1. 16 essential elements
2. 3 = C, H, O (C from carbon dioxide in air, H from water, O from water and
air -- but O from water becomes a product of photosynthesis; O from CO2 is incorporated
into macromolecules during fixation; O2 from air is used in aerobic respiration)
3. 13 elements made available as dissolved mineral salts
[Table 30.1]
- 6 = macronutrients (used in significant quantities)
- 7 = micronutrients (used in trace amounts)
1. Bacteria, fungi help plants to take up nutrients, particularly
nitrogen ( = mutualism). Plenty of N2 is available in air, but plants cannot
fix nitrogen. [What does "fix" mean?]
2. Bacteria reside in root nodules of legumes (string beans,
peas, alfalfa, clover); they convert gaseous nitrogen to forms the plants can
use = nitrogen fixation. In return, they withdraw organic compounds from plant
tissues. [Fig. 30.2]
3. Fungi grow around plant roots in mycorrhizae; they aid in
absorbing minerals in exhange for sugars.
4. Root hairs are epidemal extensions that greatly increase
the surface area for absorbing water and nutrients [Fig. 30.3]
1. Uptake of mineral ions is regulated -- don't want too
much of a good (or bad) thing -- e.g., certain salts, heavy metal ions.
2. Endodermis surrounds vascular cylinder, Casparian strip
in endodermis prevents flow of water around cells --> water and ions must
move through cell cytoplasm. [Figs. 30.4a, 30.4b,c]
3. This allows membrane transport proteins to control absorption of solutes;
most flowering plants (angiosperms) also have an exodermis just inside the roots
which also has a Casparian strip.
4. Energy for membrane pumps = ATP from either photosynth or aerobic respiration.
1. Transpiration: water moves (roots
--> stems --> leaves) through xylem (tracheids and vessel members. Some
water used for growth, metabolism; most evaporates into air = transpiration.
2. Cohesion-tension theory [Fig. 30.6]
- transpiration at leaves --> tension on water in xylem --> evaporation
--> water molecules pulled up stem to replace molecules lost to air -->
water pulled into roots
- during all this pulling, hydrogen bonds hold water molecules together in columns
inside xylem tubes = cohesion
1. Water-conserving cuticle: secreted
by epidermal cells; translucent to allow entry of light photons, restricts water
loss and diffusion of CO2, O2 [Fig. 30.7]
2. Stomata (openings mainly on bottom of leaves) regulate inward,
outward movement of water vapor, CO2, O2 [Fig. 30.8]
- 2 guard cells define each opening; sunlight --> drop in CO2 inside cells
--> potassium uptake by active transp. causes water to enter --> guard
cells swell --> stomata open in daytime [Fig. 30.9]
- at night, CO2 levels increase --> guard cells lose potassium, water, unswelling
--> stomata close
- in CAM plants (cactus, succulents) stomata open at night
to conserve water (CO2 levels drop at night due to fixation by a special C4
pathway -- see p. 119)
1. Starch, fats, proteins ( = storage forms of organic
molecules) unsuitable for transport; these are converted to soluable forms such
as sucrose, amino acids)
2. Translocation = movement of organic molecules from photosynthetic
sites to organs that need them. Occurs in phoem. [Figs. 30.11, 30.13]
- aphid feeding, shows sugars inside seive tubes being moved under relatively
high pressure
3. Pressure Flow Theory [Fig. 30.14]
- translocation driven by pressure, concentration gratients
- molecules move through phloem from sources (mainly leaves) to sinks (leaves,
fruits, seed, roots)
- solutes loaded at source by active transport into phloem (companion cells
do the loading); water follows by osmosis building up pressure in phloem at
source
- pressure causes bulk flow of solution inside phloem; concentration gradient
helps = diffusion
- organic compounds unloaded into sink cells (any region where cells are growing
or storing food) followed by water (--> low hydrostatic pressure)
- pressure-flow theory accounts for fact that movement of sugar in phloem is
much faster than can be accounted for by diffusion (up to 40,000 times faster
in cotton plants!)