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Abstract—Proton beam therapy is a unique form of radio-
therapy that utilizes protons to treat cancer by irradiating
cancerous tumors, while avoiding unnecessary radiation exposure
to surrounding healthy tissues. Real-time imaging of the proton
beam can make this form of therapy more precise and safer
for the patient during delivery. The use of Compton cameras is
one proposed method for the real-time imaging of prompt gamma
rays that are emitted by the proton beams as they travel through
a patient’s body. Unfortunately, some of the Compton camera
data is flawed and the reconstruction algorithm yields noisy and
insufficiently detailed images to evaluate the proton delivery for
the patient. Previous work used a deep residual fully connected
neural network. The use of recurrent neural networks (RNNs) has
been proposed, since they use recurrence relationships to make
potentially better predictions. In this work, RNN architectures
using two different recurrent layers are tested, the LSTM and the
GRU. Although the deep residual fully connected neural network
achieves over 75% testing accuracy and our models achieve only
over 73% testing accuracy, the simplicity of our RNN models
containing only 6 hidden layers as opposed to 512 is a significant
advantage. Importantly in a clinical setting, the time to load the
model from disk is significantly faster, potentially enabling the
use of Compton camera image reconstruction in real-time during
patient treatment.

Index Terms—Proton Beam therapy, Compton camera, Image
reconstruction, Deep residual neural network, Recurrent neural
network

I. INTRODUCTION

Because to its many advantages, proton beam therapy has

gained popularity as a form of cancer treatment. Most types

of radiation therapies work with the objective to damage the

cellular DNA of target cancer cells that reside in the nucleus of

every cell. X-ray therapy is able to deliver dosage at the tumor

site, but its radiation continues to travel through the body until

it exits the other side. This may potentially cause harm to

healthy surrounding tissues and organs that are unnecessarily

exposed to radiation. By contrast, proton beams have a finite

range that can be controlled and they deposit the majority of

their energy just before they stop. This sharp energy increase

of the proton beam right before stopping is known as the Bragg

peak. Since almost no radiation is delivered beyond the Bragg

peak, healthy tissue can be spared from unnecessary radiation

[1]. In order to take full advantage of these properties of proton

therapy, we must have an efficient technique to image the

prompt gamma rays produced by the beam in real-time as they

travel through the patient’s body. A Compton camera can be

used to detect the prompt gamma rays emitted when the proton

beam travels through the body, and an algorithm is available to

reconstruct the beam’s image from the prompt gamma data,

which then provides an indirect image of the proton beam.

Unfortunately, a lot of the raw data of the Compton camera

is flawed and the reconstruction algorithm yields noisy and

insufficiently detailed images to evaluate the proton delivery

for the patient [2], [3].

Machine learning can be used to clean the raw Compton

camera data by identifying and removing false data before

image reconstruction [2], [3]. Research efforts to clean the

Compton camera data have led to the use of neural networks.

Shallow networks like the one in [2] use 1 to 2 hidden layers

to perform simple classifications of simulated prompt gamma

data under ideal conditions that do not represent the irradiation

conditions encountered during clinical proton beam radiother-

apy. This shallow network in [2] is a binary classification

network that simply determines which event data are true

events and should be used for reconstruction and which are

false events that should not be used for reconstruction. This is

improved upon in [3] using the deep residual fully connected

neural network described in [4] for triple event classification.

This neural network consists of 64 residual blocks with 8 fully
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connected layers per block yielding a total of 512 hidden

layers. Each layer had 256 neurons, a 45% dropout rate,

and used leaky ReLU activation. More detailed results and

discussions about the impact of neural network processing

on the use and viability of Compton camera based imaging

in clinical proton radiotherapy are the focus of [3], while

providing details on the network and its training are the focus

of [4]. The full capabilities of the described neural network are

specified in [5], where preprocessing the data, all classification

capabilities, and postprocessing output data are described in

detail. Other recent work [6], [7] focused on hyperparameter

studies on the deep residual fully connected neural network

from [4], varying batch sizes, neurons, and layers. The use

of recurrent neural networks (RNNs) is proposed in [6], since

they use recurrence relationships in sequence data sets to make

potentially better predictions. The potential for RNNs to be

an improvement over feedforward neural networks (FNNs) is

shown in [8].

In this work, we test RNN architectures using two different

recurrent layers because of their potential for classifying

sequence data, the Long Short-term Memory (LSTM) (dis-

cussed in Section III-A1) and the Gated Recurrent Unit (GRU)

(discussed in Section III-A2). The LSTM uses memory cells

with gates and a carry track to encode and learn from sequence

data. The GRU uses two gating units to encode and learn from

sequence data. The goal in this change in type of network

architecture is to examine data as a sequence of interactions

rather than one single event, but preliminary results do not

show any benefit. We use models with 4 GRU layers and

with 4 LSTM layers and achieve similar testing accuracy

as the deep residual fully connected model from [4]. The

model with 4 GRU layers outperforms the deep residual fully

connected model in 3 classes but has a larger gap (within

10%) in accuracy in the other 10 classes. The model with

4 LSTM layer outperforms the previous deep residual fully

connected model in only 2 classes but has a smaller gap

(within 6%) in accuracy in the other 11 classes. Although

the deep residual fully connected model achieves a slightly

higher accuracy in nearly every class, the simplicity of our

RNN models containing only 6 hidden layers (4 recurrent and

2 fully connected) as opposed to 512 is an advantage. And

importantly in a clinical setting, the time to load the model

from disk is significantly faster, potentially enabling the use

of Compton camera image reconstruction in real-time during

patient treatment.

The remainder of this work is organized as follows: Sec-

tion II provides background on proton beam therapy to treat

cancer and the use of a Compton camera to image promp

gammas. Section III details the basics of machine learning

and recurrent neural networks, while also providing details on

the LSTM and GRU. Section IV outlines the hardware and

software we use to carry out this research project. Section V

contain the results of our work. Section VI contains our

conclusions and future work.

II. APPLICATION BACKGROUND

A. Proton Beam Therapy

Radiation therapy is a form of cancer treatment that uses

high doses of radiation to kill cancer cells. X-ray therapy, a

form of radiation therapy, is a common technique used for

cancer treatment, where the majority of the radiation dosage

is delivered upon entering the body. Because of this, the tumor

does not receive as high of a concentrated dose as it should.

In addition, X-rays will continue to travel posterior into the

human body until it exits out the other side. This is not ideal

as there is no need for extra radiation exposure within the

body. Proton therapy on the other hand, which is another form

of radiation therapy, is more efficient in this manner. Rather

than depositing the majority of the dosage at the entry site,

proton therapy works to deposit the majority of the dosage at

the tumor site itself, thus making the process more effective.

Proton therapy also has an advantage over X-ray therapy in the

sense that the proton beam travels no further posterior into the

body than the site of the tumor, allowing for minimal exposure

to surrounding tissue.

Depending on the size of the tumor, the beam may have to

kill the tumor cells layer by layer. When delivering a dosage to

a tumor, the professional who is treating the patient will create

what is called a safety margin. This safety margin enlarges

the treatment area to ensure that all parts of the tumor are

guaranteed to receive dosage. The safety margin is needed to

account for slight movements in the patient during treatment

as well as slightly different positioning of the patient from one

treatment to the next over several weeks.

If real-time information on the trajectory of the proton beam

through the patient’s body were available during a treatment,

the safety margin could be smaller and an optimal path could

be used. The use of Compton cameras is one proposed method

for the real-time imaging of prompt gamma rays that are

emitted by the proton beams as they travel through the body.

B. Compton Camera

The Compton camera is a multi-stage detector that produces

data used to generate images of proton beams used in proton

beam therapy [4]. As protons from the beam enter the body,

they interact with cells in the body causing the emission of

prompt gamma rays. Some of these gamma rays will collide

with the Compton camera. An interaction is when a prompt

gamma collides with a stage of the Compton camera. For each

interaction, the camera records x-, y-, z-coordinates and the

energy level of the scatter. The readout of interactions in a

single period is called an event. The raw output data from the

camera for each interaction is in the form (ei, xi, yi, zi) where

i = 1, 2, 3 for the three stages of the Compton camera, and ei
is the energy level.

Image reconstruction algorithms exist that can recover the

path of the proton beam from the Compton camera data. The

Compton camera’s capability to reconstruct full 3D images of

the proton beam range could be used with the patient’s CT scan

to compare the planned treatment dose and make adjustments.
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Radiotherapy treatment requires a conformity between the

treatment plan and the treatment delivery, making sure that

patient’s bone and soft tissue landmarks are aligned as they

were at the time of treatment planning [1]. Having a patient

change position, wiggle, scratch, look the other way, or any

other subtle movement could cause disruption in the treatment

plan. By obtaining reliable information regarding the patient

from the reconstructed images, clinicians have the opportunity

to better ensure that the entire tumor receives the exact dose

as planned while making sure surrounding healthy tissues are

safe.

Prompt gammas are emitted at speeds close to the speed

of light consequently the camera is unable to detect the

true ordering of interactions in an event. The false events

cause noise in the image created impacting the usefulness of

the image [4]. Next we describe the three different type of

Compton camera scatters.

a) True Triples: In the True Triples event, the Compton

camera will detect the path of a single prompt gamma occur-

ring in some order. However, it is possible that the true path is

some other ordering. There are a total of 6 total combinations

of True Triple scatters: 123, 132, 213, 231, 312, 321 and, as

the data stands, only the 123 ordering is usable.

b) Double-to-Triples (DtoT): In the DtoT event, the

Compton camera will detect the path of a single prompt

gamma as a true triple. However, in reality, there were two

prompt gammas who had varying paths. One prompt gamma

could have detected as the first and third interaction and

the second prompt gamma could have been mistaken as the

second interaction. Similar to true triples, there are a total of

6 misdetection orderings: 124, 134, 214, 234, 324, 314. The

second prompt gamma interaction is classified as “4” in the

misdetection orderings. In this case, without processing the

data, all 6 orderings are unusable.

c) False Triples: In a false triples event, the Compton

camera will detect a true triple whereas in reality, there were

actually three different prompt gammas. As a result, this entire

event provides no insight into the path of a single prompt

gamma and must be discarded.

d) The Need for Machine Learning: In order to make

proton beam therapy more effective, real-time imaging is

needed to verify location and effectiveness of the proton beam,

in particular the location of the Bragg peak. Machine learning

is capable of classifying which type of scatter event occurred

based upon data provided by the Compton camera. These

classifications lead to removal of unusable data which will

clean the resulting image. A clearer image allows for treatment

verification. A sufficiently accurate machine learning model

could produce an image that is clear enough to be used

in proton beam therapy as a form of treatment verification.

A machine learning algorithm will need approximately 90%
testing accuracy to be useful for clinicians.

In current practice, the patient’s body is imaged before

undergoing treatment in order to map the position of the tumor.

A plan for how to target and treat the tumor with the proton

beam is then developed. The course of proton beam radiation

therapy itself then follows, and consists of the delivery of

the planned treatment in multiple treatment sessions over a

period of one to five weeks. Machine learning models would

be used to greatly improve the reconstructed images of the

delivered proton beam in real-time. The model is loaded as

part of the beam imaging software at the start of the day by

the operator and is then used to clean the Compton camera

data prior to reconstruction of the beam image for each patient

during treatment.

Additional details on the application are provided in the

report [9].

III. MACHINE LEARNING

Machine learning is a type of artificial intelligence where a

machine is trained to identify specific trends and patterns to

make predictions from data. In the case of Compton camera

data, the machine learning algorithm will try to predict the

appropriate class for a scatter event. The main benefit of

machine learning is its efficiency in producing results that

would take humans alone much longer. There are four different

ways that a machine can be taught: supervised, unsupervised,

semi-supervised, and reinforcement. Supervised learning is a

form of learning where the machine is provided a labeled data

set that has regular input data as well as the desired output

data. This allows the machine to produce a model that has been

fitted appropriately. Unsupervised learning is used when one

wants to identify hidden patterns within an unlabeled data set.

This allows the machine to identify any trends it finds in the

data without special instruction. Semi-supervised learning is

a mixture of supervised and unsupervised where the model is

provided some labeled data and a large amount of unlabeled

data. Reinforcement learning is similar to the way humans

learn where the machine will interact with the data and there

will be either a positive or negative reward depending on

whether the machine does something the programmer wants

or not. The method used in this study is supervised learning

because the data set contains both the data from the scatter

event and the corresponding label of which event scatter took

place.

A. Recurrent Neural Networks

Recurrent neural networks (RNNs) are an efficient neural

network used for time series tasks. They work similar to a

coupling process in biology. They rely on information from

the previous system or “loop” to move forward with the

next. In this type of neural networks, the sequence or order

of the network is very important. The system can be read

and executed differently if the elements of both series are in

different orders. In the case of RNNs, elements include an

input layer, hidden layers, and an output layer.

RNNs use back-propagation through time to illustrate gra-

dients. The difference between RNN back propagation and

other methods such as in a feed forward network is that sum

errors are necessary at each time step because of the shared

parameters throughout the network. There are several types of

RNNs that are distinguished by the pathways between inputs
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and outputs. RNNs may also contain activation functions that

allow a neuron to translate the input into a specific output.

Finally, there are a few RNN structures that vary depending

on the desired use. There are bidirectional recurrent neural

networks, long short-term memory, and gated recurrent units.

Bidirectional recurrent networks rely on future data to generate

predictions.

RNNs are a viable option for Compton camera data because

of their ability to encode information about previous events.

Shaping an event in the Compton camera as a sequence of

three interactions each with five features, we have transformed

the data produced by the Compton camera to a sequence.

Using the sequence of interactions the RNN will be able to

predict the ordering of interactions, i.e., the appropriate scatter.

1) Long Short-Term Memory: A Long Short-Term Memory

(LSTM) neural network is a type of RNN that is traditionally

used for natural language processing and time series fore-

casting. The unique aspect of LSTM is that it contains a

memory cell. This memory cell is used to store certain pieces

of information that may be needed later in the training process,

called a state. The memory cell has three gates to determined

the state: forget gate, input gate, and output gate. The forget

gate controls what stored information can be forgotten. The

input gate controls what information should be used to change

the state of the memory cell, and the output gate controls

which part of that information is needed at a given time. As

stated previously, RNNs use the output of one step and carry

it over into the next step in addition to the new data input. The

different gates classify the needed and unneeded information,

and the new state is outputted for the next step. The memory

cell was added to combat the main issue with RNNs which is

long-term dependency where as more and more information is

fed into the RNN, it becomes less effective in learning because

the network cannot remember everything.

2) Gated Recurrent Unit: A Gated Recurrent Unit is essen-

tially a streamlined version of the LSTM in Section III-A1.

The GRU has gating units that modulate the flow of infor-

mation inside of the unit. The GRU factors in the previous

short-term dependency with a reset gate by using a linear

interpolation between the previous activation function value

and the current one. The GRU also factors in previous long-

term dependencies with an update gate by taking a linear sum

between existing state and the newly computed state. Unlike

the LSTM, the GRU does not have separate memory cells.

IV. HARDWARE AND SOFTWARE

We used the GPU cluster ada in the UMBC High Perfor-

mance Computing Facility. The ada system has 3 distinct node

types. Four nodes each with 8 Nvidia RTX 2080 Ti GPUs

each with 11GB GPU memory. Seven nodes with 8 Nvidia

Quadro RTX 6000 GPUs each with 24GB of GPU memory.

Two nodes each with 8x Nvidia Quadro RTX 8000 GPUs each

with 48GB memory. Each node has 384 GB of CPU memory

(12× 32 GB DDR4 at 2933 MT/s) except the two RTX 8000

nodes which have 768GB of CPU memory(12 × 64GB DDR4

at 2933 MT/s).

Networks built on ada were built with the software package

Anaconda3 and Tensorflow v2.6.0 with the bundled Keras

module.

V. RESULTS

For our studies, we trained the neural network on a data

set that was generated using a Monte Carlo simulation and

that consisted of 1,443,993 records and 15 features. These

features represent spatial coordinates, Euclidean distance, and

energy deposition for each interaction. An interaction is a

grouping of three spatial coordinates and an energy level.

Each row is either a triple, double-to-triple, or a false triple

and consists of three interactions each. Our training data set

only consisted of True Triples, Double-to-Triple scatter, and

False events. Furthermore, when testing the neural network we

used datasets that used 150MeV (Mega electron Volt) beams

with three different dosage rates: 20kMU (kilo Monitor Unit),

100kMU, and 180kMU. The larger kMU values correspond

to more intense dosage rates. Both the training and testing

datasets were reshaped to be sequentially read. Therefore each

record of 15 features was reshaped to 3 interactions of 5

features each: three spatial coordinates, Euclidean distance,

and energy deposition. Each record is fed into the neural

network as a sequence of 3 interactions. The testing data

contains 37,151 testing data points for 20kMU/min, 17,425

for 100kMU/min, and 12,254 for 180kMU/min from MCDE

model test 1 150MeV.

Previous research explored fully connected networks in

depth. We explore recurrent neural networks using the LSTM

and GRU layers. We begin by examining the number of

epochs, the batch size, and the learning rate. We then explore

the number of layers and number of neurons in order to deter-

mine a promising configuration for a recurrent neural network.

RNNs with both GRU and LSTM models are examined. These

studies lead us to the use of 4 recurrent layers of 128 neurons

with a batch size of 2048 and learning rate of 10−3. Table I

shows the constant parameters for all RNN studies.

TABLE I: Constant RNN parameters

Hyperparameter Value
Recurrent Layer Activation Tanh

Final activation Softmax
Output Layer 13 Neurons

Optimizer Nadam
Loss Function Categorical Crossentropy

Train,Validation Split 0.8/0.2

Our goal is to discover how long these models could be

trained before plateauing. Testing models with more epochs

than 512 showed an increase in validation accuracy. However,

after 1024 epochs the model learns very slowly. A 4 GRU

layer model with 1024 epochs has a validation accuracy of

71% and the same model with 8192 epochs has a validation

accuracy of 77%.

A learning rate scheduler is used to change the learning

rate during model training. One possible learning rate schedule

is a step schedule which changes the learning rate at certain
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epochs. This can be done using a Keras callback which will

adjust the learning rate during training. A piece-wise function

such as the one in Equation (1) can represent a step learning

schedule. We use i to represent the current epoch and p to

represent the total number of epochs, then L is a function of

epochs and determines our learning rate at the ith epoch. Our

initial studies using a step learning rate schedule showed that

a learning rate schedule could make approximately a 6% to

7% increase in accuracy while preventing overfitting.

The impact of the learning rate schedule on accuracy and

generalization lead us to study a 32,000 epoch model with the

learning rate schedule that also has 2 dense layers of 128 and

64 neurons respectively. We test these parameters on both the

models with LSTM and the models with GRU layers. The

final models will then be tested using a new data set and

will have confusion matrices made to verify their accuracy.

A confusion matrix contains all 13 misdetection orderings as

well as a percentage that is determined by how frequently the

model classified each event correctly or incorrectly. The main

diagonal of a given matrix shows the percentage of correct

classifications of the network. All other entries in the matrix

are percentages where the network incorrectly classified an

event.

A. 32,000 Epoch Network with Learning Rate Schedule

The 4 LSTM layer model has a very high training and

validation accuracy. The dense layers for the LSTM model

have the ReLU activation function for both layers. This causes

us to believe the model could be a possible improvement

over the previous model. We notice the rise in accuracy at

the epochs where the learning rate is lowered. We also notice

how training and validation accuracy converge at the end with

the lowering learning rates. The model has a final validation

accuracy of 89% which is a significant improvement over all

previous studies. The model however is overfit. There is a

significant difference in the validation accuracy and the testing

accuracy.

The dense layers for the GRU model have the leaky ReLU

activation function for both layers the parameters are the

same for the GRU. The GRU layers produce a model with

a slightly lower final validation accuracy of 86%. However

the model performs different on the test data. Ultimately, this

model is still overfit with the large difference in validation

and testing accuracy. The overfitting of these models tells us

that we should try and apply some regularization to them such

as dropout layers in order to make the model more general.

Regularization techniques will help bring the testing accuracy

closer to the validation accuracy.

B. Regularization

We adjusted the number of epochs to be 16384 and added

dropout layers between every hidden layer with a dropout rate

of 20%. The model used Equation (1) as the learning rate

schedule.

L(i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10−3 i ≤ p
8

10−4 p
8 < i ≤ p

4

10−5 p
4 < i ≤ p

2

10−6 p
2 < i

(1)

This helps regularize the model. While drastically reducing the

model’s validation accuracy to below 80%; the validation and

testing accuracy are much closer. This model performs almost

as well as the deep residual fully connected model for both the

LSTM and the GRU. While the model is almost as accurate

as the deep residual fully connected model. Its load time is

10s for the GRU model and 7s for the LSTM model which is

an advantage. The fully connected model loads in 47s. Also

having still only 4 recurrent layers and 2 dense layers is an

advantage because there is a great deal more than can be done

with such a simple model. Table III through Table VIII show

the confusion matrices for the regularized GRU and LSTM

models.

TABLE II: Comparison of GRU model with deep fully con-

nected network.

Class GRU DRFCN GRU - DRFCN
123 76.4 79.1 -2.7
132 79.4 76.0 3.4
213 73.5 76.4 -2.9
231 79.1 80.7 -1.6
312 83.1 82.4 0.7
321 76.2 76.5 -0.3
124 71.9 76.0 -4.1
214 74.0 75.0 -1
134 72.0 75.4 -3.4
314 78.3 75.4 2.9
234 63.9 73.6 -9.7
324 73.9 75.3 -1.4
444 63.5 72.6 -9.1

Comparing the GRU and LSTM models with the deep

residual fully connected (DRFCN) model from [5] in each

classification at the dosage rate of 100kMU/min, we see in

Table II that the GRU model outperforms the deep fully

connected model in three categories and is within 10% in

all categories. Similarly, the LSTM only outperforms in two

categories but is within 6% as shown in Table IX.

Another test was run on the 4 layer LSTM with 2 dense

layers model except the number of neurons per dense layer

was increased from 128 and 64 to 256 and 128. The dropout

rate remained at 0.2. Table X shows the comparison results.

This model is within 5% within every classification. Finally

in Table XI we see a comparison of overall accuracy and the

load times.
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TABLE III: Confusion matrix for 4 GRU layer model with learning rate schedule Equation (1) trained on triples, double to

triples, and false data from a 150MeV over 16384 epochs. The testing data used is from the MCDE model test1 150MeV 20K

beam.

123 132 213 231 312 321 124 214 134 314 234 324 444
123 73.8 5.4 1.7 3.5 4.2 2.0 5.6 0.5 0.2 0.1 1.6 1.1 0.2
132 2.5 79.4 1.9 1.6 3.3 2.6 0.1 0.0 5.0 0.8 0.4 2.2 0.2
213 1.5 3.4 75.7 3.5 2.5 2.9 0.6 4.7 3.1 1.8 0.1 0.0 0.2
231 2.0 2.1 3.4 77.3 4.0 2.2 0.0 0.1 0.7 3.5 3.7 0.7 0.2
312 1.6 2.0 1.2 1.7 81.1 2.7 2.1 0.9 0.5 6.0 0.0 0.1 0.0
321 1.2 2.7 2.1 2.3 4.3 78.7 0.7 2.1 0.0 0.4 0.4 4.9 0.2
124 4.2 0.4 0.8 0.1 5.2 2.3 70.6 9.0 0.9 1.0 0.3 0.9 4.2
214 0.4 0.3 5.1 0.3 2.3 4.4 5.7 74.6 0.3 2.1 0.3 0.4 3.7
134 0.6 5.8 3.0 1.7 0.8 0.1 0.4 0.3 72.7 10.5 0.5 0.8 2.7
314 0.0 1.5 1.7 4.1 6.0 0.4 0.5 0.9 6.8 74.4 0.1 0.9 2.6
234 3.6 2.8 0.1 8.2 0.4 1.0 0.1 1.1 1.8 1.0 65.7 9.4 4.8
324 1.3 5.7 0.1 0.4 0.4 7.3 0.9 0.3 0.6 1.2 4.3 74.4 3.2
444 0.9 2.2 0.3 0.9 0.0 0.0 5.6 6.3 5.6 7.5 4.4 7.2 58.9

TABLE IV: Confusion matrix for 4 GRU layer model with learning rate schedule Equation (1) trained on triples, double to

triples, and false data from a 150MeV over 16384 epochs. The testing data used is from the MCDE model test1 150MeV

100K beam.

123 132 213 231 312 321 124 214 134 314 234 324 444
123 76.4 4.4 1.8 3.1 3.5 1.7 4.5 0.8 0.2 0.0 2.0 1.4 0.1
132 2.0 79.4 1.5 1.2 3.5 2.0 0.0 0.0 6.8 0.6 0.6 1.9 0.3
213 2.0 3.7 73.5 3.7 3.2 1.9 0.5 4.9 3.6 2.7 0.2 0.0 0.1
231 1.9 2.2 3.1 79.1 3.1 1.9 0.0 0.0 1.2 3.4 3.4 0.6 0.1
312 1.1 1.7 1.5 2.1 83.1 2.7 1.7 0.6 0.3 4.7 0.0 0.2 0.1
321 0.8 3.3 2.7 2.8 5.6 76.2 0.6 3.2 0.0 0.6 0.3 3.8 0.2
124 5.9 0.5 0.5 0.1 5.3 1.6 71.9 7.7 0.8 0.7 0.2 1.3 3.4
214 0.7 0.2 5.8 0.4 2.5 4.2 5.6 74.0 0.5 2.1 0.2 0.5 3.4
134 0.3 6.5 2.8 1.7 0.7 0.0 0.4 0.5 72.0 11.0 0.6 0.4 3.2
314 0.1 0.5 1.6 2.9 5.8 0.2 0.1 0.7 5.9 78.3 0.1 1.1 2.8
234 4.7 3.1 0.5 8.0 0.2 0.9 0.4 0.5 1.1 0.8 63.9 10.3 5.4
324 1.2 4.7 0.2 0.9 0.4 6.1 0.7 0.3 0.8 1.3 5.4 73.9 4.1
444 1.0 0.9 0.4 0.6 0.9 1.0 4.2 4.6 6.4 8.3 3.0 5.2 63.5

TABLE V: Confusion matrix for 4 GRU layer model with learning rate schedule Equation (1) trained on triples, double to

triples, and false data from a 150MeV over 16384 epochs. The testing data used is from the MCDE model test1 150MeV

180K beam.

123 132 213 231 312 321 124 214 134 314 234 324 444
123 72.1 7.2 2.2 2.4 4.3 2.6 6.2 0.5 0.0 0.0 1.7 0.7 0.0
132 1.7 81.0 1.2 1.2 1.2 2.2 0.2 0.0 5.5 1.0 0.7 3.6 0.5
213 1.0 3.1 75.4 4.1 2.4 2.9 0.2 6.5 3.4 1.0 0.0 0.0 0.0
231 1.4 1.7 4.3 75.4 5.3 1.9 0.2 0.2 0.7 4.1 3.6 0.7 0.2
312 1.0 3.4 0.7 1.7 80.7 2.9 1.9 0.7 0.5 5.5 0.0 0.2 0.7
321 1.7 1.7 2.4 2.7 4.8 78.1 1.4 3.4 0.0 0.2 0.2 3.4 0.0
124 6.0 0.8 0.6 0.0 4.7 1.9 70.8 8.2 0.5 0.4 0.2 1.1 4.9
214 0.8 0.0 5.1 0.6 2.9 4.4 5.2 74.0 0.5 1.5 0.2 0.6 4.1
134 0.6 6.4 3.3 1.7 1.4 0.0 0.3 0.2 71.6 10.7 0.9 0.5 2.3
314 0.1 0.2 0.6 3.7 6.3 0.3 0.1 1.0 6.4 77.4 0.1 0.6 3.3
234 3.7 2.5 0.6 7.6 0.3 1.1 0.3 0.5 1.6 0.6 67.0 8.7 5.4
324 1.4 4.8 0.1 0.8 0.6 6.6 1.4 0.2 0.9 1.0 6.0 72.1 4.2
444 0.8 1.2 0.3 0.7 0.6 0.4 4.9 4.4 6.5 7.7 4.0 5.9 62.6
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TABLE VI: Confusion matrix for 4 LSTM layer model with learning rate schedule Equation (1) trained on triples, double to

triples, and false data from a 150MeV over 16384 epochs. The testing data used is from the MCDE model test1 150MeV 20K

beam.

123 132 213 231 312 321 124 214 134 314 234 324 444
123 78.2 3.6 1.3 2.4 2.2 1.8 7.2 0.4 0.1 0.0 1.8 0.8 0.2
132 4.3 74.9 2.3 1.8 2.7 2.9 0.4 0.0 6.6 0.7 0.7 2.3 0.3
213 2.2 3.1 75.0 3.0 1.9 2.5 0.8 6.3 3.6 1.3 0.1 0.0 0.3
231 3.6 2.3 3.8 73.3 3.4 2.3 0.1 0.2 1.3 3.6 5.3 0.6 0.3
312 3.4 2.2 1.5 2.3 74.2 3.2 4.0 1.2 0.7 6.9 0.0 0.1 0.2
321 2.2 2.5 2.5 1.9 3.6 76.5 1.6 3.1 0.0 0.2 0.5 5.0 0.4
124 4.4 0.4 0.6 0.2 2.8 1.5 75.9 7.3 0.7 0.7 0.2 0.9 4.4
214 0.8 0.3 4.7 0.1 1.1 3.3 8.9 74.7 0.5 1.2 0.3 0.3 4.0
134 0.6 4.7 2.8 1.6 0.5 0.3 0.8 0.5 75.3 8.4 0.9 0.4 3.2
314 0.0 1.0 2.1 3.3 5.0 0.4 0.7 1.1 8.3 72.8 0.2 1.0 4.0
234 4.9 2.1 0.2 6.4 0.1 0.6 0.5 1.2 1.8 0.8 67.8 8.0 5.7
324 1.8 5.4 0.1 0.4 0.3 6.7 1.8 0.4 0.6 1.0 7.1 70.6 3.9
444 1.3 1.9 0.3 0.9 0.0 0.0 7.2 6.0 4.1 5.3 5.0 6.0 62.1

TABLE VII: Confusion matrix for 4 LSTM layer model with learning rate schedule Equation (1) trained on triples, double

to triples, and false data from a 150MeV over 16384 epochs. The testing data used is from the MCDE model test1 150MeV

100K beam.

123 132 213 231 312 321 124 214 134 314 234 324 444
123 80.0 3.8 1.6 2.5 1.3 1.3 5.9 0.6 0.1 0.0 1.9 0.8 0.1
132 3.4 75.8 2.2 1.2 3.1 2.5 0.0 0.0 8.1 0.7 0.6 2.1 0.3
213 2.3 2.8 72.5 3.9 3.0 1.8 1.0 6.2 4.1 1.7 0.2 0.1 0.3
231 3.1 1.5 4.4 75.9 2.7 2.6 0.1 0.2 1.7 3.0 4.2 0.5 0.2
312 2.6 2.0 2.2 2.5 76.1 3.9 2.7 1.0 0.6 6.1 0.0 0.1 0.2
321 1.5 3.1 3.3 2.8 4.7 73.5 1.9 3.9 0.0 0.3 0.2 4.5 0.3
124 5.8 0.4 0.3 0.1 2.8 1.0 77.1 6.7 0.5 0.7 0.3 0.8 3.4
214 1.0 0.1 5.2 0.4 1.7 3.3 8.2 74.2 0.5 1.0 0.1 0.4 3.9
134 0.4 4.9 2.7 1.4 0.5 0.1 0.7 0.7 74.2 9.1 0.8 0.2 4.3
314 0.1 0.6 1.8 2.9 4.5 0.2 0.5 1.1 8.9 73.7 0.3 0.8 4.6
234 5.6 2.2 0.4 6.2 0.2 0.7 0.5 0.5 1.2 0.5 68.5 7.7 5.6
324 1.8 4.2 0.1 0.8 0.4 6.7 1.2 0.5 0.7 0.8 7.3 69.6 6.0
444 1.1 0.6 0.3 0.6 0.5 0.4 6.0 4.9 5.6 5.0 3.0 3.7 68.3

TABLE VIII: Confusion matrix for 4 LSTM layer model with learning rate schedule Equation (1) trained on triples, double

to triples, and false data from a 150MeV over 16384 epochs. The testing data used is from the MCDE model test1 150MeV

180K beam.

123 132 213 231 312 321 124 214 134 314 234 324 444
123 77.6 6.2 1.9 1.2 1.9 1.7 6.0 0.5 0.0 0.0 2.2 0.7 0.0
132 3.1 78.8 1.7 1.2 1.4 1.7 0.5 0.0 5.8 1.2 0.7 3.4 0.5
213 1.2 2.2 75.4 4.8 1.2 3.1 1.2 6.0 4.1 0.5 0.2 0.0 0.0
231 3.4 1.7 5.3 71.6 4.1 2.4 0.0 0.0 1.2 4.3 4.8 0.5 0.7
312 3.9 2.4 1.0 1.7 73.7 3.1 4.8 1.0 0.5 6.7 0.0 0.2 1.0
321 1.7 2.2 2.7 1.9 3.1 76.9 3.1 3.6 0.0 0.2 0.7 3.4 0.5
124 5.4 0.8 0.6 0.1 3.0 1.1 76.6 6.6 0.5 0.3 0.3 0.9 3.8
214 1.0 0.0 4.1 0.5 1.8 3.3 8.8 74.2 0.4 0.7 0.3 0.2 4.7
134 0.5 5.0 3.5 1.3 0.8 0.1 0.6 0.4 73.7 8.8 1.0 0.8 3.6
314 0.0 0.2 0.9 3.0 5.4 0.3 0.5 1.3 8.3 74.3 0.2 0.8 4.8
234 4.4 1.7 0.6 5.8 0.2 0.9 0.3 0.6 1.0 0.6 71.2 6.4 6.1
324 2.5 4.4 0.0 0.6 0.5 6.7 2.0 0.4 0.5 0.6 6.5 69.9 5.4
444 0.6 1.0 0.3 0.7 0.3 0.4 6.8 4.9 5.8 5.1 4.7 4.2 65.3
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TABLE IX: Comparison of LSTM model with deep fully

connected network.

Class LSTM DRFCN LSTM - DRFCN
123 80.0 79.1 0.9
132 75.8 76.0 -0.2
213 72.5 76.4 -3.9
231 75.9 80.7 -4.8
312 76.1 82.4 -6.3
321 73.5 76.5 -3
124 77.1 76.0 1.1
214 74.2 75.0 -0.8
134 74.2 75.4 -1.2
314 73.7 75.4 -1.7
234 68.5 73.6 -5.1
324 69.6 75.3 -5.7
444 68.3 72.6 -4.3

TABLE X: Comparison of the 4 layer LSTM with dense layers

of 256 and 128 neurons with deep fully connected network at

100kMU dose rate.

Class LSTM DRFCN LSTM - DRFCN
123 77.8 79.1 -1.3
132 76.7 76.0 0.7
213 75.8 76.4 -0.6
231 78.4 80.7 -2.3
312 77.8 82.4 -4.6
321 73.7 76.5 -2.8
124 74.5 76.0 -1.5
214 74.0 75.0 -1
134 71.5 75.4 -3.9
314 71.7 75.4 -3.7
234 71.8 73.6 -1.8
324 74.2 75.3 -1.1
444 68.2 72.6 -4.4

VI. CONCLUSIONS AND FUTURE WORK

Results from the RNN (recurrent neural network) hyper-

parameter study in Section V demonstrated that a learning

rate scheduler benefits the model by increasing accuracy and

efficiency. The learning rate schedule improves validation

accuracy between 6% to 7%. Test results showed that at a

higher number of epochs and with a smaller learning rate,

the accuracy of the network increases. Due to the success

of the learning rate scheduler, the LSTM (Long Short-Term

Memory) and GRU (Gated Recurrent Unit) models were

trained using the scheduler. For these studies, a piece-wise

function was created to illustrate the change in learning rate.

From Section V-A, the maximum training accuracy for the

model reached was 89% with 32,000 epochs.

In Section V-B, we use dropout layers in between each

recurrent layer to randomly zero out 20% of the neurons in

each layer. A model with 4 GRU layers of 128 neurons and

2 dense layers of 128 and 64 neurons, respectively, has a

testing accuracy of 73.4%. The model is able to load from

its saved state to an active state, i.e., load from disk to GPU

memory in 10s. A model with 4 LSTM layers of 128 neurons

and 2 dense layers of 128 and 64 neurons, respectively, has a

testing accuracy of 73.2%. The model is able to load from disk

in 7s. The major advantage of this model are that it contains

only 6 hidden layers which leaves a tremendous amount of

TABLE XI: Comparison of top performing models with the

deep residual fully connected network (DRFCN) from [4].

Model Accuracy Load Time
DRFCN (512 FCL) 75.8% 47s

4 LSTM w/ more neurons 74.4% 15s
4 GRU 73.4% 10s

4 LSTM 73.2% 7s

space for further research and growth while already having a

testing accuracy of 73%. Further, in real-time imaging, loading

from disk is a potentially significant advantage when treating

patients.

The key results of this work are summarized in Table XI.

The Model column refers to the architecture of the model.

The first row shows the results of the deep residual fully

connected network (DRFCN) in [5]; this model has 512 fully

connected layers (FCL). 4 LSTM w/ more neurons represents

the 4 LSTM layer model with two dense layers of 256 and 128

neurons. 4 GRU represents the model with 4 GRU layers and

2 dense layers of 128 and 64 neurons. 4 LSTM represents the

model with 4 LSTM layers and 2 dense layers of 128 and 64

neurons. The Accuracy column represents the overall testing

accuracy of the model at the dosage rate of 100kMU/min. The

Load Time column represents the observed wall clock time in

seconds to load the model from its saved state to an active

state, i.e., from disk to GPU memory. These measurements

report observations on a reference computer, a basic laptop

with an 11th Gen Intel Core i7–1165G7 CPU at 2.80 GHz with

16 GB of memory. The laptop has Intel Optane Memory H10

with 512 GB Intel QLC 3D NAND solid state drive connected

by PCIe 3.0 x4 with NVMe interface. The GPU on the laptop

is an Intel Iris Xe Graphics card. On a large cluster like taki

or ada, described in Section IV, these times would in fact be

slower, since the central rotating disk storage is much larger

and connected only via network cables to the compute nodes.

Even with high-performance fiber-optic cables, this is slower

than direct connection from solid state storage inside a laptop.

However, such direct connection and use of solid state storage

is more realistic for the type of computer used in a clinical

setting in a treatment room.

The DRFCN model has the highest accuracy of 75.8% with

the load time of 47s. The models in the last two rows of the

table have accuracies of 73.4% and 73.2% respectively while

loading in 10s and 7s. These 4 GRU and 4 LSTM models

are much simpler with only 6 hidden layers instead of 512. In

particular, they have a factor 85 fewer layers while being only

2% less accurate. These two recurrent models are also 4 times

faster to load from disk which is an advantage when treating

the patient. This demonstrates the two recurrent models are

much smaller than the DRFCN model but perform almost

as accurately. Smaller models require less GPU memory to

process similar amounts of data as well as process similar

amounts of data in less time compared to larger models. This

can save time and resources when in clinical use. In clinical

use, the Compton camera software would be started-up and

that process would include loading the neural network. Given
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(a) 20kMU/min Uncleaned (b) 20kMU/min Cleaned

(c) 100kMU/min Uncleaned (d) 100kMU/min Cleaned

(e) 180kMU/min Uncleaned (f) 180kMU/min Cleaned

Fig. 1: The left column (a), (c), (e) uses testing data without the NN classification for data correction, called the “uncleaned”

data. The right column (b), (d), (f) uses testing data with NN classification for data correction, called the “cleaned” data with

the 4 layer GRU model described in Section V-B. Testing data used comes from MCDE model test1 150MeV.
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the possibility of human error by the operator, a neural network

that is quicker to load from disk and that processes data

quicker would be advantageous. An error in the use of the

neural network during treatment can be corrected quicker on

the two smaller recurrent models.

To illustrate the effect that network event classification

can have on the PG images produced from the camera

data, reconstructed PG images are shown in Figure 1 for

the GRU model. In Figure 1, there are three rows of PG

image reconstructions for each dose rate corresponding the

the MCDE model test1 150MeV. The technical report [9] show

reconstructed images for the 4 LSTM layer model. The images

in the left column are the respective PG images reconstructed

with raw data prior to NN classification, called the “uncleaned”

data. The images in the right column are the respective PG

images reconstructed with data after it has been corrected

based on the NN classifications, called the “cleaned” data.

Since each PG image is from data collected during delivery

of the same 150MeV proton beam they will have the same

position and range even though they are reconstructed from

data collected at different dose rates. We observed an improved

visual appearance of the beam in which the start point and end

point are now easily distinguishable at all three dose rates. The

method used to reconstruct these images is described in [4].

The 6 hidden layer model has a large space for improvement

due to its simplicity. Transformer networks were briefly ex-

plored in [9] and its initial results did not increase accuracy as

expected. However, the hyperparameter space is very large and

there is still potential in finding the optimal combination and

architecture. The bidirectional LSTM are also tested in [9], but

did not show any improvement. More complex architectures

than 4 recurrent layers and 2 dense layers should be explored

in addition to more techniques of regularization. There is also

room in the RNN and DRFCN merged models where, rather

than stacking the RNN layers in front of the DRFCN, the RNN

layers could be dispersed between the FCLs, placed inside the

residual blocks, or placed behind the DRFCN. From the results

of this work, it is still possible that the optimal configuration

of hyperparameters has still not been achieved for the more

complex recurrent architectures (RNNs with residual blocks

and transformers). Therefore, hyperparameter searches and

exploring different optimization techniques could increase the

accuracy of those models.
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