
Background PyTorch Conversion Hyperparameter Tuning Conclusions

Enhancing Real-Time Imaging for Radiotherapy:
Leveraging Hyperparameter Tuning with PyTorch

Kaelen Baird1, Sam Kadel2, Brandt Kaufmann3, Ruth Obe4,Yasmin Soltani5,
Mostafa Cham6, Matthias K. Gobbert7, Carlos A. Barajas7, Zhuoran Jiang8,

Vijay R. Sharma9, Lei Ren9, Stephen W. Peterson10, Jerimy C. Polf11

1Dept. of Computer Science and of Mathematics, Skidmore College
2Dept. of Computer Science and of Psychology, Mount Holyoke College

3Dept. of Mathematics and Statistics, University of San Francisco
4Dept. of Computer Science, University of Houston—Clear Lake

5Dept. of Biomedical Engineering, University of Houston
6Dept. of Information Systems, Univ. of Maryland, Baltimore County

7Dept. of Mathematics and Statistics, Univ. of Maryland, Baltimore County
8Medical Physics Graduate Program, Duke University

9Dept. of Radiation Oncology, University of Maryland School of Medicine
10Dept. of Physics, University of Cape Town, South Africa

11H3D, Inc.

Acknowledgments: NSF (Big Data REU, MRI), NIH, UMBC, CIRC

July 28, 2023

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Proton Therapy

Maryland Proton Treatment Center

Maryland Proton Treatment Center

This work was done in collaborations with the Maryland Proton Treatment
Center located in Baltimore, Maryland. Opened in 2016, the center was the
first in the Maryland/DC region to offer proton therapy for cancer treatment.
It has trained more than 200 health care professionals in proton therapy and,
with its state of the art facilities and four treatment rooms, has been able to
treat over 3,000 patients (www.mdproton.com).

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Proton Therapy

Proton Beam Therapy

Cancer is the second highest cause of death in the US
(www.cdc.gov 2020).

Proton Therapy is a form of radiotherapy that delivers a high
dose of radiation to a local tumor site using proton beams.

The patient lies on the black tray, where the white box
(phantom) is placed. Proton beams come out of the machine
on the left.

Treatment table in MD Pro-
ton Treatment Center. (Maggi
2019)

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Proton Therapy

Proton Beam Therapy

Proton beams deposit the majority of their energy/dose just
before they stop.

This sharp energy increase of the proton right before stopping
is known as a Bragg peak.

Since almost no radiation is delivered beyond the Bragg peak,
healthy tissue is spared from unnecessary radiation.

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Proton Therapy

The Need for Real-Time Imaging

Uncertainties in the beam’s position limit proton beam therapy’s
advantages.

Imaging the beam in near real time would reduce uncertainties and allow
the advantages of the Bragg peak to be fully exploited.

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Compton Camera

Compton Camera to Visualize Beam Trajectory

Proton beam radiation can be detected and recorded via several different
emissions, including thermoacoustic waves, ionoacoustic, and gamma
radiation.

Prompt Gamma imaging allows one to detect specific shifts in the
location of the Bragg peak.

Prompt gamma rays also allow for spectroscopic analysis of tissue that
has been exposed to radiation.

Polf and Parodi, Physics Today, 2015

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Compton Camera

Image Reconstruction Using Compton Camera

(Phys. Med. Biol., 2010.)

(a) (b)

(a) Nuclear reactions between beam and tissue produce prompt gamma rays.
A Compton camera records the position and energies of each interaction.

(b) By analysing how prompt gammas scatter through the Compton camera, we
can reconstruct their origin and image the beam.

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Compton Camera

Events in the Compton Camera

Prompt gamma rays emitted from nuclear interactions of
protons and tissue travel at approximately the speed of light.

This causes the Compton camera to detect interactions as
occurring simultaneously.

We define a interaction as a prompt gamma colliding with a
stage of the Compton camera. For each interaction the
output data from the camera is (ei , xi , yi , zi) where i = 1, 2, 3;
xi , yi , zi are coordinate locations in 3D space, and ei is the
energy level.

An event is the readout of interactions in a single period.
Barajas, Gobbert, Polf, Frontiers in Physics, 11:903929, 2023.

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Compton Camera

Limitations of the Compton Camera

The Compton camera simply records events as a single,
double, or triple scatters.

The Compton camera cannot determine the correct orderings
of camera events.

The Compton camera cannot determine if a double or triple
scatter event was triggered by prompt gammas originating
from different physics events that just happened to enter the
camera at the same time.

1 This lack of distinction means that single events can end up
paired together as a double or triple event.

2 Coupled singles are referred to as false events.
3 A double to triple or, dtot, is when a true double is incorrectly

paired with a single which appears as a triple.

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Initial Data Issues

Double-to-Triples (DtoTs)

(a) Detected Path (b) True Path

The Compton Camera detected a single prompt gamma whose path is (a) but
really there are two prompt gammas with varying paths as seen in(b).

This causes a triple to be computed when it is actually a double.

There are six different misdetection orderings each of which is equally likely:
124, 134, 214, 234, 324, 314.

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Initial Data Issues

All The Data and Classes

Class Interaction 1 Interaction 2 Interaction 3 Event Type
123 e1 x1 y1 z1 e2 x2 y2 z2 e3 x3 y3 z3 Ordered Triple
132 e1 x1 y1 z1 e3 x3 y3 z3 e2 x2 y2 z2 Misordered Triple
213 e2 x2 y2 z2 e1 x1 y1 z1 e3 x3 y3 z3 Misordered Triple
231 e2 x2 y2 z2 e3 x3 y3 z3 e1 x1 y1 z1 Misordered Triple
312 e3 x3 y3 z3 e1 x1 y1 z1 e2 x2 y2 z2 Misordered Triple
321 e3 x3 y3 z3 e2 x2 y2 z2 e1 x1 y1 z1 Misordered Triple
124 e1 x1 y1 z1 e2 x2 y2 z2 single Ordered DtoT
214 e2 x2 y2 z2 e1 x1 y1 z1 single Misordered DtoT
134 e1 x1 y1 z1 single e2 x2 y2 z2 Ordered DtoT
314 e2 x2 y2 z2 single e1 x1 y1 z1 Misordered DtoT
234 single e1 x1 y1 z1 e2 x2 y2 z2 Ordered DtoT
324 single e2 x2 y2 z2 e1 x1 y1 z1 Misordered DtoT
444 single single single False Event

All 13 classes are shown in the left column, the top row indicates
the output of the Compton Camera, and the rest show the unusable
combinations of interactions.

The true triple classes are 123, 132, 213, 231, 312, 321.

The double-to-triple classes are 124, 214, 134, 234, 324, 313.

The false triples are the 444 class.

In the data set we have 1,443,992 data points are used for training
and validation.

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Initial Data Issues

Design of Neural Networks

→ →

DATA

LAYER LAYER LAYER LAYER

CORRECT ORDER
CE2, CE1, CE3

HIDDEN LAYERS

NETWORK

1 2 3 4

OUTPUT
1
0
1
1
0
1
0
1

A neural network is made up of three sections:
1 The input layer. The data is converted into a shape and type that is

conducive to learning.
For example, an image might be converted to a 3 layer tensor.

2 The hidden layers. These layers perform repeated mathematical
operations on the data as it passes through each layer storing bits of
information associated with the data aka “learning from the data”.

3 The output layer. The final choice, decision, or feedback that the network
produces based on the hidden layers digestion of the input data.

Chollet, Deep Learning with Python, 2018

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Translation to PyTorch

Translated the code base from TensorFlow to PyTorch for
easy setup of distributed and paralleled training and GPU
optimization
Used torch.distributed packages for proper functionalities of
distributed training
Defined model architecture using PyTorch’s nn.Module class
for forward pass in the forward method of the model
No direct equivalent to the CSVLogger like in Keras
Created a CSVLogger class to log desired information such
epoch time, loss, accuracy, validation loss, and validation
accuracy
PyTorch creates an instance of the Linear while Keras creates
a KerasTensor object
Tested DistributedDataParallelism on both single and multiple
GPUs using UMBC HPCF CUDA device on ADA nodes with
NVIDIA RTX 2080, 6000, and 8000

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Distributed Data Parallel (DDP)

Implemented distributed data parallelism in PyTorch for
training across multiple GPUs or machines.

Training data divided into smaller subsets

Accelerated research iterations with reduced training time,
allowing for quicker validation and refinement of models

Reduces the memory footprint by sharing parameters, and
ensures consistency across the model during training.
Provides fault tolerance mechanisms to handle failures during
distributed training
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Hyperparameter Study

Tuning of the model parameters: number of layers, learning
rate scheduler, train-validation split, clip gradient, and
dropout rate.

Hyperparameter Value

Indim 15

Outdim 13

Optimizer Adam

Loss Function Categorical Crossentropy

Table: Constant Model Parameters

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Hyperparameter Variables

Hyperparameter Value

Layers 256

Neurons 256

Batch Size 8192

Learning Rate 1.0e-3

Train/Validation 0.8/0.2

Dropout 0.45

Inter-activation leakyrelu

Clip Gradient 0

Layer Type Dense

Table: Variable Model Parameters

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Number of Layers

(a) Single Layer (b) 11 Layers

We ran models with layer sizes 1-16, 32, 64, 128, and 256.

Concluded that a lower number of levels increased our
accuracy of the model but if the number of layers were too
low then it would cause the model to under fit.

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Hyperparameter Value

Learning Rate 1.0e-3

Learning Rate Change 1e-1

Learning Rate Step 300

Train/Validation 0.8/0.2

Batch Size 8192

Neurons 256

Dropout 0.45

Inter-activation leakyrelu

Layer Type Dense

Epochs 512

Table: Constant hyperparameters in number of layers models

Background PyTorch Conversion Hyperparameter Tuning Conclusions

1-16 Dense Layer Investigation

No. Dense Layers Accuracy Val. Accuracy

1 58.37 60.71
2 48.14 49.18
3 60.02 57.69
4 48.74 49.18
5 58.35 56.68
6 52.24 56.02
7 56.97 56.85
8 50.02 26.99
9 48.37 49.61
10 48.57 49.70
12 48.72 50.00
13 48.45 49.67
14 48.32 49.33
15 48.28 49.20
16 48.26 49.46

Table: Dense layer tests on 2048 epochs

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Learning Rate Scheduler

We trained 2, 4, 6, 11 layer dense models with learning
changes of 1e-1, 3e-1, and 5e-1 with variable learning step
sizes of 682 epochs and 341 epochs.

Learning change had an insignificant effect on the model
accuracy with all of the runs being withing 1-2% of each other

Halving the learning step improved the accuracy of all of the
models.

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Learning rate Investigation

No. Dense Layers
Learning Rate
change

Epochs per step Accuracy Validation Accuracy

2

1.0e-1 682 62.29 64.44

3e-1
682 62.44 64.54
348 62.07 64.17

5e-1
682 62.22 62.98
348 62.42 64.11

4

1.0e-1 682 62.34 64.37

3e-1
682 62.31 64.34
348 62.23 64.28

5e-1
682 61.47 62.72
348 62.37 64.30

6

1.0e-1 682 62.39 64.47

3e-1
682 62.06 64.23
348 62.15 64.17

5e-1
682 56.81 57.21
348 62.36 63.74

11
3e-1

682 61.60 63.40
348 61.78 64.29

5e-1
682 57.71 56.49
348 62.00 64.06

Table: Learning rate tests over 2048 epochs

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Train-Validation Split

Validation
split

Accuracy Val. Accuracy

10% 62.25 64.29
15% 62.32 64.54
20% 61.45 64.08
25% 61.80 63.99
30% 61.67 64.02

We trained six 11-layer feed-forward models using
train-validation splits of 0.9/0.1, 0.85/0.15, 0.8/0.2,
0.75/0.25, 0.7/0.3.

Train-validation split had an insignificant effect on our model
as all of the tested models were within 1% accuracy of one
another at 64%.

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Clip Gradient

Clip Gradient Accuracy Val. Accuracy

5.0e-3 61.44 63.98
5.0e-4 61.41 64.10
1.0e-4 61.77 63.98

Table: Clip gradient on accuracy on 11-layer model

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Clip Gradient

Figure: 1.0e-4 Clip Gradient

Clip Gradient has little to no change on peak accuracy, producing results that
are less than .0005 different then our preset clip gradient.

1.0e-4 seems to be the best value in this range, but this is not a very powerful
variable in changing peak accuracy.

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Batch Size

Batch Accuracy Val. Accuracy

8192 61.63 63.96
16384 61.73 63.89
32768 49.87 52.74
65536 48.75 50.32

Table: Batch size on 11-layer dense model accuracy

Sometimes increasing batch sizes improves models, but it can
cost memory performance

Keeping the batch size at 8192 maximized accuracy in our
model

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Dropout

We trained six different models with variable dropout rates of
0.15, 0.20, 0.30, 0.40, 0.45, and 0.60 dropout values.

For dense layers, lowering the dropout percentage to 0.15
increased the accuracy to 66%.

In the GRU layers, a dropout rate of 10% led to an accuracy
of 43%. A dropout rate of 60%, on the other hand, generated
an accuracy of 7%

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Dense Dropout

Dropout Accuracy Val. Accuracy

60% 59.27 62.76
55% 60.02 63.17
40% 62.04 64.31
30% 63.29 65.17
20% 64.81 66.37
15% 65.28 66.85

Table: Dropout rate on accuracy in 11-layer dense model

Background PyTorch Conversion Hyperparameter Tuning Conclusions

GRU Tests

No. GRU layers No. Dense layers Accuracy Val. Accuracy

2
10 74.20 64.45
16 73.63 66.04

4
16 87.59 55.13
64 8.629 8.418

16
16 7.675 7.691
64 7.678 7.600

Table: GRU tests (Dropout = 35%, lr = 1e-3, step = 450, lr multiplier =
0.95)

Background PyTorch Conversion Hyperparameter Tuning Conclusions

LSTM Tests

No. of LSTM layers No. of Dense layers L2 Regularization Accuracy Validation Accuracy

2 10 0 74.17 63.33

16
0 73.78 63.70
1e-2 89.62 54.05
1e-4 88.16 56.56

4
16

0 89.36 56.36
1e-2 74.11 63.67
1e-3 73.83 66.52

64 0 76.90 76.03

16
16 0 7.66 7.64
64 0 7.69 7.73

128 0 0 7.677 7.604

Table: LSTM tests on LSTM layers, dense layers, and L2 regularization

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Best Model

Figure: Accuracy graph of our 2 GRU + 10 FCL model

Combination of recurrent and fully connected layers reached a peak validation
accuracy of 69%.

Number of layers were the most important, with increases in accuracy from
dropout and learning rate scheduler parameters.

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Future Work

Create a Transformer model in the current pytorch model

Test different criterion (cross entropy loss vs. negative log
likelihood)

Test different optimizers and inter-activation layers (leakyrelu,
prelu, relu, and sigmoid)

Test smoother learning rate curves

Improve speed of multi-GPU runs

Background PyTorch Conversion Hyperparameter Tuning Conclusions

Conclusions

Successfully translated base code from Keras to Pytorch for
potential faster training, increased user support, better readability,
rich package environment, and more standard code across the
industry.

Our most accurate model uses a combination of 2 GRU layers and
10 fully connected layers, and was able to reach an accuracy of 69%
in 1024 epochs.

Number of layers, dropout rate, and learning rate scheduler were the
most impactful hyperparameters.

For complete information: Baird, Kadel, Kaufmann, Obe, Soltani, et al.,
Tech. Report HPCF–2023–12, 2023. hpcf.umbc.edu

hpcf.umbc.edu

	Background
	Proton Therapy
	Compton Camera
	Initial Data Issues

	PyTorch Conversion
	Hyperparameter Tuning
	Conclusions

