place at
different times and using different methods in the pipeline should not have greatly affected pre-
dictive performance, as both the validation and test sets were "held out”. Our first experiments
consisted of swapping these methods and testing different changes to these splits; for example,
pandas.DataFrame.reset_index was called on the data after splitting (which also shuffles the
data) [Experiment 1, variations 1-3]. These, however, led to no changes in behavior.

Our first productive experiments came when we had the two holdout sets ‘swap places’ [Experiment
2]. We simply passed the test set to the PyTorch Lightning method where the validation set was
intended to go, and the validation set where the test set was intended to go. This resulted in a low
validation accuracy and a high testing accuracy, as shown in Figures 5.3 and 5.4, which correspond
to Figures 5.1 and 5.2. The results of these experiments suggested that the problem was not

max train acc: 0.7741764187812805, max val acc: 0.5981767773628235 —— train_acc

val_acc
accuracy

0.8

0.7

0.6

0.5

acc

0.4 1

0.3 1 |

0.2 4 |

0.1+

T T
0 200 400 600 800 1000
epoch

Figure 5.3: Accuracy training curve of a certain model. See Figure 5.4

with PyTorch Lightning. For example, we had theorized that Lightning may have been somehow
leaking the validation data to the model, but the tests proved this to be false. This meant that the
problem was with how the two data subsets were made.

Hence, we decided to cut the complexity of having two different files and did both splits using
sklearn’s train test_split method within utils.py, in the same setup method [Experiment 3].
setup is a part of PyTorch Lightning’s ‘DataModule’; in Lightning documentation ([15]) it was

20

Confusion Matrix Accuracy: 0.956

E BN 0.0063 0.0032 0.0026 0.0012 0.00092 0.0086 0.000360.00013 0 0.008 0.0014 0.00038|
0.0033 ﬂ 0.0048 0.0011 0.0024 0.0036 0.000297.9e-05 0.03 0.00048 0.0014 0.0092 0.00054
0.0024 0.0043 0.0037 0.000630.000730.00045 0.0041 0.0043 0.000337.1e-05 0 000011 -08
0.0045 0.0022 0.0074 0.0041 0.0034] 9.5e-05 0.0011 0.0026 0.028 0.000550.00021
0.004 0.0049 0.0013 0.0051 0.0084 0.0044 0.0012 0.00084 0.022 0 0.00013 0.0003
0.0012 0.0035 0.005 0.0022 0.0025 0.00065 0.0052 7.9e-06 1.6e-050.00028 0.031 6 5

0.013 9.5e-050.00019 0 0.0044 E).(J(:JE)E'-ZE 0.014 0.0013 0.000349.5e-05 0.0023 0.0044

truth

444 324 234 314 134 214 124 321 312 231 213 132

0.00029 4e-05 0.013 5.6e-05 0.00054 0.0058 0.015 E 0.0002 0.0011 0.000570.00033 0.0017

9.5e-05 0.012 0.0058 0.000530.000357.9e-06 0.0011 D.()(]E)42E 0.013 0.0015 0.00029 0.0042

0 0.00028 0.0016 0.0057 0.019 0.000170.00018 0.0013 0.025 ﬂ!).(!il!}l} 0.0004 0.0019

0.0058 0.000790.00019 0.0058 0 0.000210.000160.000480.00074 0.0001 puvi-Fam 0.011 0.0026
0.0019 0.0052 1.6e-050.000370.00014 0.0095 0.0019 0.000530.00042 0.002 0.024 0.0072

0.000240.00013 5.6e-050.00029 0.0005 0.00023 0.0094 0.0056 0.0077 0.0093 0.0042 0.0085

123 132 213 231 312 321 124 214 134 314 234 324 444
predictions

Figure 5.4: Confusion matrix representing ’testing’ accuracy of the model in Figure 5.3. There
is a 'reversed’ (from the ones observed in Figures 5.1 and 5.2) significant discrepancy in accuracy
between the two plots.

recommended to do train/test/validation splits in this method. Previously, only the train-validation
split was happening in this method. But, this produced the same results as in Experiment 1: we
performed the same operation in the same location to produce the test and validation splits, but a
gap in accuracy still occurred.

After performing several more fruitless experiments, we finally performed the key experiment,
Experiment 6, which was the ‘converse’ of Experiment 3: we implemented both dataset splits in
pp2.py [Experiment 6]. The result was that validation accuracy decreased dramatically, as in
Figure 5.3, and no change in behavior for the test accuracy was observed. This indicated to us
that the issue may have been with the setup method. After doing deeper research into the setup
method, we found that it was called on every GPU. This explained the seemingly lack of difference
in the two sets in Experiment 3; testing is always done on one GPU, but training is performed
using multiple.

We found a clear explanation for the validation-test gap: as setup was called once for every GPU,
the (randomized) train-validation split was happening once on every GPU. This would cause an
obvious 'data leak’ as the model would gain exposure to (have its weights updated based upon and
learn from) most of each of the validation sets, as the randomized split would cause some validation
data to be part of the training data through the multiple GPUs; this hence would lead to a high
validation accuracy since the model would have already trained on it. We had two immediate reser-
vations with this explanation. First, how was the validation accuracy calculated when there were 4
different validation sets? Second, the PyTorch Lightning documentation specifically recommended
that dataset splits using the setup method. For the first reservation, it was found that Torch-
Metrics ([24]), PyTorch Lightning’s dedicated API to create custom metrics, wraps an averaging

21

calculation which does indeed take into account validation sets on different GPUs (TorchMetrics
calls something similar to PyTorch’s torch.distributed.reduce method which averages across
GPUs). For the second reservation, we found that it is expected to set the seed of the random
dataset splits in setup, which we did not do at first.

To confirm our explanation, we did two additional experiments. First, we ran two identical jobs,
except one on 2 GPUs and the other on 1 GPU [Experiment 7]. The result was that the 1 GPU job
had a validation accuracy similar to that in Figure 5.3, and the 2 GPU run produced a curve like
that in Figure 5.1, which was consistent with our explanation. Finally, we tried setting the seed of
the split in setup by placing an optional argument in the random split method [Experiment 8].
This again produced a curve as the one in Figure 5.3 and a testing accuracy similar to Figure 5.4,
where the training accuracy was high but both validation and testing accuracies were low. This
final experiment was hence our ”solution” to the Validation-Test Gap.

This work on the Validation-Test Gap thus constitutes both an important part of the research
process but also a contribution to the scientific community. It demonstrates the difficulties of
distributed learning and a specific complication, extending to a widely used machine learning
library, that must be addressed when doing multiple-GPU training. Finally, it also explains a
mystery in Ref. [25]. In Table IV, it can be seen that there is gap in validation and train accuracy
disproportionately affecting the 1 GPU runs. The code base in [25] does not set a seed for the train-
validation split; this gap can hence be explained by the data leak happening on their multiple-GPU
runs, creating a falsely optimistic validation accuracy for those runs. The runs on 1 GPU, in a way,
represent the "true” validation accuracy where data leak was not taking place. This also explains
our initial observation that the bug was at furst in two independent code bases.

22

5.3 The BRIDE Platform
5.3.1 The Need for a New Development Platform

The need for a new development platform, encompassing both the scripts used to run tests and
the theoretical structure underneath, became apparent from the code of [1], [12], and [3]. We
have divided problems into 3 problem areas, each with multiple goals, which will be presented in
descending order from high to low level.

Problem Area 1 (Discontinuity in the Big-Data REU Projects)

The Big-Data REU project’s® nature can be described as a discontinuous, collaborative project. It
is discontinuous in that substantive work is contained to 8-week periods each summer, and each
period of work is completed by a unique team. It is collaborative because each of these separate
teams are working towards the same goals. Any combined code platform to ensure progress must
address these to aspects of the project.

Goal 1.1 (Minimum: reproducibility)

At a very minimum, a platform must allow for the efficient and exact reproduction of past years’
results. This result should not be difficult to fill, hence its description as a ‘minimum’. Any robust
and well organized code base should achieve this objective.

Goal 1.2 (Expandability)

To effectively address the challenges posed by the discontinuity of the project, a platform must
facilitate the subsequent years’ teams building upon the work of previous years. The most simple
version of this is Goal 1.1: copy-and-pasting past years’ code. While this approach is not inherently
incorrect, it is grossly inefficient compared to a truly expandable system.

From past years’ work, there is a certain lack of continuity between teams. This, to an extent,
is natural and necessary due to the new contributions each team is making. However, the project
would benefit from the genuine reuse of code.

An example of this is the work in [3], in which there was a switch from Tensorflow to PyTorch.
This constituted for an entirely new code base. However, a platform fulfilling Goal 1.2 would
avoid this. Creating models is merely one part of the larger statistical learning workflow; ideally,
the development platform would allow for the building upon of prior code, even if major updates
such as a change of machine learning library are made (though this may not always be the case
practically).

Problem Area 2 (Rigorous Testing and Flexible Experimentation)

From a design perspective, the central needs of the research tasks come together to form a set of
guidelines for a statistical learning platform. Notably, as scientific research, the project necessitates
meticulous record keeping and adherence to a rigorous set of machine learning principles. However,
the researchers must also experiment with novel model architectures, which requires a degree of
flexibility. This highly structured process on one hand prevents us from using any machine learning
library ”straight out of the box”, which would otherwise be perfect for flexibility. On the other
hand, the necessary flexibility of the project means we cannot ”hard-code” a specific machine
learning model.

3The single project [1], [12], [3], and this work all contributed to.

23

Goal 2.1 (Rigorous Testing)

The testing of a machine learning model involves evaluating performance and identifying an poten-
tial issues. The goal is to ensure that the model is reliable and ”accurate”.

1. Firstly, the code platform should enforce certain rigorous machine learning practices to ensure
that testing is done correctly. Seemingly insignificant choices can become hugely damaging
when data leaks happen, as in Subsection 5.2 in the form of a parallelization bug. There
are also many other examples of this. For example, in subsection 5.2, it is mentioned that
hyperparameter tuning based on a validation set effectively makes that data ‘seen’ by the
model. Another example are data transformers: it is common to transform data during
preprocessing using scalers. These scalers have to be fit to data; however, it is important that
they are only fit to training data, and not testing data. Otherwise, a data leak would occur
from this scaling transformation.

2. Second, data visualization and analysis can be key in gaining insight on different methods.
An effective platform should wrap this functionality into one of convenience and high quality.

3. Third, documentation in the sense of keeping a record of all runs is vital; a second challenge
is organizing records so that the most important ones are highly accessible. An automatic
record-keeping system is not automatic in most platforms.

Goal 2.2 (Flexible Experimentation)

The structure of Goal 2.1 must be balanced with a certain flexibility to define and experiment
with new models. This means ”"hard-coded” models such as those in the repository associated with
Ref. [9] do not work. There are essentially two parts to this goal. First, the work of implementing
a new model or preprocessing pipeline must be minimal; defining a new model should be as close
to writing the code for just the model as possible. Second, a related but separate requirement that
precedes the first is modularity. In order to be modular, a platform must separate at logical points
the whole process of machine learning. This separation can also lead to minimal overhead, as a
modularity will only mean changing one part of the code without affecting the rest.

Problem Area 3 (Readable Code)

This area less complex: low level code must follow correct practices.

Goal 3.1 (Readable Code) As some code platforms can become extremely complex, code must
be inherently “readable” in order to make changes in the future. This requires, as an example, an
amount of comments directly in the code explaining each process, along with incorporating widely-
used and understood coding practices. This also goes along with documentation of the research
platform.

5.3.2 Description of the BRIDE Platform

With the problem areas in Section 5.3.1 in consideration, this research designed and implemented
the Big-Data REU Integrated Development and Experimentation (BRIDE) Platform. The BRIDE
platform is coding workflow with an ontological structure; it can be described as having three
"levels”:

1. First, it is abstractly a set of guidelines defining a statistical learning workflow.

24

[Raw data collection]
Preprocessing pipeline |:

* Missing data handling

+ Initial featt_lre extraction
and selection
[\‘
/ * | Training dataset | Test dataset I
\ J
Preprocessing pipeline 2: —l [+ Final preprocessing pipeline]

p
+ Feature scaling Processed
* Dimensionality reduction: |_ training dataset
+ Feature selection l
+ Feature extraction ——
Machine learning
Hyperparameter choice + training —/ k—falgmlﬂ'lm Evaluate

r‘—\
Iterate and evaluate Predictive model
via cross-validation candidate

N ————

TR
Final Apply [—]
predictive model New dataset

[+ Final preprocessing pipeline]

Figure 1.9: Predictive modeling workflow
Figure 5.5: A typical statistical learning workflow [32].

2. Second, at a general level it is a set of requirements defining a specific ‘class’ of code?.

3. Third, at the physical level, it is code in the UMBC HPCF Ada cluster at the path
/nfs/rs/cybertrn/reu2024/team2/base/.

The following sections describe BRIDE along these three levels of thinking.
Level of BRIDE 5.3.2.1 (High-Level Workflow)

Figure 5.5, from Ref. [32], depicts a standard workflow for applying statistical learning to inference
tasks. This workflow was used as our guideline: it dictates an organized research process and
enforces a certain rigor in the results. For example, BRIDE allows for a dedicated testing set,
which is particularly important as reusing the same validation data subset multiple times to perform
hyperparameter tuning causes it, in a way, to become part of the training set [8]

With these considerations in mind, the following platform structure, as displayed by Figure 5.6,
was designed to provide a strong foundation for our work. This figure is a one-to-one description
of BRIDE’s existence as a workflow. Also, note that PP1 and PP2 are formally split by where the
train-test split happens. PP1 contains preprocessing that is row independent (the transformations
are independent for each row). In practice, this means PP1 will contain tasks such as converting
raw data to a two dimensional array, class balancing, cleaning data, and making labels continuous,
while PP2 will contain tasks including scaling, normalization, and feature selection and engineering.

There are some structures to note about the design of the BRIDE platform as a workflow:

4Note that this description may be misleading, as we don’t expect the number of objects belonging to this ‘class’
to exceed 2 or 3.

25

Raw Data e Preprocessing 1 (PP1) Datasets

base/raw_data/ base/ppl/data/

base/ppl1/

Ready to Train/Test (RTT) Data

intTest Split

Preprocessing 2 (PP2)

Testing Data

< Training Data

base/pp2/data/

base/pp2/

T The BRIDE
Platform

base/
— Candidate Model | \|odel Evaluation
base/logs/ base/eval/

Figure 5.6: A flowchart of the structure of BRIDE.

e BRIDE has modularity, in that each process is standalone. This fulfills Goals 2.2 and 1.2.
In particular, the latter goal is fulfilled because the modularity makes it so changes can be
entirely focused on one section of the code base, making development and expandability easier.
For example, as model evaluation is separated from model building, one could implement a
new library wrapper for model building (e.g. from TensorFlow to PyTorch) without changing
model evaluation.

e Rigorous generalization performance evaluation is built into BRIDE. This is related to Goal 2.1.
By enforcing where the train-test dataset split happens, BRIDE prevents the issues discussed
under Goal 2.1 from taking place.

e BRIDE also has ”clean” and simple code, as the separation of processes is conducive to the
systematic organization of code files into distinct folders. This fulfills Goal 3.1.

Level of BRIDE 5.3.2.2 (Modular Code System)
BRIDE’s modular code system is essentially a set of requirements. BRIDE, on this level, is a

26

set of files organized in a Linux-like system with the aim of providing an effective place for re-
search. The first and most important requirement is that each job, which corresponds to a
particular run, has a unique identification code called a run_id, which is a string. The impor-
tance of unique run_id’s cannot be overstated; much of the functionality and record-keeping
aspect of BRIDE is built around the run_id. The naming scheme used in Level 5.3.2.3 was
initialsMonthDigits.DateDigits_id-string. For example, this could be mc7.18_imFCNv2.

It is assumed that there is a base directory in a Linux-like file system called base/, which contains
an entire BRIDE object. In base/, there are a number of directories:

e base/config/: contains run_id.yaml files, each of which is the configuration for one run.

e base/runs/: contains run_id directories, each of which has a train.sh script for machine
learning experiments, a predict.sh script for model evaluation, and a slurm output direc-
tory for slurm output files.

e base/logs/: holds the logs of each run, the nature of which will depend on the implementation
of the run.

e base/eval/: contains run_id directories, each of which has files from model evaluation de-
pending on the implementation.

The base/ directory must also include the below Python scripts:
e model.py contains the Python code to build models.
e train.py contains the Python code to do the machine learning experiments.
e predict.py contains the Python code to do model evaluation.
e utils.py contains all auxiliary Python code.

Finally, base/ also contains the three directories base/raw_data/, base/ppl/, and base/pp2/,
which comprise the BRIDE platform’s preprocessing pipeline. This pipeline has multiple require-
ments relating to file types and data shapes:

e base/raw_data/ contains directories, each of which has the raw data to be put through PP1
to make a dataset.

e Datasets are comma-separated values (.csv) files inside base/ppl/data/. They therefore
must be 2 dimensional; they also must be a feature matrix with a rightmost target column
attached. Labels in the target column must be continuous integers starting at 0. The labels
should be balanced, and there must not be missing data.

e base/ppl/ contains directories that hold PP1 routines. These directories contain Python
scripts that are called by ppl.sh to run a PP1 routine which is one of only two files in
base/ppl/. Intermediate files also reside in these directories. The other file in base/ppl/
is visualize.py, which outputs visualizations to base/ppl/visualize/. This directory is
filled with directories with the same name as the datasets (without the .csv extension).

e Ready-To-Train (RTT) data is organized in base/pp2/data/. This folder contains directories,
each of which is the result of running a PP2 routine on a dataset. Each of these directories
contains 2 directories, base/pp2/data/name/train and base/pp2/data/name/test. These
directories have files the names X.npy and y.npy. These are the files that must be used by
the machine learning experiments section code.

27

e base/pp2/ is organized in exactly the same format as base/ppl/. However, the only addi-
tional requirement is that the train-test split must be the first event that happens in the PP2
routines. For this section, sklearn’s Pipeline class is recommended but not required. It is
imperative that the transformers and scalers are fit to the training data and not the entire
dataset. Also, tt is intended for the ppl.sh and pp2.sh scripts to be run from the command
line.

The above restrictions enforce a well defined workflow in base/. New PP1 or PP2 routines are
simply folders in base/ppl/ or base/pp2/. Once a set of RTT data and a machine learning model
have been defined, a run_id is made up by the user. The user makes a file in base/config/ called
run_id.yaml and completes it. They then construct a directory in base/runs/ that is named the
run_id and make a train.sh script (or, more likely, copy it). The user then submits the run. Once
the run is finished, they make/copy a predict.sh script, get model files from base/logs/, and
make them accessible to the prediction script (most likely through placing them in the .yaml file)
to run prediction on the files in a base/pp2/data/name/test/ directory. The results are saved in
base/eval/.

We discuss how some of the goals from subsection 5.3.1 are fulfilled by this modular code system.
By constraining file types and data shapes, each component of the platform can be adjusted without
effect on the rest of the process. For example, since model evaluation always takes in a y_pred.npy
file and a y_truth file, it can be rewritten once and both sklearn-based models and PyTorch neural
networks can be used. This fulfills Goal 2.2. Next, the run_id requirement ensures that there is
no overwriting, so records for runs are persistent as well as organized and accessible. This ensures
Goals 1.1 and 2.1 are met. The ease of implementing new PP1 or PP2 routines as directories, or
new models in model.py, fulfills the first part of Goal 2.2.

Level of BRIDE 5.3.2.3 (Actual Code Implementation)

The actual code, in the ada cluster, can be found at the GitHub repository [11]. The notebook
at [10] contains a number of runs and the first major updates to the code base. The following list
discusses a number of decisions regarding the code implementation for each process in the workflow:

e The rather involved preprocessing pipeline architecture was unfortunately not used to its full
potential due to a lack of time. The pipeline in subsection 4.1 was used, with some minor
changes. base/raw_data/ contains MCDE output in appropriately named directories. PP1
is the conversion, shuffling, and merging steps from the original pipeline, along with a short
script to make the labels continuous. PP2 is the transform step, after a split is done. The
transformer is fit to the train data, and both the train and test data are transformed by it.

e As mentioned, PyTorch Lightning [15] is used for this machine learning process. This has
made training on multiple GPUs seamless and virtually bug free. The file model.py con-
tains classes, each of which inherits lightning.LightningModule and defines a model. Fig-
ure 5.9 contains an image of this. In addition to hyperparameters for models, yaml files in
base/config/ also contain fit and data parameters. Figure 5.7 contains an image of one such
file. utils.py contains a single Lightning DataModule class. Tensorboard is used to visualize
training curves real time, and uses base/logs/tb_logs/run_id/. An image of the interface
is shown by Figure 5.8. There is also a CSVLogger and checkpointing call backs saving to
base/logs/.../run_id/.

e predict.sh, as shown in Figure 5.10, calls both predict.py, which saves files to base/eval/run_id/,
and base/eval/eval.py, which creates a confusion matrix, saving it in base/eval/run_id/
and saves learning curves to base/logs/csv_logs/run_id/...

28

e We also utilized multiple archive/ directories to keep the the directories organized and
”clean”. We also had up-to-date ‘template’ files for .yaml files or the training and prediction
scripts for users to copy for runs.

Further technical code details can be found in [11]. A limitation of BRIDE, at this point, is a lack
of a completely separate testing dataset (of which is not a data subset), though this is not required,
or even used, in many cases. The simple train-test split is appropriate in most cases.

base »> config > mc8.1_imFCNv8.yaml|

run_id: 'mc8.1_imFCNv8'
pred_ckpt: ''
resume_ckpt:
md1l_key: "impr_fcn'

GELEH
train_data_path: '/nfs/rs/cybertrn/reu2024/team2/base/pp2/data/barajas/train/"
test_data_path: '/nfs/rs/cybertrn/reu2024/team2/base/pp2/data/barajas/test/"'
batch_size: 4096
val_split: 0.1

fit:
max_epochs: 2000
n_nodes: 1
n_devices: 4
patience: 500
ckpt_freq: 100

model:
input_size: 15
num_classes: 13
hidden_layers: [256, 256, 256, 256, 256, 128, 128, 128]
activation: 'relu'
lr: 0.001
lr_step: 250
1r_gam: 0.95
penalty: 1.015
dropout: 0.05
12: 0.01

Figure 5.7: An example .yaml file inbase/config/

29

5 Tensorsoard x o+

O localhost:6006/timeserie: % Relounch to update. |

£ Al Bookmarks

LARS HPARAM INACTIVE -0 Cc 0

Q Fiteruns (rege Q Fitertags (rege Al Scalars Image Histogram ¢ settings
@ ne @ t ime v Settings X
@ vesiono ° rain_ace. epoch v cenena

rain_ace.step v
@ vesons °

train loss v
@ vesonz °

vald_ace_epoch ~
@ vesons

valid_ace.epoch b

0 e o ek WK 00 206 11505

Rnt vVl Sep Relve
@ veono 053 2458 27s4min
© vesiond 0873 2425 2763min
@ wesion2 055 15125 1707k

HISTOGRAMS

valid_ace.step

valid_loss

Figure 5.8: An image of Tensorboard in use.

ImprovedFCN(pl.LightningModule):
__init__(self, input_size, num_classes, hidden_layers, activation, lr, lr_step, lr_gam, penalty, dropout=0, 12=0):
super().__init__ ()
self.save_hyperparameters()

self.train_acc = Accuracy(task='multiclass', num_classes=13)
self.valid_acc = Accuracy(task='multiclass', num_classes=13)

self.test_acc = Accuracy(task='multiclass', num_classes=13)

self.input_size = input_size
self.num_classes = num_classes

self.hidden_layers = hidden_layers
self.activation = utils.get_activation(activation)

self.dropout_layer = nn.Dropout(dropout)

self.lr = 1r
self.lr_step = lr_step
self.lr_gam r_gam
self.12 = 12

self.penalty = penalty
self.optimizer_pointer = None

Figure 5.9: An example model.py class.

30

run_i

PROGRAM_BASE=/nfs/rs/cybertrn/reu2024/team2/base
config_path="'../../config/'
config_path+=${run_id}

config_path+="'.yaml'

module load Anaconda3/2023.09-0

source /usr/ebuild/software/Anaconda3/2023.09-0/bin/activate
echo "activating conda environment..."

eval "$(conda shell.bash hook)"

conda activate /nfs/rs/cybertrn/reu2024/team2/envs/ada_main
echo "conda environment activated."

export NCCL_DEBUG=INFO
export PYTHONFAULTHANDLER=1

Figure 5.10: An image of the predict.sh file.

31

6 Results

6.1 Initial Testing

We began by trying a wide range of machine learning models. These were broadly under the two
categories of ensemble learning based off of decision trees and deep learning architectures designed
for tabular data, as our data is essentially tabular in nature. However, our data is not heterogeneous,
which could explain the relatively poor performance of these models, among other factors.

Random Forest, a machine learning method that utilizes an ensemble of decision trees to reach a
single prediction, was found to have fair accuracy in previous research [6]. When using sklearn’s
RandomizedSearchCV for hyperparameter tuning, the most accurate Random Forest model, also
applied in sklearn, obtained a validation accuracy of 54%. As these poor results may have been due
to the model not being able to capture the complex patterns of our data, we turned to more intricate
models, including gradient boosting algorithms. Gradient boosting algorithms are ensembles that
also combine multiple decision trees; however, their sequential nature optimizes the model based
on its previous iterations, leading to a more accurate model overall. We implemented three types
of gradient boosting: XGBoost, Light GBM, and the Gradient Boosting Machine (GBM). Out of
the three, an XGBoost model with tuned hyperparameters by RandomizedSearchCV achieved the
best results; in 5-fold cross validation, validation accuracy was 64% on the feature engineered data.
Light GBM validation accuracy was poorer, at 50%; however, this output was obtained on barajas
data, which does not include several features that are present in the feature engineered dataset,
and no hyperparameter tuning was utilized. Lastly, the GBM performed the poorest. Validation
accuracy was 48% for both the barajas and feature engineered datasets, and the model took
significantly longer to train than XGBoost and Light GBM.

As results for gradient boosting models were fairly poor, TabNet, a deep neural network archi-
tecture for tabular data, was implemented. TabNet has been shown to have comparable or even
better performance than gradient boosting; in particular, it combines the benefits of both tree-
based learning and neural networks. [22]. In the model, two feature transformers and a mask
function prioritize features based on importance, not unlike that of which tree-machine learning al-
gorithms. The outputs of these are then fed into a fully connected layer and attentive transformer,
eventually leading to the final prediction. We utilized the TabNetClassifier from PyTorch-tabnet.
Implemented with early stopping with barajas data, a TabNet model had a validation accuracy of
52%. In an attempt to improve upon this, RandomizedSearchCV to tune model hyperparameters
was used; however, accuracy only increased to 55%. Though, early stopping of a few number of
epochs was again utilized; training the model for a greater number of epochs with each random
search iteration may increase accuracy, but would greatly increase the training time (for random
search, runtime was already over 48 hours). As these TabNet results were uncharacteristically poor,
we explored DANet, a deep abstract neural network for classification and regression with tabular
data. The model framework combines several components called Abstract Layers, which do feature
selection and abstraction, into a basic block; many basic blocks stack into a single DANet network.
On the barajas dataset, DANet obtained a validation accuracy of 49%; this result, though, was
lower than most tested of the other models.

As previously stated, a Gated Recurrent Unit (GRU) is a RNN layer that excels at capturing
sequential patterns and in handling long-term dependencies. The gating mechanisms in a GRU
reduce overfitting on model training data, which is especially beneficial for complex datasets such as
ours. We implemented a neural network model composed of four GRU layers and 2 fully connected
layers. Based on shakeri-obe data, there was a validation accuracy of 52%. However, on dataset
of 8271 rows that was a subset of shakeri-obe, a much higher validation accuracy of 69% was

32

achieved (training accuracy was 80%), which is somewhat strange as more training data normally
leads to greater accuracy, but this may be attributed to the model capacity being too large for the
small dataset.

In addition to our other hybrid models, a neural network consisting of both convolutional and
LSTM layers was performed. Convolutional neural networks (CNN), which are a type of feed-
forward neural networks, consist of convolutional layers which combine input data with a convolu-
tion kernel to form a transformed feature map. These layers are arranged so that they usually learn
simpler data patterns first, and more complex ones later. As CNNs are widely used for complicated
tasks such as object recognition, we combined their convolutional layers and the intricate LSTM
layers to form this CNN+LSTM hybrid model. Trained on a barajas dataset that was also feature
engineered, 61% training and 62% validation accuracy was achieved. However, when trained on
barajas that did not include the new features, there a significantly lower accuracy of 51% for both
training and validation; this suggests that this type of model may have benefited a certain amount
from the feature engineering, unlike our LSTM or FNN models.

6.2 Water Phantom Data

Instead of directly comparing our results from the study on RP data in subsection 6.3 with the past
results on WP data (3.1), we opted to try to reproduce these WP results on BRIDE. There are
clearly new challenges and subtle differences when using a new code implementation; we thought it
would be best to compare RP results on BRIDE with WP results on BRIDE. Also, note that most
of the initial results were tested on the water phantom dataset (barajas) as it has the most total
samples of scatter data (1.8 million rows) in comparison to newly simulated real patient medium
data (shakeri-obe) (499 thousand rows). It is a fundamental principle of machine learning that
more training data usually gives neural networks better predictive power and better generalization
ability [32]. The best performing models and architecture choices, when trained on the water
phantom data, may be compared with their ability when trained and tested on the simulated
patient data.

6.2.1 FCN Models

A naive approach to hyperparameter tuning was utilized to determine the best FCN model on the
water phantom data, with heavy guidance from Section 3.1. We first implemented a baseline model
based on Section 3.1, which was tuned to reach a model that achieved 65% accuracy, comparable to
the nonresidual model in that Section ®. The hyperparameters of that model are listed in Table 6.1.

5We were never able to implement a residual block model, so all FCN models in the results section are non-residual
and will be compared to the corresponding result in Section 3.1.

33

Hyperparameter Value
Hardware 4 rtx6000 GPUs
Validation split 0.1
Batch size 4096
FC layers [15, 256, 256, 256, 256, 256, 128, 128, 128, 13]
Learning Rate 0.001
Learning Rate Change 0.95
Learning Rate Step 250
L2 0.01
Dropout 0.05
Loss Function Cross Entropy + Custom Pairwise Loss (p=1.015)
Optimizer AdamW
Activation Function ReLU

Table 6.1: FCN Water Phantom Reproduction Hyperparameters.

The learning curves and confusion matrix of this model are shown in Figures 6.1 and 6.2.

max train acc: 0.6834755539894104, max val acc: 0.6896485686302185

TR e P E A B B Y e O ok o Iy T Nt S v e e e

o

06
05
04

03

1000

°
2
g

400

Figure 6.1: Learning curves for FCN reproduction on the water phantom dataset.

Custom Pairwise Loss Function In Table 6.1, the model’s loss function was listed as ‘Cross
Entropy + Custom Pairwise Loss (p=1.015)". The Custom Pairwise Loss is a function we designed
to boost the accuracy of models by penalizing wrong predictions outside the correct event type more
than those inside the correct event type, with the three event types being true triple, DtoT, and
false triple. It seems that an inherent flaw in the current PP1 is that the machine learning model
does not ”recognize” that of the 13 classes, the first 6, the 6 after that, and the last class form 3
defined groups. This is an order in the data that would be difficult for the model to learn; hence, it
may be beneficial for the model to automatically know of the 3 groupings. We defined the custom
pairwise loss term Lp to be

Lp=(1+avg((D-1) - p))" (6.1)

34

Confusion Matrix Accuracy: 0.649

o 0.078 01 0025 002 0029 0043 0017 00011 0 0027 0.0093 0.0023 o7
y
s 0.09 m 0.04 0 0.055 0.021 0.000570.00029 0.049 0.0079 0.017 0.019 0.0023
m
- 0.6
U 0.059 0.033 [VAE 006 0022 0.02 0.0094 0.048 0.023 0.0071 0.0017 0.00029 0.0024
N
I 003 0.044 009 [GKEM 002 0.075 0.00014 0.0011 0.016 0.019 0043 0.013 0.0021
o - 0.5
0.033 0.066 0.065 0.034 SN 0.096 0.022 0.015 0.0091 0.041 0.00029 0.0017 0.0033
0.058 0.031 0034 0.09 o.(:m 0.011 0025 0 00013 0.018 0.041 0.0044 04
0.045 0.0051 0.021 0.0011 0.033 0.02 ﬂ 0.2 00087 0.004 0.006 0.01 0.052
0.013 0.0017 0.048 0.0053 0.019 0.032 014 mo.oosg 0.011 0.0066 0.0029 0.057 0.3

0.005 0.05 0046 0.02 0012 0.0013 0.0039 l).(lEM? 0.12 0.012 0.0031 0.047

0.0019 0.014 0.027 0.036 0.05 0.00 0.0037 0.01 0.15 m 0.004 0.005 0.054 0.2

0.034 0.023 0.0057 0.039 0.0011 0.011 0.0037 0.0049 0.012 l).(ltilam 0.15 0.045

0.1
0.021 0.038 0.0013 0.015 0.0049 0.039 0.0076 0.0056 0.0051 0.0049 0.2 0.61 QEE]

0.0057 0.0051 0.0046 0.0064 0.006 0.0039 0.044 0.044 0.054 0.046 0.052 0.046

444 324 234 314 134 214 124 321 312

0.0

Figure 6.2: Confusion matrix for FCN reproduction on the water phantom dataset.

where h is called the penalty (and is a hyperparameter), D is a 13x13 matrix, and 7" and P are
the target and prediction matrices, respectively. T and P are the one-hot encodings of target and
prediction vectors, and are of shape 13x[batch size]. D;; is the penalty factor for classifying class i
as j. We used

20
20
20
20
20
20
20 (6.2)
20
20
20
20
20

-

I
GO OO CO OO0 CO OO DN NN NN O
00 00 00 00 C0 OO0 DN DN NN O N
00 00 00 00 00 OO0 DN DN N O NN
00 00 00 00 00 OO0 DN DN O N NN
00 00 00 00 C0 00 DN O NN NN
00 00 00 00 C0 00 O N NN NN
NN NDNOOC 0 0o 0o o
NN ODNOC 0o o 0o 0o
NN ONDN C G 0o o 0o
NN ONDDNDDNC o 0o 0o 0o
N O NN DNDN C G 0o 0o 0o
O NN NDNDNC GO Co Co 0o 0o

20 20 20 20 20 20 20 20 20 20

[\]
[an)
[\]
[en)}
[es}

Hence, the quantity avg((D -t)-p) will be greater if guesses outside the event type are made. This
penalized more so for false triples. The syntax ‘Cross Entropy + Custom Pairwise Loss (p=1.015)’
is a bit misleading: Lp is typically somewhere between 1 and 2, so it is actually multiplied by the
cross entropy loss function. From our tests p must be slightly greater than or equal to 1 for the
loss to function properly. We believe that further adjustment and experimentation with this loss
function could lead to a large improvement in model performance.

We tested the performance of the Custom Pairwise Loss function on an arbitrary run and found
it led to an increase, although small, in training, validation, and testing accuracy of 1%, 1%, and

35

0.1%, respectively. See mc7.27_imFCNv1 and mc7.28_imFCNv1 in [11].

6.2.2 LSTM Models

Extensive model architectures and variable hyperparameter explorations were manually explored
through training and testing versions of the LSTM-FCN on the barajas water phantom data.
Constant hyperparameters throughout these trial runs are displayed in Table 6.2

Hyper-parameter Value
Hardware 2 RTX6000 GPUs
Batch Size 4096

Loss Function CrossEntropy
Optimizer Adam
Activation Function ReLLU
LSTM Layers 4
Learning Rate 0.001
Learning Rate Change 0.95
Learning Rate Step 400
L2 Weight Decay 1x1077

Table 6.2: LSTM Parameters for barajas Water Phantom Dataset

Following the architecture from [3], a model with 4 LSTM layers followed by 12 linear fully
connected layers (instead of 16 as to explore the results of some modest model simplification), with
256 neurons in all layers, was trained on the barajas dataset consisting of 1.8 million rows with a
validation split of 20%. The variable parameters of this run are shown in Table 6.4:

Hyperparameter | Value
Validation split 0.2

LSTM Layers 4
FCN Layers 12
Neurons 256

Table 6.3: 4-LSTM 12-FCL Initial Testing Variable Parameters

The model achieved maximum training and validation accuracies of 76% and 64.3%, respectively,
over 500 epochs; however, the model began severely overfitting around epoch 250, as observed by
the validation loss and accuracy curves in Fig. 6.3. Thus, the run was ended at this relatively early
epoch due to the intense overfitting observed.

36

max train acc: 0.7621250748634338, max val acc: 0.6382268071174622

accuracy

0 100 200 300 400 500

Figure 6.3: Top: Training (blue) and validation (orange) accuracies. Bottom: Loss over epochs
for 4-LSTM 12-FCN 256 Neuron run showing clear overfitting and validation loss divergence.

In addition, the testing accuracy on a proper holdout set of size 10% was only 61% by the end
of training, as displayed in the confusion matrix of Fig. 6.4. During prediction, the overfitting
model correctly classifies both doubles and triples to similar percentages, although misclassifying
adjacent doubles’ classes to much larger degrees. In particular, it misclassifies class 6 doubles (124)
as class 7 (214) 27% of the time. There is also similar behavior in the model misclassifying class
8 (314) as class 9 (134), class 10 (234) as class 11 (324), and vice versa. We can conclude that
the model predicts the false event in the triple accurately, but often has trouble determining the
correct ordering of the underlying doubles scatter.

37

Confusion Matrix Accuracy: 0.615

0.093 0.042 0.023 0.025 0.041 0.068 0.01 0.0027 0.00029 0.029 0.019 0.0046
0.066 pusRivam 0.035 0.037 0.077 0.037 0.0036 0.00057 0.05 0018 0017 0032 0.0057 _ 06
0.12 0.03 LUEI-EN 0.065 0042 0.03 0.029 0.048 0.033 0.019 0.004 0.00071 0.0047
0.031 0.038 0.079 EEELEN 0.045 0.1 0.00057 0.0029 0.016 0.035 0.042 0.019 0.004 - 05
0.044 0.059 0.036 O. ﬂ 0.071 0.035 0.018 0.0086 0.051 0.0011 0.0039 0.0054
0.043 0.038 0.027 0.046 0.081 gNEE 0.022 0.029 0.00043 0.0027 0.0097 0.052 0.0043
0.052 0.0047 001 0.001 0034 0.019 ﬂ 0.095 0.01 0.0074 0.0067 0.012 0.057

0.021 0.0017 0.036 0.0047 0.022 0.031 | 0.27 -E).(JCJGG 0.016 0.0096 0.0076 0.057

0.005 0.05 0.039 0.022 0.017 0.0013 0.011 0.009 m 0.15 0.017 0.0037 0.066

0.002 0.012 0024 0.036 0053 0.0037 0.0067 0.02 0.14 l).(ll]?il 0.009 0.062

0.032 0.028 0.004 0.041 0001 0.021 0.0053 0.0077 0.015 0.0051 g 0.23 0.058
0.02 0.041 0.001 0011 0.0049 0.051 0.013 0.0071 0.0047 0.009 0.11 ﬂ 0.063

0.006 0.0053 0.003 0.0057 0.0059 0.0047 0.057 0.058 0.053 0061 0.06 0.062

Figure 6.4: Confusion Matrix of 4-LSTM 12-FCN 256 Neuron run showing percentages of test set
predictions in each class.

This suggested that simplifying the model architecture more could offer improvements in accuracy
by decreasing overfitting. Despite the employment of dropout and weight decay, the dimensions
of the model seemed to be too large, causing overfitting of training data. Improvements on the
multi-layer LSTM-FCN model were made by simplifying the model architecture to 4 LSTM layers
and 4 Linear Layers with 128 neurons per layer. In addition, the validation split was lowered as
to supply the model more training examples to extract additional patterns in the dataset. These
variable parameters are in Table 6.4:

Hyperparameter | Value
Validation split 0.1

LSTM Layers 4
FCN Layers 4
Neurons 128

Table 6.4: 4-LSTM 4-FCN 128 Neurons Per Layer run’s variable parameters.

These parameter combinations and reductions in dense layer number, and neuron width supplied
the current most successful PyTorch LSTM model on exclusively water phantom data as explored
in this work. It achieved very similar results to [13] which had testing accuracies of 73%, compared
to the present 72.5%. This can likely be attributed to using neuron linear layers of dimensions
[128,128,128,128] as opposed to the [128,64] in [13]. We can surmise that additional reduction in
complexity could increase testing accuracy even further. As observed in the training and validation
accuracy/loss curves of Fig. 6.5, the maximum training and validation accuracies were 78.6% and
72.7%, on a validation split of 10% after 4000 epochs. Critically, reducing model complexity clearly

38

decreased the overfitting behavior (although not entirely) while increasing validation accuracy by
more than 10%. The learning rate scheduler decreases the learning rate at 2000 epochs, reducing
noise in accuracy and loss while also providing a sudden increase in accuracy.

max train acc: 0.7860962152481079, max val acc: 0.7273436784744263

accuracy

J

0 500 1000 1500 2000 2500 3000 3500 4000
ocl

loss

1 T T f1m (| TR

i [N T P T T |‘||,“1ﬂ.|‘u+ﬁ,'m‘“b
e

o 500 1000 1500 2000 2500 3000 3500 4000

Figure 6.5: Top: Training (blue) and validation (orange) accuracies. Bottom: Loss over epochs
for the 4-LSTM 4-FCN 128 Neuron run showing greatly reduced overfitting and higher accuracy.

Performing prediction of this model on the 10% split test set yielded a test accuracy of 72.5%.
AS in the confusion matrix of the testing accuracy, there is 71-75% correct prediction in all triples
except classes. As expected, due to the false single events which are difficult to predict, the doubles
predictions are marginally worse in the 71-73% range. In summary, the network still correctly picks
out the false event in doubles, but is more likely to misclassify the ordering of the doubles pairs.
Finally the network also performs worse at false triples events at 67%.

39

Confusion Matrix Accuracy: 0.725

RINPLN 0038 0021 0032 0034 0018 0056 0.0061 00023 0 0032 00l 0.0036
- -07
WRZW 0039 0021 0019 0034 0.0019 0.00071 0.057 0.0049 0.012 0.032 0.0037
0.034 [ONEM 0042 002 0031 0.0067 0.053 003 0011 0.0016 0.00057 0.0024 | o6
0.018 0.04 [OKEM 0.035 0013 0.00014 0.002 0.0l 0.033 0.051 0.0056 0.0026
0022 0022 0033 JENEN 0.042 0032 0012 0.0064 0.057 0.00071 0.0021 0.0037
0.024 0.032 0026 0024 0038 QONEN 0.012 0028 0.00029 0.002 0.0067 0.052 0.004

0.057 0.0037 0.0084 0.0014 0.037 0.016 [Tkl 0.083 0.0083 0.0047 0.006 0.0093 0.055

0.0063 0.0016 0.054 0.0051 0.017 0.035 0.088 QueAFNEN 0.0046 0.013 0.0057 0.005 0.056

0.0039 0.051 0.04 0.015 0.0061 0.0014 0.0069 D.O!]Sl 0.076 0012 0.0039 0.051

0.001 0.0073 0.017 0.034 0.047 0.005 0005 0.012 0.098 pUOFEEN 0.005 0.0066 0.055
0.035 0.015 0.0041 0.055 0.001 0.0069 0.0051 0.0066 0.013 !).(3044 0.088 0.054

0.016 0.033 0.001 0.0077 0.0047 0.052 0.0099 0.0057 0.005 0.0071 0.085 pVFEN 0.055

444 324 234 314 134 214 124 321 312 231 213 132

0.0051 0.0037 0.0051 0.0043 0.0059 0.0046 0.054 0.049 0.046 0.051 0.049 0.053

123 132 213 231 312 321 124 214 134 314 234 324 444

Figure 6.6: Confusion Matrix on 4-LSTM, 4-Linear, 128 Neurons Per Layer run, showing much
higher percentage on predictions in all correct classes.

It must be noted, however, that this model is still overfitting as illustrated by the lack of clear con-
vergence between the validation and test accuracies. Further experimentation should be performed
in order to reduce overfitting, as well as aim to increase testing accuracy such as by applying
stronger regularization techniques. But, to date, these are the most successful PyTorch mixed
LSTM implementations on exclusively water phantom data, based on prior literature. These re-
sults serve as the foundation for the hyperparameter studies on the simulated real patient medium
data.

6.3 Real Patient Data

In order to test the extensibility of machine learning results from water phantom to real patient
data, and to gain further insights on real patient data, we conduct 2 initial hyperparameter studies
— one for FCNs and another for LSTMs — on the new real patient data. Our studies are loosely
based on those conducted in [12] and are divided into three stages:

e Stage 1: ‘Spatter’. We run a multitude of tests to determine a reasonable set of constant
starting parameters and identify 3 candidate hyperparameters where tuning could benefit.
Our methodology here was very heuristic, so these runs will not be discussed. However, they
can be found in [11].

e Stage 2: Hyperparameter Importance. For each of the 3 candidate hyperparameters, 2 values
are chosen, and (2)(2)(2) = 8 tests are done to identify the 2 most influential parameters.
The hyperparameter that is less influential is fixed at an optimal value.

40

e Stage 3: Final Tuning. For each of the 2 influential hyperparameters, 3 values are chosen,
and (3)(3) = 9 tests are done to identify the optimal configuration of hyperparameters.

6.3.1 FCN Hyperparameter Study

Stage 2: Hyperparameter Importance The three candidate hyperparameters are listed in
Table 6.5. An intuitive ‘binary’ labeling scheme was used to name tests: the two values of each
of the candidate hyperparameters are assigned ‘0’ and ‘1’, and each run is a string of these binary
digits in the order batch size | dropout | neuron configuration.

Hyperparameter 0 1
Batch Size 1024 4096
Neuron Configuration | 18 layers, 582 ANLS | 12 layers, 343 ANL"
Dropout 0.05 0.15

Table 6.5: FCN Stage 2 Candidate Hyperparameters.

Each test was run with periodic checkpointing (e.g. a checkpoint was saved every n epochs) and
early stopping so that after patience=500% epochs without improvement in validation loss, the
job would end. A checkpoint model from an epoch in the close vicinity of the maximum validation
accuracy was tested to produce a testing accuracy. If a run showed erratic behavior or very low
validation accuracy, it was not tested. The results of the 8 tests are shown in Table 6.6. Table 6.7
contains the constant hyperparameters.

Test | Epoch | Max Train Acc., Train Curve | Max Val. Acc., Val. Curve | Test Acc.
000 604 0.7005, concave 0.52, prominent peak 0.517
001 574 0.36, very noisy convex 0.36, very noisy convex -

010 551 0.669, concave 0.53, small peak 0.523
100 658 0.7566, concave 0.53, prominent peak 0.515
011 645 0.5607, noisy concave 0.53, noisy peak 0.527
110 576 0.7316, concave 0.52, small peak 0.525
101 709 0.43, very noisy concave 0.44, very noisy concave -

111 616 0.5975, concave 0.53, small peak 0.532

Table 6.6: FCN Stage 2 Tests

In order to evaluate how influential each of the candidate hyperparameters was, ‘pairs’ of runs were
considered. That is, for every candidate hyperparameter, there are 4 sets of two runs in which, for
those 2 runs, everything other than that candidate hyperparameter is held constant. For example,
one of these 4 sets for batch size is highlighted in Table 6.8. We can see that the larger batch size
(4096 vs 1024) appears to increase training accuracy but has minimal effect on testing accuracy
between these two runs. The other 3 sets for batch size are highlighted in red, orange, and green
in Table 6.9.

Completing similar analyses for the other candidate hyperparameters, the following conclusions
were drawn about how influential each of the hyperparameters were:

5 Average neurons per layer; full configuration is [4096, 2048, 1024, 512, 256, 256, 256, 256, 256, 256, 256, 256,
256, 256, 128, 64, 32, 16].

" Average nuerons per layer; full configurations is [512, 1024, 512, 256, 256, 256, 256, 256, 256, 256, 256, 128].

8(chosen arbitrarily)

41

Hyperparameter Value
Hardware 2 RTX6000 GPUs
Validation Split 0.1
Learning Rate 0.001
Learning Rate Change 0.95
Learning Rate Step 500
L2 0.01
Loss Function Cross Entropy + Custom Pairwise Loss (p=1)
Optimizer AdamW
Activation Function ReLLU

Table 6.7: FCN Stage 2 Constant Hyperparameters.

Test | Epoch | Max Train Acc., Train Curve | Max Val. Acc., Val curve | Test Acc.
000 604 0.7005, concave 0.52, prominent peak 0.517
001 574 0.36, very noisy concave 0.36, very noisy concave -
010 551 0.669, concave 0.53, small peak 0.523
100 658 0.7566, concave 0.53, prominent peak 0.515
011 645 0.5607, noisy concave 0.53, noisy peak 0.527
110 576 0.7316, concave 0.52, small peak 0.525
101 709 0.43, very noisy concave 0.44, very noisy concave -
111 616 0.5975, concave 0.53, small peak 0.532
Table 6.8: Set 1 for batch size importance analysis.
Test | Epoch | Max Train Acc., Train Curve | Max Val. Acc., Val. Curve | Test Acc.
000 604 0.7005, concave 0.52, prominent peak 0.517
001 574 0.36, very noisy concave 0.36, very noisy concave -
010 551 0.669, concave 0.53, small peak 0.523
100 658 0.7566, concave 0.53, prominent peak 0.515
011 645 0.5607, noisy concave 0.53, noisy peak 0.527
110 576 0.7316, concave 0.52, small peak 0.525
101 709 0.43, very noisy concave 0.44, very noisy concave -
111 616 0.5975, concave 0.53, small peak 0.532

Table 6.9: Sets 2, 3, and 4 for batch size importance analysis

e Batch size has little effect on validation and test accuracy. A larger batch size tends to overfit
the data (increases training accuracy).

e Dropout has a small positive effect on validation and test accuracy if it doesn’t cause the

training to diverge.

dropout prevents overfitting. This trend is shown by Figure 6.7.

It decreases training accuracy significantly. This is expected, since

e The second neuron configuration performed much better than the first. With a slight decrease
in training accuracy, it greatly increased validation and test accuracy.

It is also noted that a higher dropout with the more complex network caused training to diverge.
Also, all models were overfitting to a degree except for the high dropout with a less complex network

42

Study 010

Study 011

0.675
0.650
0.625
0.600

, 0575
0.550

0525

0.500
0475

500 0 100 200 300 400
epoch

Figure 6.7: Dropout’s effect on overfitting.

runs.

With these conclusions in mind, dropout and neuron configuration were chosen as the most
influential hyperparamters to be studied in Stage 3. In addition, the constant hyperparameters
were adjusted according to these conclusions, as shown in Table 6.11.

Stage 3: Final Tuning The values for dropout and neuron configuration studied in Stage 3 are
shown in Table 6.10. A similar scheme to the binary naming in Stage 2 is used here, except in this

stage the ternary digits 1, 2, and 3 are used. Table 6.11 contains the constant hyperparameters.

Hyperparameter 1 2 3
Neuron Configuration | 12 layers, 315 ANL | 8 layers, 272 ANL | 8 layers, 68 ANL?
Dropout 0.05 0.2 0.4
Table 6.10: FCN Stage 3 Hyperparameters
Hyperparameter Value
Hardware 2 RTX6000 GPUs
Validation split 0.1
Batch size 512
Learning Rate 0.0008
Learning Rate Change 0.95
Learning Rate Step 500
L2 0.01
Loss Function Cross Entropy + Custom Pairwise Loss (p=1)
Optimizer AdamW
Activation Function ReLU

Table 6.11: FCN Stage 3 Constant Hyperparameters; changes are highlighted in yellow.

9Full configurations: [1024, 512, 256, 256, 256,256,256, 256, 256, 256, 128, 64], [512, 256, 256, 256, 256, 256, 256,

128], and [128, 64, 64, 64, 64, 64, 64, 32]

43

The 9 tests of this stage were conducted in the same manner as the 8 tests of Stage 2. The results
are shown in Table 6.12. Also, note that several tests were stopped at 2000 epochs not because
of early stopping, but due to an arbitrary constraint on epoch number. Some of these runs were
resumed if accuracy appeared to be increasing, while the others were left as is. Note the lack of

Test | Epoch | Max Train Acc., Train Curve | Max Val. Acc., Val. Curve | Test Acc.

11 578 0.6068, concave 0.53, small peak 0.528
12 1531 0.51, very noisy concave 0.52, very noisy concave 0.514
13 o81 0.39, noisy peak 0.41, small peak -
21 564 0.6232, concave 0.56, noisy concave 0.550
22 3649 0.5387, noisy concave 0.55, noisy concave 0.540
23 1999 0.475, noisy concave 0.50, noisy concave 0.495
31 2061 0.5274, concave 0.54, noisy concave 0.534
32 1999 0.4698, noisy concave 0.48, noisy concave 0.483
33 1393 0.3306, noisy concave 0.35, noisy concave -

Table 6.12: Results of the FCN Stage 3 tests; best accuracy result is highlighted in green.

"peaks” in the descriptions of the validation curves, when compared to the Stage 2 tests. This
may be due to the measures designed to reduce overfitting implemented: instead of continuing
to ”learn” non-generalizable information about the training set, the models simply plateau in
predictive performance.

Conclusions
tion for the FCN model found in this study is:

This

Neuron Configuration: 8 layers, 272 ANL

Dropout: 0.05

Batch Size: 512

L2: 0.01

Loss Function: Cross Entropy + Custom Pairwise Loss (p=1)

Optimizer: AdamW

Activation: ReLU.

The best test is highlighted in green in Table 6.12. Hence, the optimal configura-

model achieved an accuracy of 55% on the shakeri-obe dataset (the model at epoch 450
was used). The accuracy learning curves and confusion matrices for this model are included in
Figures 6.9 and 6.8, respectively. From these figures, it is clear that the model is still overfitting,
and that it does much better at classifying false triples compared to any other class.

44

123

truth

444 324 234 314 134 214 124 321 312 231 213 132

0.13 0.095 0.048 0.029 006 . . 0.0042 0.0016 0.024 0.018 0.00
£ = = = - - 0.6
0.048 QGKyEN 0.029 0.065 0.074 0.036 0.001 0.036 0.026 0.016 0.045 0.0021
0.13 0.033 EE] 0.1 0.039 0.041 0.021 0.035 0.0 0.016 0.0031 0.00052 0.0047
- 0.5

0.016 0.062 0.099 pEEt] 5 0.1 0.0021 0.02 0.018 0.045 0.021 0.0047

0.042 017 0.051 . - 0.13 0.026 0.022 0.025 03! 0.001 0.0026 0.0068

0.065 0.039 0.036 0.14 0.048 QAGEE 0.018 0.024 0.0026 0.017 0.0 0.0062
0.042 0.0021 0.011 0.0036 0.029 0.025 guEPp] b 0.00 0.0¢ 0.01 0.054
0.027 00047 0.034 0.0047 0021 0.038 h 0.014 0.0088 0. 0.057
0.0047 0.04 0.035 0.033 0.0088 0.0026 0.0057 0.0 5 0.22 0.017 0.0057 0.045
0.0021 0.027 0.0 . 0.028 0. 0.0057 0.01 0.29 - 0.0¢ : 0.055
0.0052 0.047 0.017 0.0062 0.0068 0.0083 0.0042 gL b 0.056

0.011 0.042 0.0016 0.026 0.0062 0.036 0.0099 0.0026 0.0062 0.00: .2 . 0.061

0.0036 0.0062 0.0073 0.0068 0.0068 0.0057 0.045 0.038 0.046 0.058 0.052 0.061

123 132 213 231 312 321 124 214 134 314 234 324 444
predictions

Figure 6.8: Test set confusion matrix for Test 21.

45

max train acc: 0.6250631213188171, max val acc: 0.5639860033988953 — train acc

—— val_acc
accuracy
0.60
0.55
0.50
v
B
0.45
0.40
0.35
T T T T T T T T T
0 100 200 300 400 500 600 700 800
epoch

Figure 6.9: Accuracy learning curves for Test 21.

46

6.3.2 LSTM Hyperparameter Study

In light of the previous success of a 4 layer LSTM model with 2 dense layers in [12], versions of
this model were implemented in PyTorch on BRIDE, on the simulated real patient data. Key
differences that we elected to employ in this study are using the AdamW optimizer and the custom
loss function implementation. The choice to use AdamW for L2-regularization purposes over the
more common Adam optimizer with its sub-optimal form of weight decay is supported by [20], as
well as by initial testing comparisons in which AdamW was observed on several datasets, especially
mothership, to reduce overfitting. The second choice of using the custom loss function was included
as it was expected that the custom loss would allow the models to generalize better. Table 6.13
contains the constant parameters of this LSTM hyperparameter study.

Hyperparameter Value
Hardware 2 RTX6000 GPUs
Validation Split 0.1
Loss Function Categorical CrossEntropy + Custom Pairwise Loss (p=1)
Optimizer AdamW
Activation Function Leaky ReLU
LSTM Layers 4
Learning Rate 0.001
Learning Rate Change 0.95
Learning Rate Step 100
L2 0.01
Custom Loss True
Penalty 1

Table 6.13: LSTM Constant Parameters

Stage 2: Hyperparameter Importance The three LSTM candidate hyperparameters are
listed in Table 6.14. The hidden layer values are the neuron dimensions of the hidden layers after
the LSTM layers. Similar to before, a binary naming system from top to bottom of Table 6.14 was
utilized.

Hyperparameter 0 1
Batch Size 2048 4096
Hidden Layers [128, 64] | [128,128,128,128]
Dropout 0.15 0.45

Table 6.14: LSTM Stage 2 Candidate Parameters

The results from this stage of hyperparameter exploration are summarized in the Table 6.15.

47

Test | Epoch | Max Train Acc. | Max Val. Acc. | Val. Loss Minus Train Loss
000 | 671 64.2% 55.3% 0.89

001 | 683 61.8% 55.1% 1.02

010 | 712 62.5% 55% 0.67

011 | 699 61% 54.7% 0.83

100 | 967 60.5% 55.6% 0.429

101 | 705 62.5% 55.3% 0.77

110 | 902 60.1% 55.2% 0.35

111 | 765 60.5% 54.72% 0.74

Table 6.15: LSTM Stage 2 Tests results; best accuracy result is highlighted in green.

As displayed in Table 6.15, most results attain very close final training and validation accuracies
of 60-61% and 54-55%, respectively. Among all runs, the patience ended training when validation
accuracy remained stagnant for 500 epochs.

To first discuss differences in model accuracy as a result of dropout (where all other hyperparme-
ters were held constant), setting dropout to 0.45 generally resulted in the model stopping at an
earlier epoch. In addition, it also lowered the gap between the max validation accuracy and max
training accuracy for each run, yet counter-intuitively increased the difference between validation
and training loss at the final epoch. The direct difference in accuracies of setting dropout higher
indicates that it does have the intended effect of reducing overfitting. However, from the observa-
tion of final loss gaps being worse with higher dropout, it may indicate that once the model has
started to already overfit, it will overfit worse (in terms of loss) when dropout is higher. In other
words, as soon as the validation loss starts to increase, the divergence between training and vali-
dation losses and accuracies is worse with higher dropout. This may also be confirmed graphically
comparing runs 100 and 101. It can be observed from Figure 6.10 that on the plots with dropout
0.45, validation accuracy briefly surpasses the training accuracy within the initial 100 epochs; but,
when the validation loss starts to increase, the overfitting behavior gets worse than the top plot
where dropout is 0.15.

The next tuned hyperparameter to examine is the hidden layer input neuron sizes. The choice of
comparing the four layer neuron architecture of [128,128,128,128] to [128,64] was used to compare
whether simplifying the model by with less linear layers and less total neuron width would result
in better accuracies and reduce over fitting. By directly comparing neuron choices with all other
hyperparameters held constant, both the training and validation accuracy are marginally higher
(1-2%) with the shallower models. However, the final loss gaps are greater for the shallower mod-
els. This may indicate that the shallower architectures could result in better accuracy when the
models are performing at their best, but are prone to more severe overfitting once the models have
begin to overfit. However, in the larger model architecture, a larger proportion of neurons must
simultaneously begin overfitting to reach the same degree of loss gap as in the smaller model.

Finally, analyzing the contrasting batch sizes, the higher batch size runs resulted in marginally
lower training accuracies among all runs (1-3%) and slightly higher validation accuracies (0.5%).
Critically, among all runs, the higher batch size resulted in significantly lower final loss gaps in all
cases. This does indicate that having a higher batch size seems to decrease the severity of overfitting
in both the maximum gap of accuracies and losses between training and validation sets. This may
suggest with these datasets that lower dropout and higher batch size are preferable for reducing
overfitting (once the models are already overfitting). Neuron and layer adjustments have the most
direct affect on increasing validation accuracy, as expected. However, none of the adjustments
overall in hyperparameters offered a significantly higher validation accuracy, which was a key goal

48

of this hyperparameter study.

acc

loss

max train acc: 0.6059855818748474, max val acc: 0.5560745596885681

accuracy

° 200 400 600 800 1000
epoch
loss
A WA AN et e Aottt A PSS
r o h Y-““*"ixﬁ::;;&xi:i:;:;;I:i;;;w~ﬂu4mw‘da~a0w~r»NAvﬂ»m4uuvwwym~wwwuwwwwnﬂm
° 200 400 600 800 1000
epoch

max train acc: 0.6256943941116333, max val acc: 0.5536548495292664

accuracy

epoch
loss

% SUESRSES

PRI ol orap e I

epoch

— train_acc
—— val_acc
—— train_loss
—— val_loss

—— train_acc
—— val_acc
—— train_loss
—— val_loss

Figure 6.10: Training and loss learning curves for runs with 4096 batch size and hidden neurons
[128,64] showing contrasting behavior of dropout. Top: dropout of 0.15. Bottom: dropout of

0.45.

6.4 Comparisons between Water Phantom and Real Patient Data

First, we note that the key results'® on water phantom data in Section 3.1 were successfully re-
produced on BRIDE, verifying the validity of experiments performed on BRIDE. First, a FCN
with hyperparameters listed in Table 6.1 achieved a 65% accuracy, surpassing the corresponding

0Excluding the residual blocks model.

49

result in [3]. Its architecture was [512, 256, 256, 256, 256, 256, 256, 128]. Next, an LSTM with
hyperparameters given in Section 6.3.2 achieved an accuracy of 72.5%, comparable to that in [12].
This model’s architecture was 4 LSTM + 4x128 FCL.

The key results from our hyperparameter studies on RP data are summarized in Table 6.16.
There are three salient comparisons to be made. First, the accuracies on the RP dataset are much

Model | Accuracy Architecture
FCN 55.0% [256, 256, 256, 256, 256, 128, 128, 128]
LSTM 55.6% 4 LSTM + 128,64 FCL

Table 6.16: Key results from RP hyperparameter studies.

lower, which confirmed our initial beliefs. Second, the LSTM does much better relative to the
FCN on WP data, when compared to RP data. This implies that either the FCN architecture is
specifically advantageous for RP data or LSTM architecture is particularly better to learn from WP
data. Finally, we note that the architectures of best models were slightly different, but surprisingly
similar. This may be because the data are ultimately of similar form.

7 Additional Studies

7.1 Mothership Dataset

As shown by Figure 7.1, a model containing 4 LSTM layers and 4 fully connected layers on the
mothership data resulted in a training accuracy of 80%, a validation accuracy of 76%, and a test
accuracy of 76%, our overall highest accuracies in this research. Our hyperparameters, listed in
Table 7.1 for this model, were an adaptation of those of the 4 LSTM and 2 fully connected layers
model of [13]. There are, however, some distinctions: in terms of parameters, this research’s model’s
optimizer as Adam, instead of Nadam, and batch size was 4096 instead of 2048. ReLU activation
was after all of the layers, instead of between the layers, and we had 4 fully connected layers,
instead of 2. Importantly, though, our model was built using a more flexible PyTorch, compared
to Tensorflow, and on the BRIDE platform.

Hyperparameter Value
Hardware 4 RTX6000 GPUs
Batch Size 4096

Validation Split 0.1

Loss Function Cross Entropy
Optimizer Adam
Activation Function ReLLU
LSTM Layers 4
FCN Layers 4
Neurons 128
Learning Rate 0.001
Learning Rate Change 0.1
Learning Rate Step 2000
Dropout 0.0

Table 7.1: LSTM Parameters on the Mothership dataset

50

As most of our runs’ accuracies were plateauing after a few hundred epochs, this current model
implemented a different and distinct learning rate scheduler. A learning rate scheduler, in a neural
network, is used to change the learning rate during the training process. Among several types of
schedules is a step schedule, which involves adjusting the learning rate after a certain number of
epochs. With this model, the learning rate began at 0.001; every 2000 epochs, the learning rate
was multiplied by 0.1. This learning rate scheduler also involved running the model for thousands
of epochs, a greater number than what we did previously. As displayed by Fig. 7.1, we notice a rise
in accuracy after the learning rate is lowered at 2000 epochs, but no significant accuracy change at
4000 epochs. This may have been due to a very small learning rate by the 4000th epoch. There
does seem to be a slight overfitting, which the validation accuracy approximately 4% lower than
the training accuracy. This difference, however, is very prevalent in terms of machine learning, and
is small considering that regularization was not applied. The model has a final testing accuracy of
76% as in Fig. 7.2 , which is a significant improvement from the previous studies. The cause of this
improvement in accuracy may have been a greater volume of data; the mothership dataset consists
of 3.8 million observations, compared to 1.4 million row data used in [25]. This conforms with the
general trend in machine learning, in that a larger amount of data generally may lead to a better
predictive performance. The mothership dataset, as stated in Subsection 4.2.1, consists of both
simulated patient and water phantom data; hence, this result may be a more robust application in
a medical situation.

max train acc: 0.8017483353614807, max val acc: 0.7637484669685364

accuracy

o 1000 2000 3000 4000

loss

0 1000 2000 3000 4000

Figure 7.1: Accuracy and loss learning curve for LSTM mothership model

o1

Confusion Matrix Accuracy: 0.761

0.038 0.02 0.041 0.033 0.028 0.024 0.0048 0.000810.00047 0.017 0.0068 0.00041
0.037 pEsNE:EN 0.035 0.027 0.022 0.041 0.0012 0.00034 0.024 0.0037 0.0055 0.017 0.00034| -07

0.021 0.039 vl 0.041 0.026 0.035 0.0033 0.024 0.017 0.0061 0.0012 0.0002 0.00068|

- 06

0.037 0.026 0.04 ki 0.042 0.023 0.00027 0.0012 0.0049 0.018 0.023 0.0026 0.00061

0.041 0.02 0025 0.037] 0.04 0.017 0.0066 0.0023 0.024 0.00027 0.0012 0.00061]

0.026 0.037 0041 0.021 0.04 0.0CJSS 0.017 0.00014 0.001 0.0033 0.021 0.00047

0.031 0.002 0.00450.00068 0.019 0.01 0.74 0.1 0.0082 0.0058 0.0052 0.012 0.053
0.004 0.00088 0.03 0.0024 0.0096 0.021 0.098 pEsAEE 0.005 0.012 0.0071 0.0066 0.051
0.0024 0.03 0.02 0.01 0.004 0.00054 0.0073 0.0055 0.1 0.014 0.0056 0.052
0.00061 0.0045 0.0096 0.021 0.032 0.0022 0.0055 0.014 0.098 0.0064 0.0075 0.053
0.02 0.0099 0.0029 0.031 0.0012 0.0049 0.0068 0.0073 0.014 0.0057 guvirEaN 0.098 0.053
0.0098 0.019 0.00081 0.0045 0.0026 0.031 0.015 0.0059 0.0055 0.0086 0.099 VRN 0.051

0.001 0.001 0.000810.00095 0.001 0.0012 0.049 0.046 0.049 0047 0049 0.05

Figure 7.2: Testing set confusion matrix for the LSTM Mothership model

7.2 Effect of GPU Number on Performance

Another test that was explored was how utilizing different numbers GPUs affected the models.
Based on past research [3], it is expected that increasing GPUs will decrease the time it take for
the job to complete. Our results are consistent with past research. For example, with a particular
fully connected neural network trained for 500 epochs, a 2 GPU run had a runtime of 1.32 hours,
while that of 4 GPUs had a runtime of 0.66 hours. Doubling the number of GPUs from 2 to 4 in
this case approximately halved the runtime; the linear speedup for this run is especially interesting,
as a linear speedup is optimal but usually does not occur in practice [26]. A run on 8 GPUs
was also implemented with the same hyperparameters as the runs above; the training time was
approximately 0.30 hours. This speedup is not linear, though. Table 7.2 gives a summary of our
comparisons of training time with different numbers of GPUs.

Number of GPUs | Runtime (Hours)
2 1.32
4 0.66
8 0.30

Table 7.2: Comparison of Runtime for Different Amount of GPUs for a Particular Neural Network

7.3 Feature Engineering

Feature engineering is a standard machine learning preprocessing technique that involves trans-
forming data into a more effective format to be used as inputs. In particular, a type of feature
engineering is creating new features, which is known to be sometimes helpful in the sense that more

52

information can be extracted from the existing features. This is especially so when working with
a dataset such as the ones used in this research that have a relatively few amount of features. For
example, many production machine learning models are developed on datasets with thousands of
features. Adding new features using mathematical operations on existing features may only give
marginal results, though, as these combinations of features should hypothetically also be inferred
on through the composition of nonlinear activation functions. Thus, as part of a second preprocess-
ing pipeline, we also explored feature engineering on the initial 12 features (e;, x;, y;, z;). Previous
work introduced ”Euclidean distances” as part of the first preprocessing pipeline [3,5]. This eu-
clidean distance calculates the 3 dimensional euclidean metric distance between the three points of
gammas in one triples interaction. This generates 3 new features, which are used in all datasets.
Mathematically, for each row

eucl = /(1 — 22)2 + (y1 — ¥2)* + (21 — 22)°
euc2 = /(2 — 23)2 + (y2 — y3)? + (22 — 23)2
euc3 = \/(:Bg — x1)2 + (93 - Z'Jl)2 + (23 - 21)2

The following features are exclusively used in the feature engineered datasets.

The next features added were the total energy and differences in energies for each row of interaction
data. We believed that these features might give a very straightforward implication for the scatter
class, as the energy in a true triple (1-2-3) is expected to decrease with each emission in the
scattering event sequence at roughly e; > es > e3. This generates 4 additional features with the
following relationships:

Er =e1+ex+e3

AEl — €1 — €2
AEQ — €2 — €3
AE3 = €3 —€1.

The final features added are based off of the key relationship at the heart of Compton scattering:
the Compton equation. The Compton equation defines the mathematical relationship between the
angle of prompt-gamma emission, initial energy, and final energy. Given the electron rest energy
keV, for any two prompt gamma rays the following relationship holds:

cos(¢ij) =1 — mOCQ(; - 61])
The cos of the angles of scatter where moc? = 0.511 keV and ¢ as the right hand side of the
Compton equation were included as features. The actual angles were not included as arccos was
out of argument for false interactions. This was done for every 2 combinations of scatter data,
giving features cos(¢12), cos(¢a1), cos(pa3), cos(¢)sa, cos(ps1), cos(¢13) based on the energy values
used for initial and final values in the Compton Equation [16].

8 Discussion and Conclusions

Subsection 6.3 contains the key results of our studies on the ”real patient” data while Subsection 6.4
contains the key comparisons with analogous results on water phantom data. This research found

93

that the best FCN model on RP data had architecture [256, 256, 256, 256, 256, 128, 128, 128] and
achieved a 55% testing accuracy while the best LSTM had architecture 4 LSTM + 128,64 FCL and
achieved an accuracy of 55.6%. We also reproduced the best models of [1] and [12] on WP data.
The architectures of the best RP data models were notably similar to the best performing models on
WP data, but with significantly lower accuracy. Moreover, the gap in accuracies between FCNs and
LSTMs was negligible for RP data, while LSTMs had significantly better predictive performance
on WP data.

This indicates that the real patient data is (1) generally harder to predict on and (2) best suited
for FCNs. Generalizing further, we find evidence that deep neural networks are very sensitive: even
small changes in how data is simulated can completely change model performance. Researchers
and professionals in industry must keep this in mind as a key part of scalability. These conclusions
have the caveat in that there is a possibility that the gap in performance was due to the much
smaller number of observations in the RP data, which is not an unlikely possibility.

This work also introduced the BRIDE platform, which addressed several problems in the areas
of discontinuity in the Big-data REU Projects, rigorous testing and flexible experimentation, and
readable, thoughtful code. We found the utility of this effective integrated development platform
cannot be overstated. This is especially true to receive the significant benefits of parallelization,
as there are substantial implementation challenges that parallelized learning comes with. These
challenges are exemplified by the Validation-Test gap, a validation set data leak occurring when
multiple-GPU training was used in PyTorch Lightning, which was exceptionally difficult to discover
because of its embedding in the Lightning wrapper and unclear documentation.

Finally, this research explored several avenues in increasing the predictive performance and ef-
fectiveness of various machine learning models. Hybrid LSTM + FCL neural networks trained
on a larger hybrid water phantom and real patient dataset achieved a testing accuracy of 76%.
Novel feature engineering in multiple ways on the datasets were implemented in an attempt to
increase accuracy and address overfitting. The effect of the number of GPUs on runtime was also
investigated.

Acknowledgments

This work is supported by the grant “REU Site: Online Interdisciplinary Big Data Analytics in
Science and Engineering” from the National Science Foundation (grant no. OAC-2348755). Un-
dergraduate assistant co-author Obe acknowledges support from an REU Supplement. Co-authors
Sharma and Ren acknowledge support from the NIH. The hardware used in the computational stud-
ies is part of the UMBC High Performance Computing Facility (HPCF). The facility is supported
by the U.S. National Science Foundation through the MRI program (grant nos. CNS-0821258,
CNS-1228778, OAC-1726023, and CNS-1920079) and the SCREMS program (grant no. DMS—
0821311), with additional substantial support from the University of Maryland, Baltimore County
(UMBC). See hpcf .umbc . edu for more information on HPCF and the projects using its resources.

References

[1] Alina M. Ali, David Lashbrooke, Rodrigo Yepez-Lopez, Sokhna A. York, Carlos A. Barajas,
Matthias K. Gobbert, and Jerimy C. Polf. Towards optimal configurations for deep fully con-
nected neural networks to improve image reconstruction in proton radiotherapy. Technical
Report HPCF-2021-12, UMBC High Performance Computing Facility, University of Mary-
land, Baltimore County, 2021.

o4

hpcf.umbc.edu

2]

[13]

[14]

Manikandan Arjunan, Sureka Chandra Sekaran, Biplap Sarkar, and Sujatha Manikandan. A
homogeneous water-equivalent anthropomorphic phantom for dosimetric verification of radio-
therapy plans. Journal of Medical Physics, 43(2):100-105, 2018.

Kaelen Baird, Sam Kadel, Brandt Kaufmann, Ruth Obe, Yasmin Soltani, Mostafa Cham,
Matthias K. Gobbert, Carlos A. Barajas, Zhuoran Jiang, Vijay R. Sharma, Lei Ren,
Stephen W. Peterson, and Jerimy C. Polf. Enhancing real-time imaging for radiotherapy:
Leveraging hyperparameter tuning with PyTorch. Technical Report HPCF-2023-12, UMBC
High Performance Computing Facility, University of Maryland, Baltimore County, 2023.

Carlos A. Barajas. Neural Networks for the Sanitization of Compton Camera Based Prompt
Gamma Imaging Data for Proton Radiotherapy. Ph.D. Thesis, Department of Mathematics
and Statistics, University of Maryland, Baltimore County, 2022.

Carlos A. Barajas, Matthias K. Gobbert, and Jerimy C. Polf. Deep residual fully connected
neural network classification of Compton camera based prompt gamma imaging for proton
radiotherapy. Front. Phys., 11:903929, 2023.

Carlos A. Barajas, Gerson C. Kroiz, Matthias K. Gobbert, and Jerimy C. Polf. Classification
of compton camera based prompt gamma imaging for proton radiotherapy by random forests.

In 2021 International Conference on Computational Science and Computational Intelligence
(CSCI), pages 308-311, 2021.

Rajamanickam Baskar, Kuo Ann Lee, Richard Yeo, and Kheng-Wei Yeoh. Cancer and radiation
therapy: Current advances and future directions. Int. J. Med. Sci., 9(3):193-199, 2012.

Tyler J. Bradshaw, Zachary Huemann, Junjie Hu, and Arman Rahmim. A guide to cross-
validation for artificial intelligence in medical imaging. Radiology Artificial Intelligence, 5(4),
2023.

Jintai Chen, Kuanlun Liao, Yao Wan, Danny Z. Chen, and Jian Wu. Danets: Deep abstract
networks for tabular data classification and regression, 2022.

Michael Chen, Julian Hodge, Peter Jin, Ella Protz, and Elizabeth Wong. Bride off-cluster lab
notebook, 2024.

Michael Chen, Julian Hodge, Peter Jin, Ella Protz, and Elizabeth Wong. Github repository,
2024.

Joseph Clark, Anaise Gaillard, Justin Koe, Nithya Navarathna, Daniel J. Kelly, Matthias K.
Gobbert, Carlos A. Barajas, and Jerimy C. Polf. Sequence-based models for the classification
of Compton camera prompt gamma imaging data for proton radiotherapy on the GPU clusters
taki and ada. Technical Report HPCF-2022-12, UMBC High Performance Computing Facility,
University of Maryland, Baltimore County, 2022.

Joseph Clark, Anaise Gaillard, Justin Koe, Nithya Navarathna, Daniel J. Kelly, Matthias K.
Gobbert, Carlos A. Barajas, and Jerimy C. Polf. Multi-layer recurrent neural networks for the
classification of Compton camera based imaging data for proton beam cancer treatment. In 9th
IEEE/ACM International Conference on Big Data Computing, Applications and Technologies
(BDCAT 2022), in press (2022).

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals, and Systems, 2:303-314, 1984.

95

[15]
[16]

William Falcon and The PyTorch Lightning team. PyTorch Lightning, March 2019.

Fernando Hueso-Gonzélez, Fine Fiedler, Christian Golnik, Thomas Kormoll, Guntram Pausch,
Johannes Petzoldt, Katja E. Romer, and Wolfgang Enghardt. Compton camera and prompt
gamma ray timing: Two methods for in vivo range assessment in proton therapy. Front.
Oncol., 6(80), 2016.

Jonathan R. Hughes and Jason L. Parsons. FLASH radiotherapy: Current knowledge and
future insights using proton-beam therapy. Int. J. Mol. Sci., 21(18):6492, 2020.

M. Krebbs. Deep Learning with Python. Data Sciences Series. CreateSpace Independent
Publishing Platform, 2018.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke,
Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed:
Experiences on accelerating data parallel training. arXiv preprint 2006.15704, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Paul Maggi, Steve Peterson, Rajesh Panthi, Dennis Mackin, Hao Yang, Zhong He, Sam Beddar,
and Jerimy Polf. Computational model for detector timing effects in Compton-camera based
prompt-gamma imaging for proton radiotherapy. Phys. Med. Biol., 65(12), 2020.

Kevin McDonnell, Finbarr Murphy, Barry Sheehan, Leandro Masello, and German Castignani.
Deep learning in insurance: Accuracy and model interpretability using TabNet. Ezpert Systems
with Applications, 217(1):119543, 2023.

Daniel W. Mundy and Michael G. Herman. An accelerated threshold-based back-projection
algorithm for compton camera image reconstruction. Medical Physics, 38(1):15-22, 2011.

Nicki Skafte Detlefsen, Jiri Borovec, Justus Schock, Ananya Harsh, Teddy Koker, Luca Di
Liello, Daniel Stancl, Changsheng Quan, Maxim Grechkin, and William Falcon. TorchMetrics
- Measuring Reproducibility in PyTorch, February 2022.

Ruth Obe, Brandt Kaufmann, Kaelen Baird, Sam Kadel, Yasmin Soltani, Mostafa Cham,
Matthias K. Gobbert, Carlos A. Barajas, Zhuoran Jiang, Vijay R. Sharma, Lei Ren,
Stephen W. Peterson, and Jerimy C. Polf. Accelerating real-time imaging for radiotherapy:
Leveraging multi-GPU training with PyTorch. In 2023 International Conference on Machine
Learning and Applications (ICMLA 2023), pages 1735-1742, 2023.

Peter S. Pacheco and Matthew Malensek. An Introduction to Parallel Programming. Morgan
Kaufmann, 2021.

Costanza M. V. Panaino, Ranald I. Mackay, Karen J. Kirkby, and Michael J. Taylor. A new
method to reconstruct in 3D the emission position of the prompt gamma rays following proton
beam irradiation. Sci. Rep., 9(1):18820, 2019.

Raj Kumar Parajuli, Makoto Sakai, Ramila Parajuli, and Mutsumi Tashiro. Development and
applications of Compton camera a review. Sensors, 22:7374, 2022.

Jerimy C Polf, Stephen Avery, Dennis S Mackin, and Sam Beddar. Imaging of prompt gamma
rays emitted during delivery of clinical proton beams with a compton camera: feasibility studies
for range verification. Physics in Medicine € Biology, 60(18):7085, 2015.

56

[30]

Jerimy C. Polf, Carlos A. Barajas, Stephen W. Peterson, Dennis S. Mackin, Sam Beddar,
Lei Ren, and Matthias K. Gobbert. Applications of machine learning to improve the clinical

viability of Compton camera based in vivo range verification in proton radiotherapy. Front.
Phys., 10:838273, 2022.

Jerimy C. Polf and Katia Parodi. Imaging particle beams for cancer treatment. Phys. Today,
68(10):28-33, 2015.

Sebastian Raschka, YuXi (Hayden) Liu, and Vahid Mirjalili. Machine Learning with PyTorch
and Scikit-Learn: Develop Machine Learning and Deep Learning Models with Python. Expert
Insight. Packt Publishing, 2022.

Michael J. Smith and James E. Geach. Astronomia ex machina: a history, primer and outlook
on neural networks in astronomy. R. Soc. Open Sci., 10:221454, 2023.

Martin Sundermeyer, Hermann Ney, and Ralf Schliiter. From feedforward to recurrent LSTM
neural networks for language modeling. [EEE/ACM Transactions on Audio, Speech, and
Language Processing, 23(3):517-529, 2015.

Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and
Jan S. Rellermeyer. A survey on distributed machine learning. ACM Comput. Surv., 53(2),
mar 2020.

o7

	Introduction
	Prompt Gamma Imaging Background
	Proton Beam Radiotherapy
	Compton Camera and Image Reconstruction
	Scatter Types
	The Need for Machine Learning

	Machine Learning: A Solution
	Technical Background on Machine Learning
	Feed Forward Neural Networks
	Recurrent Neural Networks

	Related Works
	Hardware and Software
	Parallelization

	Real Patient Data: A New Challenge
	The Preprocessing Pipeline
	Data Generation
	Further Preprocessing

	Real Patient Data
	Datasets

	The Task at Hand

	Parallelized Learning
	Challenges and Advantages of Parallelization
	The Validation-Test Gap
	The BRIDE Platform
	The Need for a New Development Platform
	Description of the BRIDE Platform

	Results
	Initial Testing
	Water Phantom Data
	FCN Models
	LSTM Models

	Real Patient Data
	FCN Hyperparameter Study
	LSTM Hyperparameter Study

	Comparisons between Water Phantom and Real Patient Data

	Additional Studies
	Mothership Dataset
	Effect of GPU Number on Performance
	Feature Engineering

	Discussion and Conclusions

