Math 441, Introduction to Numerical Analysis Fall 2006

Homework 8

due Tuesday, November 21

A. Read: Sections 6.3, 6.4.

B. Hand in:

- 1. Let $f(x) = \sin x$. Use the cardinal functions A_i, B_i on page 344 of the textbook to find a polynomial P of appropriate degree that interpolates the values and first derivatives of f at $t_0 = 0, t_1 = \pi$. Compute the truncation error $P(\pi/2) f(\pi/2)$ (use a plotting utility to verify that your P truly interpolates f as requested).
- 2. pages 361-364, exercises 5, 7, 19, 24.

C. Matlab:

3. Convergence of polynomial interpolation. Let

$$f(x) = 1/(1+x^2)$$
,

and P_n be the Lagrange interpolation polynomial associated with the points obtained by dividing an interval [-L, L] in n equal intervals. Use the provided Matlab code (myinterp.m, runge.m) from the course web page to identify a relatively large interval [-L, L] on which $P_n(x)$ converges to f(x) by completing the following convergence study for $L = 1, 1.2, 1.4, 1.6, \ldots$, (I recommend using the provided script test_interp_conv.m):

(i) Divide the interval [-L, L] in *n* equal intervals for n = 10, 20, 40, and compute for each of them $||P_n - f||_{\infty}^{-1}$. If this quantity seems to be decreasing, then this signals convergence of $P_n(x)$ to f(x).

 $^{\|}f\|_{\infty} = \max_{x \in [-L,L]} |f(x)|$

(ii) Repeat (i) with an increased L until $||P_n - f||_{\infty}$ seems to increase, that is, $P_n(x)$ does not converge to f(x).

Report the computed norms in a table. For L where divergence seems to happen plot $f(x), P_{10}(x), P_{20}(x)$ on the same figure.

4. Order of approximation of linear splines. Verify that

$$||f(x) - S_1^h(x)|| = O(h^2)$$
,

where $S_1^h(x)$ is the linear spline interpolating f at a set of equidistant points with a spacing of h, and f is the function in exercise 3., by completing the following steps (I recommend using the provided script test_interp_conv_sp.m):

- (i) Divide the interval [-2,2] (L = 2) in *n* equal intervals for n = 10, 20, 40, 80, 160, 320, and compute for each of them $v_i = \|S_1^{h_i} f\|_{\infty}$ $(i = 1, 2, 3, 4, 5, 6, h_i = \frac{4}{10 \cdot 2^{i-1}})$. Examples: v1=test_interp_conv_sp(2, 10) v2=test_interp_conv_sp(2, 20).
- (ii) Since v_i represents the approximation error for h_i , for an approximation order of h^2 it is expected that $v_i/v_{i+1} \approx 4$ (use the command format long).

Report in a table the numbers v_i and the obtained quotients v_i/v_{i+1} . Plot on the same figure $S_1^{h_1}, S_1^{h_2}, f$.

5. Order of approximation of cubic splines. Find the approximation order p of cubic splines

$$\left\|f(x) - S_3^h(x)\right\| = O(h^p)$$

by repeating exercise 4. with cubic splines instead of linear splines. You will need to modify line 14 of the script

test_interp_conv_sp.m to include the 'spline' option:

interp1(x,y,xi, 'spline'). Report in a table the numbers v_i and the obtained quotients, and use the results to estimate p. Plot on the same figure $S_3^{h_1}, S_3^{h_2}, f$.

D. Practice:

• pages 361-364, exercises 12, 13, 14, 21, 22, 23.