

CHO06_115-141.gxd 4/1/04 2:57 PM Page 116 $

Perhaps the major problem that we face in developing large and complex soft-
ware systems is that of requirements engineering. Requirements engineering
is concerned with establishing what the system should do, its desired and essen-
tial emergent properties, and the constraints on system operation and the soft-
ware development processes. You can therefore think of requirements
engineering as the communications process between the software customers
and users and the software developers.

Requirements engineering is not simply a technical process. The system require-
ments are influenced by users’ likes, dislikes and prejudices, and by political
and organisational issues. These are fundamental human characteristics, and
new technologies, such as use-cases, scenarios and formal methods, don't help
us much in resolving these thorny problems.

The chapters in this section fall into two classes—in Chapters 6 and 7 I intro-
duce the basics of requirements engineering, and in Chapters 8 to 10 |
describe models and techniques that are used in the requirements engineer-
ing process. More specifically:

1. The topic of Chapter 6 is software requirements and requirements documents.
| discuss what is meant by a requirement, different types of requirements
and how these requirements are organised into a requirements specifica-
tion document. | introduce the second running case study—a library system—
in this chapter.

2. In Chapter 7, | focus on the activities in the requirements engineering pro-
cess. | discuss how feasibility studies should always be part of requirements
engineering, techniques for requirements elicitation and analysis, and
requirements validation. Because requirements inevitably change, | also
cover the important topic of requirements management.

3. Chapter 8 describes types of system models that may be developed in the
requirements engineering process. These provide a more detailed descrip-
tion for system developers. The emphasis here is on object-oriented mod-
elling but | also include a description of data-flow diagrams. I find these are
intuitive and helpful, especially for giving you an end-to-end picture of how
information is processed by a system.

4. The emphasis in Chapters 9 and 10 is on critical systems specification. In Chapter
9, | discuss the specification of emergent dependability properties. | describe
risk-driven approaches and specific issues of safety, reliability and security spec-
ification. In Chapter 10, | introduce formal specification techniques. Formal meth-
ods have had less impact than was once predicted but they are being
increasingly used in the specification of safety and mission-critical systems. |
cover both algebraic and model-based approaches in this chapter.

CHO6_115-141.gxd 4/1/04 2:57 PM Page 117 $

6
Software requirements

Objectives

The objectives of this chapter are to introduce software system
requirements and to explain different ways of expressing software
requirements. When you have read the chapter, you will:

B understand the concepts of user requirements and system
requirements and why these requirements should be written in
different ways;

B understand the differences between functional and non-functional
software requirements;

m understand how requirements may be organised in a software
requirements document.

Contents

6.1 Functional and non-functional requirements
6.2 User requirements

6.3 System requirements

6.4 Interface specification

6.5 The software requirements document

CHO06_115-141.gxd 4/1/04 2:57 PM Page 118 $

118 Chapter 6

Software requirements

The requirements for a system are the descriptions of the services provided by the
system and its operational constraints. These requirements reflect the needs of cus-
tomers for a system that helps solve some problem such as controlling a device,
placing an order or finding information. The process of finding out, analysing, doc-
umenting and checking these services and constraints is called requirements engi-
neering (RE). In this chapter, I concentrate on the requirements themselves and how
to describe them. I introduced the requirements engineering process in Chapter 4
and I discuss the RE process in more detail in Chapter 7.

The term requirement is not used in the software industry in a consistent way.
In some cases, a requirement is simply a high-level, abstract statement of a service
that the system should provide or a constraint on the system. At the other extreme,
it is a detailed, formal definition of a system function. Davis (Davis, 1993) explains
why these differences exist:

If a company wishes to let a contract for a large software development project,
it must define its needs in a sufficiently abstract way that a solution is not pre-
defined. The requirements must be written so that several contractors can bid for
the contract, offering, perhaps, different ways of meeting the client organisation’s
needs. Once a contract has been awarded, the contractor must write a system
definition for the client in more detail so that the client understands and can val-
idate what the software will do. Both of these documents may be called the require-
ments document for the system.

Some of the problems that arise during the requirements engineering process are a result
of failing to make a clear separation between these different levels of description. I dis-
tinguish between them by using the term user requirements to mean the high-level abstract
requirements and system requirements to mean the detailed description of what the sys-
tem should do. User requirements and system requirements may be defined as follows:

1. User requirements are statements, in a natural language plus diagrams, of what
services the system is expected to provide and the constraints under which it
must operate.

2. System requirements set out the system’s functions, services and operational
constraints in detail. The system requirements document (sometimes called a
functional specification) should be precise. It should define exactly what is to
be implemented. It may be part of the contract between the system buyer and
the software developers.

Different levels of system specification are useful because they communicate infor-
mation about the system to different types of readers. Figure 6.1 illustrates the dis-
tinction between user and system requirements. This example from a library system
shows how a user requirement may be expanded into several system requirements.
You can see from Figure 6.1 that the user requirement is more abstract, and the
system requirements add detail, explaining the services and functions that should
be provided by the system to be developed.

4

CHO6_115-141.gxd 4/1/04 2:57 PM Page 119 $

6.1 = Functional and non-functional requirements 119

Figure 6.1 User and User requirement definition
system requirements

1. LIBSYS shall keep track of all data required by copyright licensing
agencies in the UK and elsewhere.

System requirements specification

1.1 On making a request for a document from LIBSYS, the requestor shall
be presented with a form that records details of the user and the request
made.

1.2 LIBSYS request forms shall be stored on the system for five years from
the date of the request.

1.3 All LIBSYS request forms must be indexed by user, by the name of the
material requested and by the supplier of the request.

1.4 LIBSYS shall maintain a log of all requests that have been made to the
system.

1.5 For material where authors’ lending rights apply, loan details shall be
sent monthly to copyright licensing agencies that have registered

with LIBSYS.

You need to write requirements at different levels of detail because different types
of readers use them in different ways. Figure 6.2 shows the types of readers for the
user and system requirements. The readers of the user requirements are not usually
concerned with how the system will be implemented and may be managers who
are not interested in the detailed facilities of the system. The readers of the system
requirements need to know more precisely what the system will do because they
are concerned with how it will support the business processes or because they are
involved in the system implementation.

6.1 Functional and non-functional requirements

Software system requirements are often classified as functional requirements, non-
functional requirements or domain requirements:

1. Functional requirements These are statements of services the system should
provide, how the system should react to particular inputs and how the system
should behave in particular situations. In some cases, the functional require-
ments may also explicitly state what the system should not do.

2. Non-functional requirements These are constraints on the services or functions offered
by the system. They include timing constraints, constraints on the development
process and standards. Non-functional requirements often apply to the system as
a whole. They do not usually just apply to individual system features or services.

4

CHO06_115-141.gxd 4/1/04 2:57 PM Page 120 $

120 Chapter 6

Software requirements

Figure 6.2 Readers of
different types of

specification

6.1.1

Client managers
System end-users
Client engineers
Contractor managers
System architects

User
requirements

Y

System end-users
System Client engineers

requirements System architects

Software developers

Y

3. Domain requirements These are requirements that come from the application
domain of the system and that reflect characteristics and constraints of that domain.
They may be functional or non-functional requirements

In reality, the distinction between different types of requirements is not as clear-cut
as these simple definitions suggest. A user requirement concerned with security, say,
may appear to be a non-functional requirement. However, when developed in more
detail, this requirement may generate other requirements that are clearly functional,
such as the need to include user authentication facilities in the system.

Functional requirements

The functional requirements for a system describe what the system should do. These
requirements depend on the type of software being developed, the expected users
of the software and the general approach taken by the organisation when writing
requirements. When expressed as user requirements, the requirements are usually
described in a fairly abstract way. However, functional system requirements
describe the system function in detail, its inputs and outputs, exceptions, and so on.

Functional requirements for a software system may be expressed in a number of
ways. For example, here are examples of functional requirements for a university
library system called LIBSYS, used by students and faculty to order books and doc-
uments from other libraries.

1. The user shall be able to search either all of the initial set of databases or select
a subset from it.

2. The system shall provide appropriate viewers for the user to read documents
in the document store.

3. Every order shall be allocated a unique identifier (ORDER_ID), which the user
shall be able to copy to the account’s permanent storage area.

These functional user requirements define specific facilities to be provided by
the system. These have been taken from the user requirements document, and they

4

CHO6_115-141.gxd 4/1/04 2:57 PM Page 121 $

6.1 = Functional and non-functional requirements 121

6.1.2

illustrate that functional requirements may be written at different levels of detail
(contrast requirements 1 and 3).

The LIBSYS system is a single interface to a range of article databases. It allows
users to download copies of published articles in magazines, newspapers and sci-
entific journals. I give a more detailed description of the requirements for the sys-
tem on which LIBSYS is based in my book with Gerald Kotonya on requirements
engineering (Kotonya and Sommerville, 1998).

Imprecision in the requirements specification is the cause of many software engi-
neering problems. It is natural for a system developer to interpret an ambiguous
requirement to simplify its implementation. Often, however, this is not what the cus-
tomer wants. New requirements have to be established and changes made to the
system. Of course, this delays system delivery and increases costs.

Consider the second example requirement for the library system that refers to
‘appropriate viewers’ provided by the system. The library system can deliver doc-
uments in a range of formats; the intention of this requirement is that viewers for
all of these formats should be available. However, the requirement is worded
ambiguously; it does not make clear that viewers for each document format should
be provided. A developer under schedule pressure might simply provide a text viewer
and claim that the requirement had been met.

In principle, the functional requirements specification of a system should be both
complete and consistent. Completeness means that all services required by the user
should be defined. Consistency means that requirements should not have contra-
dictory definitions. In practice, for large, complex systems, it is practically impos-
sible to achieve requirements consistency and completeness.

One reason for this is that it is easy to make mistakes and omissions when writ-
ing specifications for large, complex systems. Another reason is that different sys-
tem stakeholders (see Chapter 7) have different—and often inconsistent—needs. These
inconsistencies may not be obvious when the requirements are first specified, so
inconsistent requirements are included in the specification. The problems may only
emerge after deeper analysis or, sometimes, after development is complete and the
system is delivered to the customer.

Non-functional requirements

Non-functional requirements, as the name suggests, are requirements that are not
directly concerned with the specific functions delivered by the system. They may
relate to emergent system properties such as reliability, response time and store occu-
pancy. Alternatively, they may define constraints on the system such as the capa-
bilities of I/O devices and the data representations used in system interfaces.
Non-functional requirements are rarely associated with individual system features.
Rather, these requirements specify or constrain the emergent properties of the sys-
tem, as discussed in Chapter 2. Therefore, they may specify system performance,
security, availability, and other emergent properties. This means that they are often

4

CHO6_115-141.gxd 4/1/04 2:57 PM Page 122 $

122 Chapter 6 = Software requirements

Non-functional
requirements

External
requirements

Product
requirements

Organisational
requirements

| |

Efficiency
requirements

Reliability
requirements

Portability
requirements

Interoperability
requirements

Ethical
requirements

Usability
requirements

—

1

|

|

Delivery
requirements

Implementation
requirements

Standards
requirements

Legislative
requirements

Performance
requirements

Space
requirements

Figure 6.3 Types of

non-functional
requirements

—

Privacy
requirements

Safety
requirements

more critical than individual functional requirements. System users can usually find
ways to work around a system function that doesn’t really meet their needs.

However, failing to meet a non-functional requirement can mean that the whole sys-
tem is unusable. For example, if an aircraft system does not meet its reliability require-
ments, it will not be certified as safe for operation; if a real-time control system
fails to meet its performance requirements, the control functions will not operate
correctly.

Non-functional requirements are not just concerned with the software system to
be developed. Some non-functional requirements may constrain the process that should
be used to develop the system. Examples of process requirements include a speci-
fication of the quality standards that should be used in the process, a specification
that the design must be produced with a particular CASE toolset and a description
of the process that should be followed.

Non-functional requirements arise through user needs, because of budget con-
straints, because of organisational policies, because of the need for interoperability
with other software or hardware systems, or because of external factors such as safety
regulations or privacy legislation. Figure 6.3 is a classification of non-functional
requirements. You can see from this diagram that the non-functional requirements
may come from required characteristics of the software (product requirements), the
organization developing the software (organizational requirements) or from exter-
nal sources.

CHO6_115-141.gxd 4/1/04 2:57 PM Page 123 $

6.1 = Functional and non-functional requirements 123

Figure 6.4 Examples
of non-functional
requirements

Product requirement
4.C.8 It shall be possible for all necessary communication between the APSE and the
user to be expressed in the standard Ada character set.

Organisational requirement
9.3.2 The system development process and deliverable documents shall conform to
the process and deliverables defined in XYZCo-SP-STAN-95.

External requirement
7.6.5 The system shall not disclose any personal information about customers apart
from their name and reference number to the operators of the system.

The types of non-functional requirements are:

1. Product requirements These requirements specify product behaviour.
Examples include performance requirements on how fast the system must exe-
cute and how much memory it requires; reliability requirements that set out the
acceptable failure rate; portability requirements; and usability requirements.

2. Organisational requirements These requirements are derived from policies and
procedures in the customer’s and developer’s organisation. Examples include
process standards that must be used; implementation requirements such as the
programming language or design method used; and delivery requirements that
specify when the product and its documentation are to be delivered.

3. External requirements This broad heading covers all requirements that are derived
from factors external to the system and its development process. These may
include interoperability requirements that define how the system interacts with
systems in other organisations; legislative requirements that must be followed
to ensure that the system operates within the law; and ethical requirements. Ethical
requirements are requirements placed on a system to ensure that it will be accept-
able to its users and the general public.

Figure 6.4 shows examples of product, organisational and external requirements
taken from the library system LIBSYS whose user requirements were discussed in
Section 6.1.1. The product requirement restricts the freedom of the LIBSYS
designers in the implementation of the system user interface. It says nothing about
the functionality of LIBSYS and clearly identifies a system constraint rather than
a function. This requirement has been included because it simplifies the problem
of ensuring the system works with different browsers.

The organisational requirement specifies that the system must be developed accord-
ing to a company standard process defined as XYZCo-SP-STAN-95. The external
requirement is derived from the need for the system to conform to privacy legisla-
tion. It specifies that library staff should not be allowed access to data, such as the
addresses of system users, which they do not need to do their job.

4

CHO6_115-141.gxd 4/1/04

124 Chapter 6

2:57 PM Page 124 :E

Software requirements

Figure 6.5 System
goals and verifiable
requirements

A system goal
The system should be easy to use by experienced controllers and should be
organised in such a way that user errors are minimised.

A verifiable non-functional requirement

Experienced controllers shall be able to use all the system functions after a total of
two hours’ training. After this training, the average number of errors made by
experienced users shall not exceed two per day.

A common problem with non-functional requirements is that they can be diffi-
cult to verify. Users or customers often state these requirements as general goals
such as ease of use, the ability of the system to recover from failure or rapid user
response. These vague goals cause problems for system developers as they leave
scope for interpretation and subsequent dispute once the system is delivered. As an
illustration of this problem, consider Figure 6.5. This shows a system goal relating
to the usability of a traffic control system and is typical of how a user might express
usability requirements. I have rewritten it to show how the goal can be expressed
as a ‘testable’ non-functional requirement. While it is impossible to objectively ver-
ify the system goal, you can design system tests to count the errors made by con-
trollers using a system simulator.

Whenever possible, you should write non-functional requirements quantitatively
so that they can be objectively tested. Figure 6.6 shows a number of possible met-
rics that you can use to specify non-functional system properties. You can measure
these characteristics when the system is being tested to check whether or not the
system has met its non-functional requirements.

In practice, however, customers for a system may find it practically impossible
to translate their goals into quantitative requirements. For some goals, such as main-
tainability, there are no metrics that can be used. In other cases, even when quan-
titative specification is possible, customers may not be able to relate their needs to
these specifications. They don’t understand what some number defining the
required reliability (say) means in terms of their everyday experience with com-
puter systems. Furthermore, the cost of objectively verifying quantitative non-
functional requirements may be very high, and the customers paying for the system
may not think these costs are justified.

Therefore, requirements documents often include statements of goals mixed with
requirements. These goals may be useful to developers because they give indica-
tions of customer priorities. However, you should always tell customers that they
are open to misinterpretation and cannot be objectively verified.

Non-functional requirements often conflict and interact with other functional or
non-functional requirements. For example, it may be a requirement that the
maximum memory used by a system should be no more than 4 Mbytes. Memory
constraints are common for embedded systems where space or weight is limited
and the number of ROM chips storing the system software must be minimised. Another
requirement might be that the system should be written using Ada, a programming

4

CHO6_115-141.gxd 4/1/04 2:57 PM Page 125 $

6.1 = Functional and non-functional requirements 125

Figure 6.6 Metrics
for specifying
non-functional
requirements

6.1.3

Speed Processed transactions/second
User/Event response time
Screen refresh time

Size K bytes
Number of RAM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target-dependent statements
Number of target systems

language for critical, real-time software development. However, it may not be pos-
sible to compile an Ada program with the required functionality into less that 4 Mbytes.
There therefore has to be a trade-off between these requirements: an alternative devel-
opment language or increased memory added to the system.

It is helpful if you can differentiate functional and non-functional requirements
in the requirements document. In practice, this is difficult to do. If the non-func-
tional requirements are stated separately from the functional requirements, it is some-
times difficult to see the relationships between them. If they are stated with the
functional requirements, you may find it difficult to separate functional and non-
functional considerations and to identify requirements that relate to the system as
a whole. However, you should explicitly highlight requirements that are clearly related
to emergent system properties, such as performance or reliability. You can do this
by putting them in a separate section of the requirements document or by distin-
guishing them, in some way, from other system requirements.

Non-functional requirements such as safety and security requirements are par-
ticularly important for critical systems. I therefore discuss dependability require-
ments in more detail in Chapter 9, which covers critical systems specification.

Domain requirements

Domain requirements are derived from the application domain of the system rather
than from the specific needs of system users. They usually include specialised domain
terminology or reference to domain concepts. They may be new functional require-

4

CHO6_115-141.gxd 4/1/04

126 Chapter 6

2:57 PM Page 126 $

Software requirements

Figure 6.7 A domain
requirement from a
train protection
system

The deceleration of the train shall be computed as:
Dtrain = Dcontrol + Dgradient

where Dggient is 9.81 ms” * compensated gradient/alpha and where the values of
9.81 ms?/alpha are known for different types of train.

ments in their own right, constrain existing functional requirements or set out how
particular computations must be carried out. Because these requirements are spe-
cialised, software engineers often find it difficult to understand how they are related
to other system requirements.

Domain requirements are important because they often reflect fundamentals of
the application domain. If these requirements are not satisfied, it may be impossi-
ble to make the system work satisfactorily. The LIBSYS system includes a num-
ber of domain requirements:

1. There shall be a standard user interface to all databases that shall be based on
the Z39.50 standard.

2. Because of copyright restrictions, some documents must be deleted immedi-
ately on arrival. Depending on the user’s requirements, these documents will
either be printed locally on the system server for manual forwarding to the user
or routed to a network printer.

The first requirement is a design constraint. It specifies that the user interface to
the database must be implemented according to a specific library standard. The devel-
opers therefore have to find out about that standard before starting the interface design.
The second requirement has been introduced because of copyright laws that apply
to material used in libraries. It specifies that the system must include an automatic
delete-on-print facility for some classes of document. This means that users of the
library system cannot have their own electronic copy of the document.

To illustrate domain requirements that specify how a computation is carried out,
consider Figure 6.7, taken from the requirements specification for an automated train
protection system. This system automatically stops a train if it goes through a red
signal. This requirement states how the train deceleration is computed by the sys-
tem. It uses domain-specific terminology. To understand it, you need some under-
standing of the operation of railway systems and train characteristics.

The requirement for the train system illustrates a major problem with domain require-
ments. They are written in the language of the application domain (mathematical equa-
tions in this case), and it is often difficult for software engineers to understand them.
Domain experts may leave information out of a requirement simply because it is so
obvious to them. However, it may not be obvious to the developers of the system,
and they may therefore implement the requirement in the wrong way.

4

CHO6_115-141.gxd 4/1/04 2:57 PM Page 127 $

6.2 m User requirements 127

6.2 User requirements

The user requirements for a system should describe the functional and non-
functional requirements so that they are understandable by system users without detailed
technical knowledge. They should only specify the external behaviour of the sys-
tem and should avoid, as far as possible, system design characteristics.
Consequently, if you are writing user requirements, you should not use software
jargon, structured notations or formal notations, or describe the requirement by describ-
ing the system implementation. You should write user requirements in simple lan-
guage, with simple tables and forms and intuitive diagrams.

However, various problems can arise when requirements are written in natural
language sentences in a text document:

1. Lack of clarity It is sometimes difficult to use language in a precise and unam-
biguous way without making the document wordy and difficult to read.

2. Requirements confusion Functional requirements, non-functional requirements,
system goals and design information may not be clearly distinguished.

3. Requirements amalgamation Several different requirements may be expressed
together as a single requirement.

As an illustration of some of these problems, consider one of the requirements
for the library shown in Figure 6.8.

This requirement includes both conceptual and detailed information. It expresses
the concept that there should be an accounting system as an inherent part of LIB-
SYS. However, it also includes the detail that the accounting system should sup-
port discounts for regular LIBSYS users. This detail would have been better left to
the system requirements specification.

It is good practice to separate user requirements from more detailed system require-
ments in a requirements document. Otherwise, non-technical readers of the user require-
ments may be overwhelmed by details that are really only relevant for technicians.
Figure 6.9 illustrates this confusion. This example is taken from an actual require-
ments document for a CASE tool for editing software design models. The user may
specify that a grid should be displayed so that entities may be accurately positioned
in a diagram.

The first sentence mixes up three kinds of requirements.

1. A conceptual, functional requirement states that the editing system should pro-
vide a grid. It presents a rationale for this.

2. A non-functional requirement giving detailed information about the grid units
(centimetres or inches).

CHO6_115-141.gxd 4/1/04

128 Chapter 6

2:57 PM Page 128 $

Software requirements

Figure 6.8

A requirement for a
user accounting
system in LIBSYS

Figure 6.9 A user
requirement for an
editor grid

4.5 LIBSYS shall provide a financial accounting system that maintains records of all
payments made by users of the system. System managers may configure this system
so that regular users may receive discounted rates.

2.6 Grid facilities To assist in the positioning of entities on a diagram, the user
may turn on a grid in either centimetres or inches, via an option on the control
panel. Initially, the grid is off. The grid may be turned on and off at any time during
an editing session and can be toggled between inches and centimetres at any time.
A grid option will be provided on the reduce-to-fit view but the number of grid lines
shown will be reduced to avoid filling the smaller diagram with grid lines.

3. A non-functional user interface requirement that defines how the grid is
switched on and off by the user.

The requirement in Figure 6.9 also gives some but not all initialisation infor-
mation. It defines that the grid is initially off. However, it does not define its units
when turned on. It provides some detailed information—namely, that the user may
toggle between units—but not the spacing between grid lines.

User requirements that include too much information constrain the freedom of
the system developer to provide innovative solutions to user problems and are dif-
ficult to understand. The user requirement should simply focus on the key facili-
ties to be provided. I have rewritten the editor grid requirement (Figure 6.10) to
focus only on the essential system features.

Whenever possible, you should try to associate a rationale with each user
requirement. The rationale should explain why the requirement has been included
and is particularly useful when requirements are changed. For example, the ratio-
nale in Figure 6.10 recognises that an active grid where positioned objects auto-
matically ‘snap’ to a grid line can be useful. However, this has been deliberately
rejected in favour of manual positioning. If a change to this is proposed at some
later stage, it will be clear that the use of a passive grid was deliberate rather than
an implementation decision.

To minimise misunderstandings when writing user requirements, I recommend
that you follow some simple guidelines:

1. Invent a standard format and ensure that all requirement definitions adhere to
that format. Standardising the format makes omissions less likely and require-
ments easier to check. The format I use shows the initial requirement in bold-
face, including a statement of rationale with each user requirement and a
reference to the more detailed system requirement specification. You may also

4

CHO6_115-141.gxd 4/1/04 2:57 PM Page 129 $

6.3 m System requirements 129

Figure 6.10
A definition of an
editor grid facility

2.6.1 Grid facilities

The editor shall provide a grid facility where a matrix of horizontal and vertical
lines provide a background to the editor window. This grid shall be a passive grid
where the alignment of entities is the user’s responsibility.

Rationale: A grid helps the user to create a tidy diagram with well-spaced
entities. Although an active grid, where entities ‘snap-to’ grid lines can be
useful, the positioning is imprecise. The user is the best person to decide
where entities should be positioned.

Specification: ECLIPSE/WS/Tools/DE/FS Section 5.6

Source: Ray Wilson, Glasgow Office

include information on who proposed the requirement (the requirement source)
so that you know whom to consult if the requirement has to be changed.

2. Use language consistently. You should always distinguish between mandatory
and desirable requirements. Mandatory requirements are requirements that the
system must support and are usually written using ‘shall’. Desirable require-
ments are not essential and are written using ‘should’.

3. Use text highlighting (bold, italic or colour) to pick out key parts of the
requirement.

4. Avoid, as far as possible, the use of computer jargon. Inevitably, however, detailed
technical terms will creep into the user requirements.

The Robertsons (Robertson and Robertson, 1999), in their book that covers the
VOLERE requirements engineering method, recommend that user requirements be
initially written on cards, one requirement per card. They suggest a number of fields
on each card, such as the requirements rationale, the dependencies on other require-
ments, the source of the requirements, supporting materials, and so on. This
extends the format that I have used in Figure 6.10, and it can be used for both user
and system requirements.

System requirements

System requirements are expanded versions of the user requirements that are used
by software engineers as the starting point for the system design. They add detail
and explain how the user requirements should be provided by the system. They may

4

CHO06_115-141.gxd 4/1/04 2:57 PM Page 130 $

130 Chapter 6

Software requirements

be used as part of the contract for the implementation of the system and should
therefore be a complete and consistent specification of the whole system.

Ideally, the system requirements should simply describe the external behaviour
of the system and its operational constraints. They should not be concerned with
how the system should be designed or implemented. However, at the level of detail
required to completely specify a complex software system, it is impossible, in prac-
tice, to exclude all design information. There are several reasons for this:

1. You may have to design an initial architecture of the system to help structure
the requirements specification. The system requirements are organised accord-
ing to the different sub-systems that make up the system. As I discuss in Chapter
7 and Chapter 18, this architectural definition is essential if you want to reuse
software components when implementing the system.

2. In most cases, systems must interoperate with other existing systems. These con-
strain the design, and these constraints impose requirements on the new system.

3. The use of a specific architecture to satisfy non-functional requirements (such
as N-version programming to achieve reliability, discussed in Chapter 20) may
be necessary. An external regulator who needs to certify that the system is safe
may specify that an architectural design that has already been certified be used.

Natural language is often used to write system requirements specifications as
well as user requirements. However, because system requirements are more
detailed than user requirements, natural language specifications can be confusing
and hard to understand:

1. Natural language understanding relies on the specification readers and writers
using the same words for the same concept. This leads to misunderstandings
because of the ambiguity of natural language. Jackson (Jackson, 1995) gives
an excellent example of this when he discusses signs displayed by an escala-
tor. These said ‘Shoes must be worn” and ‘Dogs must be carried’. I leave it to
you to work out the conflicting interpretations of these phrases.

2. A natural language requirements specification is overflexible. You can say the
same thing in completely different ways. It is up to the reader to find out when
requirements are the same and when they are distinct.

3. There is no easy way to modularise natural language requirements. It may be
difficult to find all related requirements. To discover the consequence of a change,
you may have to look at every requirement rather than at just a group of related
requirements.

Because of these problems, requirements specifications written in natural lan-
guage are prone to misunderstandings. These are often not discovered until later
phases of the software process and may then be very expensive to resolve.

4

CHO6_115-141.gxd 4/1/04 2:57 PM Page 131 $

6.3 m System requirements 131

Figure 6.11
Notations for
requirements
specification

6.3.1

Notation Description

Structured natural This approach depends on defining standard forms or
language templates to express the requirements specification.

Design description This approach uses a language like a programming language

languages but with more abstract features to specify the requirements by
defining an operational model of the system. This approach is
not now widely used although it can be useful for interface
specifications.

Graphical notations A graphical language, supplemented by text annotations is
used to define the functional requirements for the system. An
early example of such a graphical language was SADT (Ross,
1977) (Schoman and Ross, 1977). Now, use-case descriptions
(Jacobsen, et al.,, 1993) and sequence diagrams are commonly
used (Stevens and Pooley, 1999).

Mathematical These are notations based on mathematical concepts such as

specifications finite-state machines or sets. These unambiguous specifications
reduce the arguments between customer and contractor about
system functionality. However, most customers don't
understand formal specifications and are reluctant to accept it
as a system contract.

It is essential to write user requirements in a language that non-specialists can
understand. However, you can write system requirements in more specialised nota-
tions (Figure 6.11). These include stylised, structured natural language, graphical
models of the requirements such as use-cases to formal mathematical specifications.
In this chapter, I discuss how structured natural language supplemented by simple
graphical models may be used to write system requirements. I discuss graphical sys-
tem modelling in Chapter 8 and formal system specification in Chapter 10.

Structured language specifications

Structured natural language is a way of writing system requirements where the free-
dom of the requirements writer is limited and all requirements are written in a stan-
dard way. The advantage of this approach is that it maintains most of the
expressiveness and understandability of natural language but ensures that some degree
of uniformity is imposed on the specification. Structured language notations limit
the terminology that can be used and use templates to specify system requirements.
They may incorporate control constructs derived from programming languages and
graphical highlighting to partition the specification.

An early project that used structured natural language for specifying system require-
ments is described by Heninger (Heninger, 1980). Special-purpose forms were designed
to describe the input, output and functions of an aircraft software system. The sys-
tem requirements were specified using these forms.

4

CHO6_115-141.gxd 4/1/04 2:57 PM Page 132 $

132 Chapter 6 = Software requirements

Figur_e 6.12 System Insulin Pump/Control Software/SRS/3.3.2
requirements

specification using a
standard form

Function Compute insulin dose: Safe sugar level

Description ~ Computes the dose of insulin to be delivered when the current
measured sugar level is in the safe zone between 3 and 7 units

Inputs Current sugar reading (r2), the previous two readings (r0 and r1)
Source Current sugar reading from sensor. Other readings from memory.
Outputs CompDose—the dose in insulin to be delivered

Destination Main control loop

Action: CompDose is zero if the sugar level is stable or falling or if the level is
increasing but the rate of increase is decreasing. If the level is increasing and the
rate of increase is increasing, then CompDose is computed by dividing the difference
between the current sugar level and the previous level by 4 and rounding the result.
If the result, is rounded to zero then CompDose is set to the minimum dose that
can be delivered.

Requires Two previous readings so that the rate of change of sugar level can
be computed.

Pre-condition The insulin reservoir contains at least the maximum allowed single
dose of insulin.

Post-condition r0 is replaced by r1 then r1 is replaced by r2

Side effects None

To use a form-based approach to specifying system requirements, you must define
one or more standard forms or templates to express the requirements. The specifi-
cation may be structured around the objects manipulated by the system, the func-
tions performed by the system or the events processed by the system. An example
of such a form-based specification is shown in Figure 6.12. I have taken this exam-
ple from the insulin pump system that was introduced in Chapter 3.

The insulin pump bases its computations of the user’s insulin requirement on the
rate of change of blood sugar levels. These rates of change computed using the cur-
rent and previous readings. You can download a complete version of the specifi-
cation for the insulin pump from the book’s web pages.

When a standard form is used for specifying functional requirements, the fol-
lowing information should be included:

1. Description of the function or entity being specified

2. Description of its inputs and where these come from

CHO6_115-141.gxd 4/1/04 2:57 PM Page 133 $

6.3 m System requirements 133

3. Description of its outputs and where these go to
4. Indication of what other entities are used (the requires part)

5. Description of the action to be taken

6. If a functional approach is used, a pre-condition setting out what must be true
before the function is called and a post-condition specifying what is true after
the function is called

7. Description of the side effects (if any) of the operation.

Using formatted specifications removes some of the problems of natural language
specification. Variability in the specification is reduced and requirements are
organised more effectively. However, it is difficult to write requirements in an unam-
biguous way, particularly when complex computations are required. You can see
this in the description shown in Figure 6.12, where it isn’t made clear what hap-
pens if the pre-condition is not satisfied.

To address this problem, you can add extra information to natural language require-
ments using tables or graphical models of the system. These can show how com-
putations proceed, how the system state changes, how users interact with the
system and how sequences of actions are performed.

Tables are particularly useful when there are a number of possible alternative
situations and you need to describe the actions to be taken for each of these. Figure
6.13 is a revised description of the computation of the insulin dose.

Graphical models are most useful when you need to show how state changes
(see Chapter 8) or where you need to describe a sequence of actions. Figure 6.14
illustrates the sequence of actions when a user wishes to withdraw cash from an
automated teller machine (ATM).

You should read a sequence diagram from top to bottom to see the order of the
actions that take place. In Figure 6.14, there are three basic sub-sequences:

1. Validate card The user’s card is validated by checking the card number and
user’s PIN.

2. Handle request The user’s request is handled by the system. For a withdrawal,
the database must be queried to check the user’s balance and to debit the amount
withdrawn. Notice the exception here if the requestor does not have enough
money in their account.

3. Complete transaction The user’s card is returned and, when it is removed, the
cash and receipt are delivered.

You will see sequence diagrams again in Chapter 8, which covers system mod-
els, and in Chapter 14, which covers object-oriented design.

CHO6_115-141.gxd 4/1/04 2:57 PM Page 134 $

134 Chapter 6 = Software requirements

Figur_e. 6.].3 Tabular Condition Action
specification of

computation

Sugar level falling (r2 <r1) CompDose = 0
Sugar level stable (r2 =r1) CompDose = 0
Sugar level increasing and rate of increase CompDose = 0

decreasing ((r2 - r1) < (r1 - r0))

Sugar level increasing and rate of increase CompDose = round ((r2 - r1)/4)
stable or increasing. ((r2 - r1) > (r1 - r0)) If rounded result = 0 then
CompDose = MinimumDose

Figure 6.14 . ATM Database
Sequence diagram of

ATM withdrawal

Card

Card number

Card OK
PIN request L

PIN

A Validate card

Option menu

<<exception>>
invalid card

Withdraw request Balance request _

Balance

Amount request

< - -—-—-=-=-=--=-- — — — - Handle request

Amount

—_|- Debit (amount)

<<exception>> Debit response]
insufficient cash -

Card

Card removed

Complete

< - - - - - - - - - - - — -
transaction

Cash

Cash removed

Receipt

CHO6_115-141.gxd 4/1/04 2:57 PM Page 135 $

6.4 1 Interface specification 135

6.4 Interface specification

Almost all software systems must operate with existing systems that have already
been implemented and installed in an environment. If the new system and the exist-
ing systems must work together, the interfaces of existing systems have to be pre-
cisely specified. These specifications should be defined early in the process and
included (perhaps as an appendix) in the requirements document.

There are three types of interface that may have to be defined:

1. Procedural interfaces where existing programs or sub-systems offer a range of
services that are accessed by calling interface procedures. These interfaces are
sometimes called Application Programming Interfaces (APIs).

2. Data structures that are passed from one sub-system to another. Graphical data
models (described in Chapter 8) are the best notations for this type of descrip-
tion. If necessary, program descriptions in Java or C++ can be generated auto-
matically from these descriptions.

3. Representations of data (such as the ordering of bits) that have been established
for an existing sub-system. These interfaces are most common in embedded,
real-time system. Some programming languages such as Ada (although not Java)
support this level of specification. However, the best way to describe these is
probably to use a diagram of the structure with annotations explaining the func-
tion of each group of bits.

Formal notations, discussed in Chapter 10, allow interfaces to be defined in an
unambiguous way, but their specialised nature means that they are not understand-
able without special training. They are rarely used in practice for interface specifi-
cation although, in my view, they are ideally suited for this purpose. A
programming language such as Java can be used to describe the syntax of the inter-
face. However, this has to be supplemented by further description explaining the
semantics of each of the defined operations.

Figure 6.15 is an example of a procedural interface definition defined in Java.
In this case, the interface is the procedural interface offered by a print server. This
manages a queue of requests to print files on different printers. Users may exam-
ine the queue associated with a printer and may remove their print jobs from that
queue. They may also switch jobs from one printer to another. The specification in
Figure 6.15 is an abstract model of the print server that does not reveal any inter-
face details. The functionality of the interface operations can be defined using struc-
tured natural language or tabular description.

CHO6_115-141.gxd 4/1/04

136 Chapter 6

2:57 PM Page 136 :E

Software requirements

Figure 6.15 The Java
PDL description of a
print server interface

interface PrintServer {

// defines an abstract printer server
// requires: interface Printer, interface PrintDoc
// provides: initialize, print, displayPrintQueue, cancelPrintJob, switchPrinter

void initialize (Printer p) ;

void print (Printer p, PrintDoc d) ;

void displayPrintQueue (Printer p) ;

void cancelPrintJob (Printer p, PrintDoc d) ;

void switchPrinter (Printer p1, Printer p2, PrintDoc d) ;
} //PrintServer

6.5 The software requirements document

The software requirements document (sometimes called the software requirements
specification or SRS) is the official statement of what the system developers should
implement. It should include both the user requirements for a system and a detailed
specification of the system requirements. In some cases, the user and system
requirements may be integrated into a single description. In other cases, the user
requirements are defined in an introduction to the system requirements specifica-
tion. If there are a large number of requirements, the detailed system requirements
may be presented in a separate document.

The requirements document has a diverse set of users, ranging from the senior
management of the organisation that is paying for the system to the engineers respon-
sible for developing the software. Figure 6.16, taken from my book with Gerald
Kotonya on requirements engineering (Kotonya and Sommerville, 1998) illustrates
possible users of the document and how they use it.

The diversity of possible users means that the requirements document has to be
a compromise between communicating the requirements to customers, defining the
requirements in precise detail for developers and testers, and including information
about possible system evolution. Information on anticipated changes can help sys-
tem designers avoid restrictive design decisions and help system maintenance engi-
neers who have to adapt the system to new requirements.

The level of detail that you should include in a requirements document depends
on the type of system that is being developed and the development process used.
When the system will be developed by an external contractor, critical system spec-
ifications need to be precise and very detailed. When there is more flexibility in
the requirements and where an in-house, iterative development process is used, the
requirements document can be much less detailed and any ambiguities resolved dur-
ing development of the system.

A number of large organisations, such as the US Department of Defense and the
IEEE, have defined standards for requirements documents. Davis (Davis, 1993) dis-
cusses some of these standards and compares their contents. The most widely known

4

CHO6_115-141.gxd 4/1/04 2:57 PM Page 137 $

6.5 m The software requirements document 137

Figure 6.16 Users of . .
gure Specify the requirements and
a requirements
read them to check that they
document System _ .
> meet their needs. Customers
customers ;
specify changes to the
requirements.
Use the requirements
Managers »| document to plan a bid for
the system and to plan the
system development process.
System Usz the regmr:ments to
engineers understand what system is
to be developed.
System test Use the requirements to
engineers > develop validation tests for
the system.
System Use the requirements to
maintenance . | understand the system and
engineers the relationships between its
parts.

standard is IEEE/ANSI 830-1998 (IEEE, 1998). This IEEE standard suggests the
following structure for requirements documents:

1. Introduction
1.1 Purpose of the requirements document
1.2 Scope of the product
1.3 Definitions, acronyms and abbreviations
1.4 References
1.5 Overview of the remainder of the document

2. General description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 General constraints
2.5 Assumptions and dependencies

3. Specific requirements cover functional, non-functional and interface require-
ments. This is obviously the most substantial part of the document but because

4

CHO06_115-141.gxd 4/1/04 2:57 PM Page 138 $

138 Chapter 6

Software requirements

of the wide variability in organisational practice, it is not appropriate to define
a standard structure for this section. The requirements may document external
interfaces, describe system functionality and performance, specify logical
database requirements, design constraints, emergent system properties and
quality characteristics.

4. Appendices

Index

Although the IEEE standard is not ideal, it contains a great deal of good advice
on how to write requirements and how to avoid problems. It is too general to be
an organisational standard in its own right. It is a general framework that can be
tailored and adapted to define a standard geared to the needs of a particular organ-
isation. Figure 6.17 illustrates a possible organisation for a requirements document
that is based on the IEEE standard. However, I have extended this to include infor-
mation about predicted system evolution. This was first proposed by Heninger
(Heninger, 1980) and, as I have discussed, helps the maintainers of the system and
may allow designers to include support for future system features.

Of course, the information that is included in a requirements document must depend
on the type of software being developed and the approach to development that is
used. If an evolutionary approach is adopted for a software product (say), the require-
ments document will leave out many of detailed chapters suggested above. The focus
will be on defining the user requirements and high-level, non-functional system require-
ments. In this case, the designers and programmers use their judgement to decide
how to meet the outline user requirements for the system.

By contrast, when the software is part of a large system engineering project that
includes interacting hardware and software systems, it is often essential to define
the requirements to a fine level of detail. This means that the requirements docu-
ments are likely to be very long and should include most if not all of the chapters
shown in Figure 6.17. For long documents, it is particularly important to include a
comprehensive table of contents and document index so that readers can find the
information that they need.

Requirements documents are essential when an outside contractor is developing
the software system. However, agile development methods argue that requirements
change so rapidly that a requirements document is out of date as soon as it is writ-
ten, so the effort that is largely wasted. Rather than a formal document, approaches
such as extreme programming (Beck, 1999) propose that user requirements should
be collected incrementally and written on cards. The user then prioritises require-
ments for implementation in the next increment of the system.

For business systems where requirements are unstable, I think that this approach
is a good one. However, I would argue that it is still useful to write a short sup-
porting document that defines the business and dependability requirements for the
system. It is easy to forget the requirements that apply to the system as a whole
when focusing on the functional requirements for the next system release.

CHO6_115-141.gxd 4/1/04 2:57 PM Page 139 $

6.5 m The software requirements document 139

Figure 6.17

The structure

of a requirements
document

Preface

Introduction

Glossary

User requirements
definition

System architecture

System requirements

specification

System models

System evolution

Appendices

Index

Chapter Description

This should define the expected readership of the document
and describe its version history, including a rationale for the
creation of a new version and a summary of the changes
made in each version.

This should describe the need for the system. It should briefly
describe its functions and explain how it will work with other
systems. It should describe how the system fits into the
overall business or strategic objectives of the organisation
commissioning the software.

This should define the technical terms used in the document.
You should not make assumptions about the experience or
expertise of the reader.

The services provided for the user and the non-functional
system requirements should be described in this section. This
description may use natural language, diagrams or other
notations that are understandable by customers. Product

and process standards which must be followed should be
specified.

This chapter should present a high-level overview of the
anticipated system architecture showing the distribution of
functions across system modules. Architectural components
that are reused should be highlighted.

This should describe the functional and non-functional
requirements in more detail. If necessary, further detail
may also be added to the non-functional requirements,
e.g. interfaces to other systems may be defined.

This should set out one or more system models showing
the relationships between the system components and the
system and its environment. These might be object models,
data-flow models and semantic data models.

This should describe the fundamental assumptions on which
the system is based and anticipated changes due to hardware
evolution, changing user needs, etc.

These should provide detailed, specific information which

is related to the application which is being developed.
Examples of appendices that may be included are hardware
and database descriptions. Hardware requirements define the
minimal and optimal configurations for the system. Database
requirements define the logical organisation of the data used
by the system and the relationships between data.

Several indexes to the document may be included. As well

as a normal alphabetic index, there may be an index of
diagrams, an index of functions, etc.

4

CHO06_115-141.gxd 4/1/04 2:57 PM Page 140 $

140 Chapter 6 = Software requirements

KEY POINTS

Requirements for a software system set out what the system should do and define
constraints on its operation and implementation.

Functional requirements are statements of the services that the system must provide or are
descriptions of how some computations must be carried out. Domain requirements are
functional requirements that are derived from characteristics of the application domain.

Non-functional requirements constrain the system being developed and the development
process that should be used. They may be product requirements, organisational
requirements or external requirements. They often relate to the emergent properties of the
system and therefore apply to the system as a whole.

User requirements are intended for use by people involved in using and procuring the
system. They should be written using in natural language, with tables and diagrams that
are easily understood.

System requirements are intended to communicate, in a precise way, the functions that the
system must provide. To reduce ambiguity, they may be written in a structured form of
natural language supplemented by tables and system models.

The software requirements document is the agreed statement of the system requirements.
It should be organised so that both system customers and software developers can use it.

The IEEE standard for requirements documents is a useful starting point for more specific
requirements specification standards.

FURTHER READING

Software Requirements, 2nd ed. This book, designed for writers and users of requirements,
discusses good requirements engineering practice. (K. M. Weigers, 2003, Microsoft Press.)

Mastering the Requirements Process. A well-written, easy-to-read book that is based on a
particular method (VOLERE) but which also includes lots of good general advice about
requirements engineering. (S. Robertson and J. Robertson, 1999, Addison-Wesley.)

Requirements Engineering: Processes and Techniques. This book covers all aspects of the
requirements engineering process and discusses specific requirements specification techniques.
(G. Kotonya and I. Sommerville, 1999, John Wiley & Sons.)

Software Requirements Engineering. This collection of papers on requirements engineering
includes several relevant articles such as ‘Recommended Practice for Software Requirements
Specification’, a discussion of the IEEE standard for requirements documents. (R. H. Thayer and M.
Dorfman (eds.), 1997, IEEE Computer Society Press.)

4

CHO6_115-141.gxd 4/1/04 2:57 PM Page 141 $

Chapter 6 m Exercises 141

EXERCISES

6.1 Identify and briefly describe four types of requirements that may be defined for a computer-
based system

6.2 Discuss the problems of using natural language for defining user and system requirements,
and show, using small examples, how structuring natural language into forms can help avoid
some of these difficulties.

6.3 Discover ambiguities or omissions in the following statement of requirements for part of a
ticket-issuing system.

An automated ticket-issuing system sells rail tickets. Users select their destination and input
a credit card and a personal identification number. The rail ticket is issued and their credit
card account charged. When the user presses the start button, a menu display of potential
destinations is activated, along with a message to the user to select a destination. Once a
destination has been selected, users are requested to input their credit card. Its validity is
checked and the user is then requested to input a personal identifier. When the credit
transaction has been validated, the ticket is issued.

6.4 Rewrite the above description using the structured approach described in this chapter.
Resolve the identified ambiguities in some appropriate way.

6.5 Draw a sequence diagram showing the actions performed in the ticket-issuing system. You
may make any reasonable assumptions about the system. Pay particular attention to
specifying user errors.

6.6 Using the technique suggested here, where natural language is presented in a standard way,
write plausible user requirements for the following functions:

B The cash-dispensing function in a bank ATM
B The spelling-check and correcting function in a word processor

B An unattended petrol (gas) pump system that includes a credit card reader. The customer
swipes the card through the reader and then specifies the amount of fuel required. The
fuel is delivered and the customer’s account debited.

6.7 Describe four types of non-functional requirements that may be placed on a system. Give
examples of each of these types of requirement.

6.8 Write a set of non-functional requirements for the ticket-issuing system, setting out its
expected reliability and its response time.

6.9 Suggest how an engineer responsible for drawing up a system requirements specification
might keep track of the relationships between functional and non-functional requirements.

6.10 You have taken a job with a software user who has contracted your previous employer to
develop a system for them. You discover that your company’s interpretation of the
requirements is different from the interpretation taken by your previous employer. Discuss
what you should do in such a situation. You know that the costs to your current employer
will increase if the ambiguities are not resolved. You have also a responsibility of
confidentiality to your previous employer.

4

