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Network applications are the raisons d’être of a computer network—if we couldn’t
conceive of any useful applications, there wouldn’t be any need for networking proto-
cols that support these applications. Since the Internet’s inception, numerous useful and
entertaining applications have indeed been created. These applications have been the
driving force behind the Internet’s success, motivating people in homes, schools, gov-
ernments, and businesses to make the Internet an integral part of their daily activities.

Internet applications include the classic text-based applications that became
popular in the 1970s and 1980s: text email, remote access to computers, file trans-
fers, and newsgroups. They include the killer application of the mid-1990s, the
World Wide Web, encompassing Web surfing, search, and electronic commerce.
They include instant messaging and P2P file sharing, the two killer applications
introduced at the end of the millennium. Since 2000, we have seen an explosion of
popular voice and video applications, including: voice-over-IP (VoIP) and video
conferencing over IP such as Skype; user-generated video distribution such as
YouTube; and movies on demand such as Netflix. During this same period we have
also seen the immergence of highly engaging multi-player online games, including
Second Life and World of Warcraft. And most recently, we have seen the emergence
of a new generation of social networking applications, such as Facebook and Twitter,
which have created engaging human networks on top of the Internet’s network of
routers and communication links. Clearly, there has been no slowing down of new



and exciting Internet applications. Perhaps some of the readers of this text will cre-
ate the next generation of killer Internet applications!

In this chapter we study the conceptual and implementation aspects of network
applications. We begin by defining key application-layer concepts, including network
services required by applications, clients and servers, processes, and transport-layer
interfaces. We examine several network applications in detail, including the Web,
e-mail, DNS, and peer-to-peer (P2P) file distribution (Chapter 8 focuses on multime-
dia applications, including streaming video and VoIP). We then cover network applica-
tion development, over both TCP and UDP. In particular, we study the socket API
and walk through some simple client-server applications in Python. We also provide
several fun and interesting socket programming assignments at the end of the chapter.

The application layer is a particularly good place to start our study of protocols.
It’s familiar ground. We’re acquainted with many of the applications that rely on the
protocols we’ll study. It will give us a good feel for what protocols are all about and
will introduce us to many of the same issues that we’ll see again when we study trans-
port, network, and link layer protocols.

2.1 Principles of Network Applications

Suppose you have an idea for a new network application. Perhaps this application
will be a great service to humanity, or will please your professor, or will bring you
great wealth, or will simply be fun to develop. Whatever the motivation may be, let’s
now examine how you transform the idea into a real-world network application.

At the core of network application development is writing programs that run on
different end systems and communicate with each other over the network. For
example, in the Web application there are two distinct programs that communicate
with each other: the browser program running in the user’s host (desktop, laptop,
tablet, smartphone, and so on); and the Web server program running in the Web
server host. As another example, in a P2P file-sharing system there is a program in
each host that participates in the file-sharing community. In this case, the programs
in the various hosts may be similar or identical.

Thus, when developing your new application, you need to write software that
will run on multiple end systems. This software could be written, for example, in C,
Java, or Python. Importantly, you do not need to write software that runs on network-
core devices, such as routers or link-layer switches. Even if you wanted to write
application software for these network-core devices, you wouldn’t be able to do so.
As we learned in Chapter 1, and as shown earlier in Figure 1.24, network-core
devices do not function at the application layer but instead function at lower layers—
specifically at the network layer and below. This basic design—namely, confining
application software to the end systems—as shown in Figure 2.1, has facilitated the
rapid development and deployment of a vast array of network applications.
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Figure 2.1 � Communication for a network application takes place
between end systems at the application layer



2.1.1 Network Application Architectures

Before diving into software coding, you should have a broad architectural plan for
your application. Keep in mind that an application’s architecture is distinctly differ-
ent from the network architecture (e.g., the five-layer Internet architecture discussed
in Chapter 1). From the application developer’s perspective, the network architec-
ture is fixed and provides a specific set of services to applications. The application
architecture, on the other hand, is designed by the application developer and dic-
tates how the application is structured over the various end systems. In choosing the
application architecture, an application developer will likely draw on one of the two
predominant architectural paradigms used in modern network applications: the
client-server architecture or the peer-to-peer (P2P) architecture

In a client-server architecture, there is an always-on host, called the server,
which services requests from many other hosts, called clients. A classic example is the
Web application for which an always-on Web server services requests from browsers
running on client hosts. When a Web server receives a request for an object from a
client host, it responds by sending the requested object to the client host. Note that
with the client-server architecture, clients do not directly communicate with each
other; for example, in the Web application, two browsers do not directly communi-
cate. Another characteristic of the client-server architecture is that the server has a
fixed, well-known address, called an IP address (which we’ll discuss soon). Because
the server has a fixed, well-known address, and because the server is always on, a
client can always contact the server by sending a packet to the server’s IP address.
Some of the better-known applications with a client-server architecture include the
Web, FTP, Telnet, and e-mail. The client-server architecture is shown in Figure 2.2(a).

Often in a client-server application, a single-server host is incapable of keeping up
with all the requests from clients. For example, a popular social-networking site can
quickly become overwhelmed if it has only one server handling all of its requests. For
this reason, a data center, housing a large number of hosts, is often used to create a
powerful virtual server. The most popular Internet services—such as search engines
(e.g., Google and Bing), Internet commerce (e.g., Amazon and e-Bay), Web-based
email (e.g., Gmail and Yahoo Mail), social networking (e.g., Facebook and Twitter)—
employ one or more data centers. As discussed in Section 1.3.3, Google has 30 to 50
data centers distributed around the world, which collectively handle search, YouTube,
Gmail, and other services. A data center can have hundreds of thousands of servers,
which must be powered and maintained. Additionally, the service providers must pay
recurring interconnection and bandwidth costs for sending data from their data centers.

In a P2P architecture, there is minimal (or no) reliance on dedicated servers in
data centers. Instead the application exploits direct communication between pairs of
intermittently connected hosts, called peers. The peers are not owned by the service
provider, but are instead desktops and laptops controlled by users, with most of the
peers residing in homes, universities, and offices. Because the peers communicate
without passing through a dedicated server, the architecture is called peer-to-peer.
Many of today’s most popular and traffic-intensive applications are based on P2P
architectures. These applications include file sharing (e.g., BitTorrent), peer-assisted
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download acceleration (e.g., Xunlei), Internet Telephony (e.g., Skype), and IPTV (e.g.,
Kankan and PPstream). The P2P architecture is illustrated in Figure 2.2(b). We men-
tion that some applications have hybrid architectures, combining both client-server
and P2P elements. For example, for many instant messaging applications, servers are
used to track the IP addresses of users, but user-to-user messages are sent directly
between user hosts (without passing through intermediate servers).

One of the most compelling features of P2P architectures is their self-scalability.
For example, in a P2P file-sharing application, although each peer generates
workload by requesting files, each peer also adds service capacity to the system
by distributing files to other peers. P2P architectures are also cost effective, since
they normally don’t require significant server infrastructure and server bandwidth
(in contrast with clients-server designs with datacenters). However, future P2P
applications face three major challenges:

1. ISP Friendly. Most residential ISPs (including DSL and cable ISPs) have been
dimensioned for “asymmetrical” bandwidth usage, that is, for much more
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downstream than upstream traffic. But P2P video streaming and file distribu-
tion applications shift upstream traffic from servers to residential ISPs, thereby
putting significant stress on the ISPs. Future P2P applications need to be
designed so that they are friendly to ISPs [Xie 2008].

2. Security. Because of their highly distributed and open nature, P2P applications
can be a challenge to secure [Doucer 2002; Yu 2006; Liang 2006; Naoumov
2006; Dhungel 2008; LeBlond 2011].

3. Incentives. The success of future P2P applications also depends on convincing
users to volunteer bandwidth, storage, and computation resources to the appli-
cations, which is the challenge of incentive design [Feldman 2005; Piatek
2008; Aperjis 2008; Liu 2010].

2.1.2 Processes Communicating

Before building your network application, you also need a basic understanding of
how the programs, running in multiple end systems, communicate with each other.
In the jargon of operating systems, it is not actually programs but processes that
communicate. A process can be thought of as a program that is running within an
end system. When processes are running on the same end system, they can com-
municate with each other with interprocess communication, using rules that are
governed by the end system’s operating system. But in this book we are not par-
ticularly interested in how processes in the same host communicate, but instead in
how processes running on different hosts (with potentially different operating sys-
tems) communicate.

Processes on two different end systems communicate with each other by exchang-
ing messages across the computer network. A sending process creates and sends mes-
sages into the network; a receiving process receives these messages and possibly
responds by sending messages back. Figure 2.1 illustrates that processes communicat-
ing with each other reside in the application layer of the five-layer protocol stack.

Client and Server Processes

A network application consists of pairs of processes that send messages to each
other over a network. For example, in the Web application a client browser
process exchanges messages with a Web server process. In a P2P file-sharing sys-
tem, a file is transferred from a process in one peer to a process in another peer.
For each pair of communicating processes, we typically label one of the two
processes as the client and the other process as the server. With the Web, a
browser is a client process and a Web server is a server process. With P2P file
sharing, the peer that is downloading the file is labeled as the client, and the peer
that is uploading the file is labeled as the server.

You may have observed that in some applications, such as in P2P file sharing, a
process can be both a client and a server. Indeed, a process in a P2P file-sharing sys-
tem can both upload and download files. Nevertheless, in the context of any given
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communication session between a pair of processes, we can still label one process
as the client and the other process as the server. We define the client and server
processes as follows:

In the context of a communication session between a pair of processes, the
process that initiates the communication (that is, initially contacts the other
process at the beginning of the session) is labeled as the client. The process
that waits to be contacted to begin the session is the server.

In the Web, a browser process initializes contact with a Web server process;
hence the browser process is the client and the Web server process is the server. In
P2P file sharing, when Peer A asks Peer B to send a specific file, Peer A is the client
and Peer B is the server in the context of this specific communication session. When
there’s no confusion, we’ll sometimes also use the terminology “client side and
server side of an application.” At the end of this chapter, we’ll step through simple
code for both the client and server sides of network applications.

The Interface Between the Process and the Computer Network

As noted above, most applications consist of pairs of communicating processes,
with the two processes in each pair sending messages to each other. Any message
sent from one process to another must go through the underlying network. A process
sends messages into, and receives messages from, the network through a software
interface called a socket. Let’s consider an analogy to help us understand processes
and sockets. A process is analogous to a house and its socket is analogous to its door.
When a process wants to send a message to another process on another host, it
shoves the message out its door (socket). This sending process assumes that there is
a transportation infrastructure on the other side of its door that will transport the
message to the door of the destination process. Once the message arrives at the des-
tination host, the message passes through the receiving process’s door (socket), and
the receiving process then acts on the message

Figure 2.3 illustrates socket communication between two processes that com-
municate over the Internet. (Figure 2.3 assumes that the underlying transport pro-
tocol used by the processes is the Internet’s TCP protocol.) As shown in this
figure, a socket is the interface between the application layer and the transport
layer within a host. It is also referred to as the Application Programming Inter-
face (API) between the application and the network, since the socket is the pro-
gramming interface with which network applications are built. The application
developer has control of everything on the application-layer side of the socket but
has little control of the transport-layer side of the socket. The only control that the
application developer has on the transport-layer side is (1) the choice of transport
protocol and (2) perhaps the ability to fix a few transport-layer parameters such as
maximum buffer and maximum segment sizes (to be covered in Chapter 3). Once
the application developer chooses a transport protocol (if a choice is available),
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the application is built using the transport-layer services provided by that proto-
col. We’ll explore sockets in some detail in Section 2.7.

Addressing Processes

In order to send postal mail to a particular destination, the destination needs to have
an address. Similarly, in order for a process running on one host to send packets to a
process running on another host, the receiving process needs to have an address. 
To identify the receiving process, two pieces of information need to be specified:
(1) the address of the host and (2) an identifier that specifies the receiving process
in the destination host.

In the Internet, the host is identified by its IP address. We’ll discuss IP
addresses in great detail in Chapter 4. For now, all we need to know is that an IP
address is a 32-bit quantity that we can think of as uniquely identifying the host.
In addition to knowing the address of the host to which a message is destined, the
sending process must also identify the receiving process (more specifically, the
receiving socket) running in the host. This information is needed because in gen-
eral a host could be running many network applications. A destination port num-
ber serves this purpose. Popular applications have been assigned specific port
numbers. For example, a Web server is identified by port number 80. A mail
server process (using the SMTP protocol) is identified by port number 25. A list
of well-known port numbers for all Internet standard protocols can be found at
http://www.iana.org. We’ll examine port numbers in detail in Chapter 3.
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2.1.3 Transport Services Available to Applications

Recall that a socket is the interface between the application process and the 
transport-layer protocol. The application at the sending side pushes messages
through the socket. At the other side of the socket, the transport-layer protocol
has the responsibility of getting the messages to the socket of the receiving
process.

Many networks, including the Internet, provide more than one transport-layer
protocol. When you develop an application, you must choose one of the available
transport-layer protocols. How do you make this choice? Most likely, you would
study the services provided by the available transport-layer protocols, and then pick
the protocol with the services that best match your application’s needs. The situa-
tion is similar to choosing either train or airplane transport for travel between two
cities. You have to choose one or the other, and each transportation mode offers dif-
ferent services. (For example, the train offers downtown pickup and drop-off,
whereas the plane offers shorter travel time.)

What are the services that a transport-layer protocol can offer to applications
invoking it? We can broadly classify the possible services along four dimensions:
reliable data transfer, throughput, timing, and security.

Reliable Data Transfer

As discussed in Chapter 1, packets can get lost within a computer network. For
example, a packet can overflow a buffer in a router, or can be discarded by a host
or router after having some of its bits corrupted. For many applications—such as
electronic mail, file transfer, remote host access, Web document transfers, and
financial applications—data loss can have devastating consequences (in the latter
case, for either the bank or the customer!). Thus, to support these applications,
something has to be done to guarantee that the data sent by one end of the appli-
cation is delivered correctly and completely to the other end of the application. If
a protocol provides such a guaranteed data delivery service, it is said to provide
reliable data transfer. One important service that a transport-layer protocol can
potentially provide to an application is process-to-process reliable data transfer.
When a transport protocol provides this service, the sending process can just pass
its data into the socket and know with complete confidence that the data will
arrive without errors at the receiving process.

When a transport-layer protocol doesn’t provide reliable data transfer, some of
the data sent by the sending process may never arrive at the receiving process. This
may be acceptable for loss-tolerant applications, most notably multimedia applica-
tions such as conversational audio/video that can tolerate some amount of data loss.
In these multimedia applications, lost data might result in a small glitch in the
audio/video—not a crucial impairment.
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Throughput

In Chapter 1 we introduced the concept of available throughput, which, in the con-
text of a communication session between two processes along a network path, is
the rate at which the sending process can deliver bits to the receiving process.
Because other sessions will be sharing the bandwidth along the network path, and
because these other sessions will be coming and going, the available throughput
can fluctuate with time. These observations lead to another natural service that a
transport-layer protocol could provide, namely, guaranteed available throughput
at some specified rate. With such a service, the application could request a guar-
anteed throughput of r bits/sec, and the transport protocol would then ensure that
the available throughput is always at least r bits/sec. Such a guaranteed through-
put service would appeal to many applications. For example, if an Internet teleph-
ony application encodes voice at 32 kbps, it needs to send data into the network
and have data delivered to the receiving application at this rate. If the transport
protocol cannot provide this throughput, the application would need to encode at
a lower rate (and receive enough throughput to sustain this lower coding rate) or
may have to give up, since receiving, say, half of the needed throughput is of little
or no use to this Internet telephony application. Applications that have throughput
requirements are said to be bandwidth-sensitive applications. Many current
multimedia applications are bandwidth sensitive, although some multimedia
applications may use adaptive coding techniques to encode digitized voice or
video at a rate that matches the currently available throughput.

While bandwidth-sensitive applications have specific throughput require-
ments, elastic applications can make use of as much, or as little, throughput 
as happens to be available. Electronic mail, file transfer, and Web transfers are
all elastic applications. Of course, the more throughput, the better. There’s
an adage that says that one cannot be too rich, too thin, or have too much
throughput!

Timing

A transport-layer protocol can also provide timing guarantees. As with throughput
guarantees, timing guarantees can come in many shapes and forms. An example
guarantee might be that every bit that the sender pumps into the socket arrives at the
receiver’s socket no more than 100 msec later. Such a service would be appealing to
interactive real-time applications, such as Internet telephony, virtual environments,
teleconferencing, and multiplayer games, all of which require tight timing con-
straints on data delivery in order to be effective. (See Chapter 7, [Gauthier 1999;
Ramjee 1994].) Long delays in Internet telephony, for example, tend to result in
unnatural pauses in the conversation; in a multiplayer game or virtual interactive
environment, a long delay between taking an action and seeing the response from
the environment (for example, from another player at the end of an end-to-end con-
nection) makes the application feel less realistic. For non-real-time applications,
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lower delay is always preferable to higher delay, but no tight constraint is placed on
the end-to-end delays.

Security

Finally, a transport protocol can provide an application with one or more security
services. For example, in the sending host, a transport protocol can encrypt all data
transmitted by the sending process, and in the receiving host, the transport-layer
protocol can decrypt the data before delivering the data to the receiving process.
Such a service would provide confidentiality between the two processes, even if the
data is somehow observed between sending and receiving processes. A transport
protocol can also provide other security services in addition to confidentiality,
including data integrity and end-point authentication, topics that we’ll cover in
detail in Chapter 8.

2.1.4 Transport Services Provided by the Internet

Up until this point, we have been considering transport services that a computer
network could provide in general. Let’s now get more specific and examine the
type of transport services provided by the Internet. The Internet (and, more gen-
erally, TCP/IP networks) makes two transport protocols available to applications,
UDP and TCP. When you (as an application developer) create a new network
application for the Internet, one of the first decisions you have to make is
whether to use UDP or TCP. Each of these protocols offers a different set of serv-
ices to the invoking applications. Figure 2.4 shows the service requirements for
some selected applications.
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Application Data Loss Throughput Time-Sensitive

File transfer/download No loss Elastic No

E-mail No loss Elastic No

Web documents No loss Elastic (few kbps) No

Figure 2.4 � Requirements of selected network applications
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Instant messaging No loss Elastic Yes and no



TCP Services

The TCP service model includes a connection-oriented service and a reliable data
transfer service. When an application invokes TCP as its transport protocol, the
application receives both of these services from TCP.

• Connection-oriented service. TCP has the client and server exchange transport-
layer control information with each other before the application-level messages
begin to flow. This so-called handshaking procedure alerts the client and server,
allowing them to prepare for an onslaught of packets. After the handshaking phase,
a TCP connection is said to exist between the sockets of the two processes. The
connection is a full-duplex connection in that the two processes can send messages
to each other over the connection at the same time. When the application finishes
sending messages, it must tear down the connection. In Chapter 3 we’ll discuss
connection-oriented service in detail and examine how it is implemented.
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SECURING TCP

Neither TCP nor UDP provide any encryption—the data that the sending process pass-
es into its socket is the same data that travels over the network to the destination
process. So, for example, if the sending process sends a password in cleartext (i.e.,
unencrypted) into its socket, the cleartext password will travel over all the links between
sender and receiver, potentially getting sniffed and discovered at any of the intervening
links. Because privacy and other security issues have become critical for many applica-
tions, the Internet community has developed an enhancement for TCP, called Secure
Sockets Layer (SSL). TCP-enhanced-with-SSL not only does everything that traditional
TCP does but also provides critical process-to-process security services, including
encryption, data integrity, and end-point authentication. We emphasize that SSL is not
a third Internet transport protocol, on the same level as TCP and UDP, but instead is an
enhancement of TCP, with the enhancements being implemented in the application
layer. In particular, if an application wants to use the services of SSL, it needs to
include SSL code (existing, highly optimized libraries and classes) in both the client and
server sides of the application. SSL has its own socket API that is similar to the tradition-
al TCP socket API. When an application uses SSL, the sending process passes cleartext
data to the SSL socket; SSL in the sending host then encrypts the data and passes the
encrypted data to the TCP socket. The encrypted data travels over the Internet to the
TCP socket in the receiving process. The receiving socket passes the encrypted data to
SSL, which decrypts the data. Finally, SSL passes the cleartext data through its SSL
socket to the receiving process. We’ll cover SSL in some detail in Chapter 8.

FOCUS ON SECURITY



• Reliable data transfer service. The communicating processes can rely on TCP
to deliver all data sent without error and in the proper order. When one side of
the application passes a stream of bytes into a socket, it can count on TCP to
deliver the same stream of bytes to the receiving socket, with no missing or
duplicate bytes.

TCP also includes a congestion-control mechanism, a service for the general
welfare of the Internet rather than for the direct benefit of the communicating
processes. The TCP congestion-control mechanism throttles a sending process (client
or server) when the network is congested between sender and receiver. As we will
see in Chapter 3, TCP congestion control also attempts to limit each TCP connection
to its fair share of network bandwidth.

UDP Services

UDP is a no-frills, lightweight transport protocol, providing minimal services. UDP
is connectionless, so there is no handshaking before the two processes start to
communicate. UDP provides an unreliable data transfer service—that is, when a process
sends a message into a UDP socket, UDP provides no guarantee that the message
will ever reach the receiving process. Furthermore, messages that do arrive at the
receiving process may arrive out of order.

UDP does not include a congestion-control mechanism, so the sending side of
UDP can pump data into the layer below (the network layer) at any rate it pleases.
(Note, however, that the actual end-to-end throughput may be less than this rate due
to the limited transmission capacity of intervening links or due to congestion). 

Services Not Provided by Internet Transport Protocols

We have organized transport protocol services along four dimensions: reliable data
transfer, throughput, timing, and security. Which of these services are provided by
TCP and UDP? We have already noted that TCP provides reliable end-to-end data
transfer. And we also know that TCP can be easily enhanced at the application layer
with SSL to provide security services. But in our brief description of TCP and UDP,
conspicuously missing was any mention of throughput or timing guarantees—serv-
ices not provided by today’s Internet transport protocols. Does this mean that time-
sensitive applications such as Internet telephony cannot run in today’s Internet? The
answer is clearly no—the Internet has been hosting time-sensitive applications for
many years. These applications often work fairly well because they have been
designed to cope, to the greatest extent possible, with this lack of guarantee. We’ll
investigate several of these design tricks in Chapter 7. Nevertheless, clever design
has its limitations when delay is excessive, or the end-to-end throughput is limited.
In summary, today’s Internet can often provide satisfactory service to time-sensitive
applications, but it cannot provide any timing or throughput guarantees.
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Figure 2.5 indicates the transport protocols used by some popular Internet
applications. We see that e-mail, remote terminal access, the Web, and file trans-
fer all use TCP. These applications have chosen TCP primarily because TCP pro-
vides  reliable data transfer, guaranteeing that all data will eventually get to its
destination. Because Internet telephony applications (such as Skype) can often
tolerate some loss but require a minimal rate to be effective, developers of Inter-
net telephony applications usually prefer to run their applications over UDP,
thereby circumventing TCP’s congestion control mechanism and packet over-
heads. But because many firewalls are configured to block (most types of) UDP
traffic, Internet telephony applications often are designed to use TCP as a backup
if UDP communication fails.

2.1.5 Application-Layer Protocols

We have just learned that network processes communicate with each other by send-
ing messages into sockets. But how are these messages structured? What are the
meanings of the various fields in the messages? When do the processes send the mes-
sages? These questions bring us into the realm of application-layer protocols. An
application-layer protocol defines how an application’s processes, running on dif-
ferent end systems, pass messages to each other. In particular, an application-layer
protocol defines:

• The types of messages exchanged, for example, request messages and response
messages

• The syntax of the various message types, such as the fields in the message and
how the fields are delineated
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Application Application-Layer Protocol Underlying Transport Protocol

Electronic mail SMTP [RFC 5321] TCP

Remote terminal access Telnet [RFC 854] TCP

Web HTTP [RFC 2616] TCP

File transfer FTP [RFC 959] TCP

Streaming multimedia HTTP (e.g., YouTube) TCP

Internet telephony SIP [RFC 3261], RTP [RFC 3550], or proprietary UDP or TCP
(e.g., Skype)

Figure 2.5 � Popular Internet applications, their application-layer 
protocols, and their underlying transport protocols



• The semantics of the fields, that is, the meaning of the information in the fields

• Rules for determining when and how a process sends messages and responds to
messages

Some application-layer protocols are specified in RFCs and are therefore in the public
domain. For example, the Web’s application-layer protocol, HTTP (the HyperText
Transfer Protocol [RFC 2616]), is available as an RFC. If a browser developer follows
the rules of the HTTP RFC, the browser will be able to retrieve Web pages from 
any Web server that has also followed the rules of the HTTP RFC. Many other
application-layer protocols are proprietary and intentionally not available in the public
domain. For example, Skype uses proprietary application-layer protocols.

It is important to distinguish between network applications and application-layer
protocols. An application-layer protocol is only one piece of a network application
(albeit, a very important piece of the application from our point of view!). Let’s look at
a couple of examples. The Web is a client-server application that allows users to
obtain documents from Web servers on demand. The Web application consists of
many components, including a standard for document formats (that is, HTML), Web
browsers (for example, Firefox and Microsoft Internet Explorer), Web servers (for
example, Apache and Microsoft servers), and an application-layer protocol. The
Web’s application-layer protocol, HTTP, defines the format and sequence of messages
exchanged between browser and Web server. Thus, HTTP is only one piece (albeit, an
important piece) of the Web application. As another example, an Internet e-mail appli-
cation also has many components, including mail servers that house user mailboxes;
mail clients (such as Microsoft Outlook) that allow users to read and create messages; a
standard for defining the structure of an e-mail message; and application-layer proto-
cols that define how messages are passed between servers, how messages are passed
between servers and mail clients, and how the contents of message headers are to be
interpreted. The principal application-layer protocol for electronic mail is SMTP
(Simple Mail Transfer Protocol) [RFC 5321]. Thus, e-mail’s principal application-layer
protocol, SMTP, is only one piece (albeit, an important piece) of the e-mail application.

2.1.6 Network Applications Covered in This Book

New public domain and proprietary Internet applications are being developed every
day. Rather than covering a large number of Internet applications in an encyclope-
dic manner, we have chosen to focus on a small number of applications that are both
pervasive and important. In this chapter we discuss five important applications: the
Web, file transfer, electronic mail, directory service, and P2P applications. We first
discuss the Web, not only because it is an enormously popular application, but also
because its application-layer protocol, HTTP, is straightforward and easy to under-
stand. After covering the Web, we briefly examine FTP, because it provides a nice
contrast to HTTP. We then discuss electronic mail, the Internet’s first killer applica-
tion. E-mail is more complex than the Web in the sense that it makes use of not one
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but several application-layer protocols. After e-mail, we cover DNS, which provides
a directory service for the Internet. Most users do not interact with DNS directly;
instead, users invoke DNS indirectly through other applications (including the Web,
file transfer, and electronic mail). DNS illustrates nicely how a piece of core net-
work functionality (network-name to network-address translation) can be imple-
mented at the application layer in the Internet. Finally, we discuss in this chapter
several P2P applications, focusing on file sharing applications, and distributed
lookup services. In Chapter 7, we’ll cover multimedia applications, including
streaming video and voice-over-IP.

2.2 The Web and HTTP

Until the early 1990s the Internet was used primarily by researchers, academics, and
university students to log in to remote hosts, to transfer files from local hosts to remote
hosts and vice versa, to receive and send news, and to receive and send electronic
mail. Although these applications were (and continue to be) extremely useful, the
Internet was essentially unknown outside of the academic and research communities.
Then, in the early 1990s, a major new application arrived on the scene—the World
Wide Web [Berners-Lee 1994]. The Web was the first Internet application that caught
the general public’s eye. It dramatically changed, and continues to change, how peo-
ple interact inside and outside their work environments. It elevated the Internet from
just one of many data networks to essentially the one and only data network.

Perhaps what appeals the most to users is that the Web operates on demand.
Users receive what they want, when they want it. This is unlike traditional broad-
cast radio and television, which force users to tune in when the content provider
makes the content available. In addition to being available on demand, the Web has
many other wonderful features that people love and cherish. It is enormously easy
for any individual to make information available over the Web—everyone can
become a publisher at extremely low cost. Hyperlinks and search engines help us
navigate through an ocean of Web sites. Graphics stimulate our senses. Forms,
JavaScript, Java applets, and many other devices enable us to interact with pages
and sites. And the Web serves as a platform for many killer applications emerging
after 2003, including YouTube, Gmail, and Facebook.

2.2.1 Overview of HTTP

The HyperText Transfer Protocol (HTTP), the Web’s application-layer protocol,
is at the heart of the Web. It is defined in [RFC 1945] and [RFC 2616]. HTTP is
implemented in two programs: a client program and a server program. The client
program and server program, executing on different end systems, talk to each other
by exchanging HTTP messages. HTTP defines the structure of these messages and
how the client and server exchange the messages. Before explaining HTTP in detail,
we should review some Web terminology.
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A Web page (also called a document) consists of objects. An object is simply a
file—such as an HTML file, a JPEG image, a Java applet, or a video clip—that is
addressable by a single URL. Most Web pages consist of a base HTML file and
several referenced objects. For example, if a Web page contains HTML text and five
JPEG images, then the Web page has six objects: the base HTML file plus the five
images. The base HTML file references the other objects in the page with the
objects’ URLs. Each URL has two components: the hostname of the server that
houses the object and the object’s path name. For example, the URL

http://www.someSchool.edu/someDepartment/picture.gif

has www.someSchool.edu for a hostname and /someDepartment/
picture.gif for a path name. Because Web browsers (such as Internet Explorer
and Firefox) implement the client side of HTTP, in the context of the Web, we will use
the words browser and client interchangeably. Web servers, which implement the
server side of HTTP, house Web objects, each addressable by a URL. Popular Web
servers include Apache and Microsoft Internet Information Server.

HTTP defines how Web clients request Web pages from Web servers and how
servers transfer Web pages to clients. We discuss the interaction between client and
server in detail later, but the general idea is illustrated in Figure 2.6. When a user
requests a Web page (for example, clicks on a hyperlink), the browser sends HTTP
request messages for the objects in the page to the server. The server receives the
requests and responds with HTTP response messages that contain the objects.

HTTP uses TCP as its underlying transport protocol (rather than running on top of
UDP). The HTTP client first initiates a TCP connection with the server. Once the con-
nection is established, the browser and the server processes access TCP through their
socket interfaces. As described in Section 2.1, on the client side the socket interface is
the door between the client process and the TCP connection; on the server side it is the
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door between the server process and the TCP connection. The client sends HTTP
request messages into its socket interface and receives HTTP response messages from
its socket interface. Similarly, the HTTP server receives request messages from its
socket interface and sends response messages into its socket interface. Once the client
sends a message into its socket interface, the message is out of the client’s hands and is
“in the hands” of TCP. Recall from Section 2.1 that TCP provides a reliable data trans-
fer service to HTTP. This implies that each HTTP request message sent by a client
process eventually arrives intact at the server; similarly, each HTTP response message
sent by the server process eventually arrives intact at the client. Here we see one of the
great advantages of a layered architecture—HTTP need not worry about lost data or the
details of how TCP recovers from loss or reordering of data within the network. That is
the job of TCP and the protocols in the lower layers of the protocol stack.

It is important to note that the server sends requested files to clients without stor-
ing any state information about the client. If a particular client asks for the same object
twice in a period of a few seconds, the server does not respond by saying that it just
served the object to the client; instead, the server resends the object, as it has com-
pletely forgotten what it did earlier. Because an HTTP server maintains no informa-
tion about the clients, HTTP is said to be a stateless protocol. We also remark that the
Web uses the client-server application architecture, as described in Section 2.1. A Web
server is always on, with a fixed IP address, and it services requests from potentially
millions of different browsers.

2.2.2 Non-Persistent and Persistent Connections

In many Internet applications, the client and server communicate for an extended
period of time, with the client making a series of requests and the server responding to
each of the requests. Depending on the application and on how the application is being
used, the series of requests may be made back-to-back, periodically at regular intervals,
or intermittently. When this client-server interaction is taking place over TCP, the appli-
cation developer needs to make an important decision––should each request/response
pair be sent over a separate TCP connection, or should all of the requests and their cor-
responding responses be sent over the same TCP connection? In the former approach,
the application is said to use non-persistent connections; and in the latter approach,
persistent connections. To gain a deep understanding of this design issue, let’s exam-
ine the advantages and disadvantages of persistent connections in the context of a spe-
cific application, namely, HTTP, which can use both non-persistent connections and
persistent connections. Although HTTP uses persistent connections in its default mode,
HTTP clients and servers can be configured to use non-persistent connections instead.

HTTP with Non-Persistent Connections

Let’s walk through the steps of transferring a Web page from server to client for the
case of non-persistent connections. Let’s suppose the page consists of a base HTML
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file and 10 JPEG images, and that all 11 of these objects reside on the same server.
Further suppose the URL for the base HTML file is

http://www.someSchool.edu/someDepartment/home.index

Here is what happens:

1. The HTTP client process initiates a TCP connection to the server
www.someSchool.edu on port number 80, which is the default port num-
ber for HTTP. Associated with the TCP connection, there will be a socket at the
client and a socket at the server.

2. The HTTP client sends an HTTP request message to the server via its socket. The
request message includes the path name /someDepartment/home.index.
(We will discuss HTTP messages in some detail below.)

3. The HTTP server process receives the request message via its socket, retrieves
the object /someDepartment/home.index from its storage (RAM or
disk), encapsulates the object in an HTTP response message, and sends the
response message to the client via its socket.

4. The HTTP server process tells TCP to close the TCP connection. (But TCP
doesn’t actually terminate the connection until it knows for sure that the client
has received the response message intact.)

5. The HTTP client receives the response message. The TCP connection termi-
nates. The message indicates that the encapsulated object is an HTML file. The
client extracts the file from the response message, examines the HTML file,
and finds references to the 10 JPEG objects.

6. The first four steps are then repeated for each of the referenced JPEG objects.

As the browser receives the Web page, it displays the page to the user. Two differ-
ent browsers may interpret (that is, display to the user) a Web page in somewhat differ-
ent ways. HTTP has nothing to do with how a Web page is interpreted by a client. The
HTTP specifications ([RFC 1945] and [RFC 2616]) define only the communication
protocol between the client HTTP program and the server HTTP program.

The steps above illustrate the use of non-persistent connections, where each TCP
connection is closed after the server sends the object—the connection does not persist
for other objects. Note that each TCP connection transports exactly one request mes-
sage and one response message. Thus, in this example, when a user requests the Web
page, 11 TCP connections are generated.

In the steps described above, we were intentionally vague about whether the
client obtains the 10 JPEGs over 10 serial TCP connections, or whether some of the
JPEGs are obtained over parallel TCP connections. Indeed, users can configure
modern browsers to control the degree of parallelism. In their default modes, most
browsers open 5 to 10 parallel TCP connections, and each of these connections han-
dles one request-response transaction. If the user prefers, the maximum number of
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parallel connections can be set to one, in which case the 10 connections are estab-
lished serially. As we’ll see in the next chapter, the use of parallel connections short-
ens the response time.

Before continuing, let’s do a back-of-the-envelope calculation to estimate the
amount of time that elapses from when a client requests the base HTML file until
the entire file is received by the client. To this end, we define the round-trip time
(RTT), which is the time it takes for a small packet to travel from client to server
and then back to the client. The RTT includes packet-propagation delays, packet-
queuing delays in intermediate routers and switches, and packet-processing
delays. (These delays were discussed in Section 1.4.) Now consider what happens
when a user clicks on a hyperlink. As shown in Figure 2.7, this causes the browser
to initiate a TCP connection between the browser and the Web server; this
involves a “three-way handshake”—the client sends a small TCP segment to the
server, the server acknowledges and responds with a small TCP segment, and,
finally, the client acknowledges back to the server. The first two parts of the three-
way handshake take one RTT. After completing the first two parts of the hand-
shake, the client sends the HTTP request message combined with the third part of
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the three-way handshake (the acknowledgment) into the TCP connection. Once
the request message arrives at the server, the server sends the HTML file into the
TCP connection. This HTTP request/response eats up another RTT. Thus, roughly,
the total response time is two RTTs plus the transmission time at the server of the
HTML file.

HTTP with Persistent Connections

Non-persistent connections have some shortcomings. First, a brand-new connec-
tion must be established and maintained for each requested object. For each of
these connections, TCP buffers must be allocated and TCP variables must be kept
in both the client and server. This can place a significant burden on the Web server,
which may be serving requests from hundreds of different clients simultaneously.
Second, as we just described, each object suffers a delivery delay of two RTTs—
one RTT to establish the TCP connection and one RTT to request and receive an
object.

With persistent connections, the server leaves the TCP connection open after
sending a response. Subsequent requests and responses between the same client and
server can be sent over the same connection. In particular, an entire Web page (in
the example above, the base HTML file and the 10 images) can be sent over a single
persistent TCP connection. Moreover, multiple Web pages residing on the same
server can be sent from the server to the same client over a single persistent TCP
connection. These requests for objects can be made back-to-back, without waiting
for replies to pending requests (pipelining). Typically, the HTTP server closes a con-
nection when it isn’t used for a certain time (a configurable timeout interval). When
the server receives the back-to-back requests, it sends the objects back-to-back. The
default mode of HTTP uses persistent connections with pipelining. We’ll quantita-
tively compare the performance of non-persistent and persistent connections in the
homework problems of Chapters 2 and 3. You are also encouraged to see [Heide-
mann 1997; Nielsen 1997].

2.2.3 HTTP Message Format

The HTTP specifications [RFC 1945; RFC 2616] include the definitions of the
HTTP message formats. There are two types of HTTP messages, request messages
and response messages, both of which are discussed below.

HTTP Request Message

Below we provide a typical HTTP request message:

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
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Connection: close
User-agent: Mozilla/5.0
Accept-language: fr

We can learn a lot by taking a close look at this simple request message. First of
all, we see that the message is written in ordinary ASCII text, so that your ordinary
computer-literate human being can read it. Second, we see that the message consists
of five lines, each followed by a carriage return and a line feed. The last line is fol-
lowed by an additional carriage return and line feed. Although this particular request
message has five lines, a request message can have many more lines or as few as
one line. The first line of an HTTP request message is called the request line; the
subsequent lines are called the header lines. The request line has three fields: the
method field, the URL field, and the HTTP version field. The method field can take
on several different values, including GET, POST, HEAD, PUT, and DELETE.
The great majority of HTTP request messages use the GET method. The GET
method is used when the browser requests an object, with the requested object iden-
tified in the URL field. In this example, the browser is requesting the object
/somedir/page.html. The version is self-explanatory; in this example, the
browser implements version HTTP/1.1.

Now let’s look at the header lines in the example. The header line Host:
www.someschool.edu specifies the host on which the object resides. You might
think that this header line is unnecessary, as there is already a TCP connection in
place to the host. But, as we’ll see in Section 2.2.5, the information provided by the
host header line is required by Web proxy caches. By including the Connection:
close header line, the browser is telling the server that it doesn’t want to bother
with persistent connections; it wants the server to close the connection after sending
the requested object. The User-agent: header line specifies the user agent, that
is, the browser type that is making the request to the server. Here the user agent is
Mozilla/5.0, a Firefox browser. This header line is useful because the server can
actually send different versions of the same object to different types of user agents.
(Each of the versions is addressed by the same URL.) Finally, the Accept-
language: header indicates that the user prefers to receive a French version of
the object, if such an object exists on the server; otherwise, the server should send
its default version. The Accept-language: header is just one of many content
negotiation headers available in HTTP.

Having looked at an example, let’s now look at the general format of a request
message, as shown in Figure 2.8. We see that the general format closely follows our
earlier example. You may have noticed, however, that after the header lines (and the
additional carriage return and line feed) there is an “entity body.” The entity body is
empty with the GET method, but is used with the POST method. An HTTP client
often uses the POST method when the user fills out a form—for example, when a
user provides search words to a search engine. With a POST message, the user is still
requesting a Web page from the server, but the specific contents of the Web page
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depend on what the user entered into the form fields. If the value of the method field
is POST, then the entity body contains what the user entered into the form fields.

We would be remiss if we didn’t mention that a request generated with a form
does not necessarily use the POST method. Instead, HTML forms often use the GET
method and include the inputted data (in the form fields) in the requested URL. For
example, if a form uses the GET method, has two fields, and the inputs to the two
fields are monkeys and bananas, then the URL will have the structure
www.somesite.com/animalsearch?monkeys&bananas. In your day-to-
day Web surfing, you have probably noticed extended URLs of this sort.

The HEAD method is similar to the GET method. When a server receives a
request with the HEAD method, it responds with an HTTP message but it leaves out
the requested object. Application developers often use the HEAD method for debug-
ging. The PUT method is often used in conjunction with Web publishing tools. It
allows a user to upload an object to a specific path (directory) on a specific Web
server. The PUT method is also used by applications that need to upload objects to
Web servers. The DELETE method allows a user, or an application, to delete an
object on a Web server.

HTTP Response Message

Below we provide a typical HTTP response message. This response message could
be the response to the example request message just discussed.

HTTP/1.1 200 OK
Connection: close
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Date: Tue, 09 Aug 2011 15:44:04 GMT
Server: Apache/2.2.3 (CentOS)
Last-Modified: Tue, 09 Aug 2011 15:11:03 GMT
Content-Length: 6821
Content-Type: text/html

(data data data data data ...)

Let’s take a careful look at this response message. It has three sections: an ini-
tial status line, six header lines, and then the entity body. The entity body is the
meat of the message—it contains the requested object itself (represented by data
data data data data ...). The status line has three fields: the protocol ver-
sion field, a status code, and a corresponding status message. In this example, the
status line indicates that the server is using HTTP/1.1 and that everything is OK
(that is, the server has found, and is sending, the requested object).

Now let’s look at the header lines. The server uses the Connection: close
header line to tell the client that it is going to close the TCP connection after sending
the message. The Date: header line indicates the time and date when the HTTP
response was created and sent by the server. Note that this is not the time when the
object was created or last modified; it is the time when the server retrieves the
object from its file system, inserts the object into the response message, and sends
the response message. The Server: header line indicates that the message was gen-
erated by an Apache Web server; it is analogous to the User-agent: header line
in the HTTP request message. The Last-Modified: header line indicates the
time and date when the object was created or last modified. The Last-Modified:
header, which we will soon cover in more detail, is critical for object caching, both in
the local client and in network cache servers (also known as proxy servers). The
Content-Length: header line indicates the number of bytes in the object being
sent. The Content-Type: header line indicates that the object in the entity body is
HTML text. (The object type is officially indicated by the Content-Type: header
and not by the file extension.)

Having looked at an example, let’s now examine the general format of a
response message, which is shown in Figure 2.9. This general format of the response
message matches the previous example of a response message. Let’s say a few addi-
tional words about status codes and their phrases. The status code and associated
phrase indicate the result of the request. Some common status codes and associated
phrases include:

• 200 OK: Request succeeded and the information is returned in the response.

• 301 Moved Permanently: Requested object has been permanently moved;
the new URL is specified in Location: header of the response message. The
client software will automatically retrieve the new URL.
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• 400 Bad Request: This is a generic error code indicating that the request
could not be understood by the server.

• 404 Not Found: The requested document does not exist on this server.

• 505 HTTP Version Not Supported: The requested HTTP protocol
version is not supported by the server.

How would you like to see a real HTTP response message? This is highly rec-
ommended and very easy to do! First Telnet into your favorite Web server. Then
type in a one-line request message for some object that is housed on the server. For
example, if you have access to a command prompt, type:

telnet cis.poly.edu 80

GET /~ross/ HTTP/1.1
Host: cis.poly.edu

(Press the carriage return twice after typing the last line.) This opens a TCP connec-
tion to port 80 of the host cis.poly.edu and then sends the HTTP request mes-
sage. You should see a response message that includes the base HTML file of
Professor Ross’s homepage. If you’d rather just see the HTTP message lines and not
receive the object itself, replace GET with HEAD. Finally, replace /~ross/ with
/~banana/ and see what kind of response message you get.

In this section we discussed a number of header lines that can be used within
HTTP request and response messages. The HTTP specification defines many, many
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more header lines that can be inserted by browsers, Web servers, and network cache 
servers. We have covered only a small number of the totality of header lines. We’ll 
cover a few more below and another small number when we discuss network Web 
caching in Section 2.2.5. A highly readable and comprehensive discussion of the HTTP 
protocol, including its headers and status codes, is given in [Krishnamurthy 2001].

How does a browser decide which header lines to include in a request mes-
sage? How does a Web server decide which header lines to include in a response 
message? A browser will generate header lines as a function of the browser type 
and version (for example, an HTTP/1.0 browser will not generate any 1.1 header 
lines), the user configuration of the browser (for example, preferred language), and 
whether the browser currently has a cached, but possibly out-of-date, version of the 
object. Web servers behave similarly: There are different products, versions, and 
configurations, all of which influence which header lines are included in response 
messages.

EXCLUDE THIS SECTION:
2.2.4 User-Server Interaction: Cookies

We mentioned above that an HTTP server is stateless. This simplifies server design 
and has permitted engineers to develop high-performance Web servers that can han-
dle thousands of simultaneous TCP connections. However, it is often desirable for a 
Web site to identify users, either because the server wishes to restrict user access or 
because it wants to serve content as a function of the user identity. For these pur-
poses, HTTP uses cookies. Cookies, defined in [RFC 6265], allow sites to keep 
track of users. Most major commercial Web sites use cookies today.

As shown in Figure 2.10, cookie technology has four components: (1) a cookie 
header line in the HTTP response message; (2) a cookie header line in the HTTP 
request message; (3) a cookie file kept on the user’s end system and managed by the 
user’s browser; and (4) a back-end database at the Web site. Using Figure 2.10, let’s 
walk through an example of how cookies work. Suppose Susan, who always 
accesses the Web using Internet Explorer from her home PC, contacts Amazon.com 
for the first time. Let us suppose that in the past she has already visited the eBay site. 
When the request comes into the Amazon Web server, the server creates a unique 
identification number and creates an entry in its back-end database that is indexed 
by the identification number. The Amazon Web server then responds to Susan’s 
browser, including in the HTTP response a Set-cookie: header, which contains 
the identification number. For example, the header line might be:

Set-cookie: 1678

When Susan’s browser receives the HTTP response message, it sees the Set-
cookie: header. The browser then appends a line to the special cookie file that it 
manages. This line includes the hostname of the server and the identification num-
ber in the Set-cookie: header. Note that the cookie file already has an entry for
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eBay, since Susan has visited that site in the past. As Susan continues to browse the
Amazon site, each time she requests a Web page, her browser consults her cookie
file, extracts her identification number for this site, and puts a cookie header line
that includes the identification number in the HTTP request. Specifically, each of
her HTTP requests to the Amazon server includes the header line:

Cookie: 1678
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In this manner, the Amazon server is able to track Susan’s activity at the Amazon 
site. Although the Amazon Web site does not necessarily know Susan’s name, it 
knows exactly which pages user 1678 visited, in which order, and at what times!
Amazon uses cookies to provide its shopping cart service—Amazon can maintain a 
list of all of Susan’s intended purchases, so that she can pay for them collectively at 
the end of the session.

If Susan returns to Amazon’s site, say, one week later, her browser will continue 
to put the header line Cookie: 1678 in the request messages. Amazon also rec-
ommends products to Susan based on Web pages she has visited at Amazon in the 
past. If Susan also registers herself with Amazon—providing full name, e-mail 
address, postal address, and credit card information—Amazon can then include this 
information in its database, thereby associating Susan’s name with her identification 
number (and all of the pages she has visited at the site in the past!). This is how 
Amazon and other e-commerce sites provide “one-click shopping”—when Susan 
chooses to purchase an item during a subsequent visit, she doesn’t need to re-enter 
her name, credit card number, or address.

From this discussion we see that cookies can be used to identify a user. The first 
time a user visits a site, the user can provide a user identification (possibly his or her 
name). During the subsequent sessions, the browser passes a cookie header to the 
server, thereby identifying the user to the server. Cookies can thus be used to create 
a user session layer on top of stateless HTTP. For example, when a user logs in to a 
Web-based e-mail application (such as Hotmail), the browser sends cookie informa-
tion to the server, permitting the server to identify the user throughout the user’s ses-
sion with the application.

Although cookies often simplify the Internet shopping experience for the user, 
they are controversial because they can also be considered as an invasion of privacy. 
As we just saw, using a combination of cookies and user-supplied account informa-
tion, a Web site can learn a lot about a user and potentially sell this information to a 
third party. Cookie Central [Cookie Central 2012] includes extensive information 
on the cookie controversy.

EXCLUDE THIS SECTION:
2.2.5 Web Caching

A Web cache—also called a proxy server—is a network entity that satisfies HTTP 
requests on the behalf of an origin Web server. The Web cache has its own disk storage 
and keeps copies of recently requested objects in this storage. As shown in Figure 2.11, a 
user’s browser can be configured so that all of the user’s HTTP requests are first directed 
to the Web cache. Once a browser is configured, each browser request for an object is 
first directed to the Web cache. As an example, suppose a browser is requesting the 
object http://www.someschool.edu/campus.gif. Here is what happens:1. The browser establishes a TCP connection to the Web cache and sends an

HTTP request for the object to the Web cache.
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2. The Web cache checks to see if it has a copy of the object stored locally. If it
does, the Web cache returns the object within an HTTP response message to
the client browser.

3. If the Web cache does not have the object, the Web cache opens a TCP connec-
tion to the origin server, that is, to www.someschool.edu. The Web cache
then sends an HTTP request for the object into the cache-to-server TCP con-
nection. After receiving this request, the origin server sends the object within
an HTTP response to the Web cache.

4. When the Web cache receives the object, it stores a copy in its local storage and
sends a copy, within an HTTP response message, to the client browser (over the
existing TCP connection between the client browser and the Web cache).

Note that a cache is both a server and a client at the same time. When it receives
requests from and sends responses to a browser, it is a server. When it sends requests
to and receives responses from an origin server, it is a client.

Typically a Web cache is purchased and installed by an ISP. For example, a uni-
versity might install a cache on its campus network and configure all of the campus
browsers to point to the cache. Or a major residential ISP (such as AOL) might
install one or more caches in its network and preconfigure its shipped browsers to
point to the installed caches.

Web caching has seen deployment in the Internet for two reasons. First, a Web
cache can substantially reduce the response time for a client request, particularly if the
bottleneck bandwidth between the client and the origin server is much less than the bot-
tleneck bandwidth between the client and the cache. If there is a high-speed connection
between the client and the cache, as there often is, and if the cache has the requested
object, then the cache will be able to deliver the object rapidly to the client. Second, as
we will soon illustrate with an example, Web caches can substantially reduce traffic on
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an institution’s access link to the Internet. By reducing traffic, the institution (for exam-
ple, a company or a university) does not have to upgrade bandwidth as quickly, thereby
reducing costs. Furthermore, Web caches can substantially reduce Web traffic in the
Internet as a whole, thereby improving performance for all applications.

To gain a deeper understanding of the benefits of caches, let’s consider an exam-
ple in the context of Figure 2.12. This figure shows two networks—the institutional
network and the rest of the public Internet. The institutional network is a high-speed
LAN. A router in the institutional network and a router in the Internet are connected
by a 15 Mbps link. The origin servers are attached to the Internet but are located all
over the globe. Suppose that the average object size is 1 Mbits and that the average
request rate from the institution’s browsers to the origin servers is 15 requests per
second. Suppose that the HTTP request messages are negligibly small and thus cre-
ate no traffic in the networks or in the access link (from institutional router to Inter-
net router). Also suppose that the amount of time it takes from when the router on the
Internet side of the access link in Figure 2.12 forwards an HTTP request (within an
IP datagram) until it receives the response (typically within many IP datagrams) is
two seconds on average. Informally, we refer to this last delay as the “Internet delay.”
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The total response time—that is, the time from the browser’s request of an object
until its receipt of the object—is the sum of the LAN delay, the access delay (that is,
the delay between the two routers), and the Internet delay. Let’s now do a very crude
calculation to estimate this delay. The traffic intensity on the LAN (see Section 1.4.2) is

(15 requests/sec) � (1 Mbits/request)/(100 Mbps) = 0.15

whereas the traffic intensity on the access link (from the Internet router to institution
router) is

(15 requests/sec) � (1 Mbits/request)/(15 Mbps) = 1

A traffic intensity of 0.15 on a LAN typically results in, at most, tens of millisec-
onds of delay; hence, we can neglect the LAN delay. However, as discussed in
Section 1.4.2, as the traffic intensity approaches 1 (as is the case of the access link
in Figure 2.12), the delay on a link becomes very large and grows without bound.
Thus, the average response time to satisfy requests is going to be on the order of
minutes, if not more, which is unacceptable for the institution’s users. Clearly some-
thing must be done.

One possible solution is to increase the access rate from 15 Mbps to, say, 100
Mbps. This will lower the traffic intensity on the access link to 0.15, which trans-
lates to negligible delays between the two routers. In this case, the total response
time will roughly be two seconds, that is, the Internet delay. But this solution also
means that the institution must upgrade its access link from 15 Mbps to 100 Mbps, a
costly proposition.

Now consider the alternative solution of not upgrading the access link but
instead installing a Web cache in the institutional network. This solution is illus-
trated in Figure 2.13. Hit rates—the fraction of requests that are satisfied by a
cache—typically range from 0.2 to 0.7 in practice. For illustrative purposes, let’s
suppose that the cache provides a hit rate of 0.4 for this institution. Because the
clients and the cache are connected to the same high-speed LAN, 40 percent of
the requests will be satisfied almost immediately, say, within 10 milliseconds, by the
cache. Nevertheless, the remaining 60 percent of the requests still need to be satis-
fied by the origin servers. But with only 60 percent of the requested objects passing
through the access link, the traffic intensity on the access link is reduced from 1.0 to
0.6. Typically, a traffic intensity less than 0.8 corresponds to a small delay, say, tens
of milliseconds, on a 15 Mbps link. This delay is negligible compared with the two-
second Internet delay. Given these considerations, average delay therefore is

0.4 � (0.01 seconds) + 0.6 � (2.01 seconds)

which is just slightly greater than 1.2 seconds. Thus, this second solution provides an
even lower response time than the first solution, and it doesn’t require the institution
to upgrade its link to the Internet. The institution does, of course, have to purchase
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and install a Web cache. But this cost is low—many caches use public-domain soft-
ware that runs on inexpensive PCs.

Through the use of Content Distribution Networks (CDNs), Web caches are 
increasingly playing an important role in the Internet. A CDN company installs many 
geographically distributed caches throughout the Internet, thereby localizing much of 
the traffic. There are shared CDNs (such as Akamai and Limelight) and dedicated CDNs 
(such as Google and Microsoft). We will discuss CDNs in more detail in Chapter 7.

EXCLUDE THIS SECTION:
2.2.6 The Conditional GET

Although caching can reduce user-perceived response times, it introduces a new prob-
lem—the copy of an object residing in the cache may be stale. In other words, the 
object housed in the Web server may have been modified since the copy was cached 
at the client. Fortunately, HTTP has a mechanism that allows a cache to verify that its 
objects are up to date. This mechanism is called the conditional GET. An HTTP
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request message is a so-called conditional GET message if (1) the request message
uses the GET method and (2) the request message includes an If-Modified-
Since: header line.

To illustrate how the conditional GET operates, let’s walk through an example.
First, on the behalf of a requesting browser, a proxy cache sends a request message
to a Web server:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com

Second, the Web server sends a response message with the requested object to the
cache:

HTTP/1.1 200 OK
Date: Sat, 8 Oct 2011 15:39:29
Server: Apache/1.3.0 (Unix)
Last-Modified: Wed, 7 Sep 2011 09:23:24
Content-Type: image/gif

(data data data data data ...)

The cache forwards the object to the requesting browser but also caches the object
locally. Importantly, the cache also stores the last-modified date along with the
object. Third, one week later, another browser requests the same object via the
cache, and the object is still in the cache. Since this object may have been modified
at the Web server in the past week, the cache performs an up-to-date check by issu-
ing a conditional GET. Specifically, the cache sends:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com
If-modified-since: Wed, 7 Sep 2011 09:23:24

Note that the value of the If-modified-since: header line is exactly equal to
the value of the Last-Modified: header line that was sent by the server one
week ago. This conditional GET is telling the server to send the object only if the
object has been modified since the specified date. Suppose the object has not been
modified since 7 Sep 2011 09:23:24. Then, fourth, the Web server sends a response
message to the cache:

HTTP/1.1 304 Not Modified
Date: Sat, 15 Oct 2011 15:39:29
Server: Apache/1.3.0 (Unix)

(empty entity body)
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We see that in response to the conditional GET, the Web server still sends a response
message but does not include the requested object in the response message. Including
the requested object would only waste bandwidth and increase user-perceived response
time, particularly if the object is large. Note that this last response message has 304
Not Modified in the status line, which tells the cache that it can go ahead and for-
ward its (the proxy cache’s) cached copy of the object to the requesting browser.

This ends our discussion of HTTP, the first Internet protocol (an application-layer
protocol) that we’ve studied in detail. We’ve seen the format of HTTP messages and
the actions taken by the Web client and server as these messages are sent and received.
We’ve also studied a bit of the Web’s application infrastructure, including caches, cook-
ies, and back-end databases, all of which are tied in some way to the HTTP protocol.

2.3 File Transfer: FTP

In a typical FTP session, the user is sitting in front of one host (the local host)
and wants to transfer files to or from a remote host. In order for the user to 
access the remote account, the user must provide a user identification and a pass-
word. After providing this authorization information, the user can transfer files
from the local file system to the remote file system and vice versa. As shown in
Figure 2.14, the user interacts with FTP through an FTP user agent. The user first
provides the hostname of the remote host, causing the FTP client process in the
local host to establish a TCP connection with the FTP server process in the
remote host. The user then provides the user identification and password, which
are sent over the TCP connection as part of FTP commands. Once the server has
authorized the user, the user copies one or more files stored in the local file sys-
tem into the remote file system (or vice versa).
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HTTP and FTP are both file transfer protocols and have many common charac-
teristics; for example, they both run on top of TCP. However, the two application-layer
protocols have some important differences. The most striking difference is that FTP
uses two parallel TCP connections to transfer a file, a control connection and a data
connection. The control connection is used for sending control information between
the two hosts—information such as user identification, password, commands to
change remote directory, and commands to “put” and “get” files. The data connection
is used to actually send a file. Because FTP uses a separate control connection, FTP is
said to send its control information out-of-band. HTTP, as you recall, sends request
and response header lines into the same TCP connection that carries the transferred
file itself. For this reason, HTTP is said to send its control information in-band. In the
next section, we’ll see that SMTP, the main protocol for electronic mail, also sends
control information in-band. The FTP control and data connections are illustrated in
Figure 2.15.

When a user starts an FTP session with a remote host, the client side of FTP
(user) first initiates a control TCP connection with the server side (remote host) on
server port number 21. The client side of FTP sends the user identification and
password over this control connection. The client side of FTP also sends, over the
control connection, commands to change the remote directory. When the server
side receives a command for a file transfer over the control connection (either to,
or from, the remote host), the server side initiates a TCP data connection to the
client side. FTP sends exactly one file over the data connection and then closes the
data connection. If, during the same session, the user wants to transfer another file,
FTP opens another data connection. Thus, with FTP, the control connection
remains open throughout the duration of the user session, but a new data connec-
tion is created for each file transferred within a session (that is, the data connec-
tions are non-persistent).

Throughout a session, the FTP server must maintain state about the user. In par-
ticular, the server must associate the control connection with a specific user account,
and the server must keep track of the user’s current directory as the user wanders
about the remote directory tree. Keeping track of this state information for each
ongoing user session significantly constrains the total number of sessions that FTP
can maintain simultaneously. Recall that HTTP, on the other hand, is stateless—it
does not have to keep track of any user state.
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2.3.1 FTP Commands and Replies

We end this section with a brief discussion of some of the more common FTP com-
mands and replies. The commands, from client to server, and replies, from server to
client, are sent across the control connection in 7-bit ASCII format. Thus, like HTTP
commands, FTP commands are readable by people. In order to delineate successive
commands, a carriage return and line feed end each command. Each command con-
sists of four uppercase ASCII characters, some with optional arguments. Some of
the more common commands are given below:

• USER username: Used to send the user identification to the server.

• PASS password: Used to send the user password to the server.

• LIST: Used to ask the server to send back a list of all the files in the current
remote directory. The list of files is sent over a (new and non-persistent) data
connection rather than the control TCP connection.

• RETR filename: Used to retrieve (that is, get) a file from the current direc-
tory of the remote host. This command causes the remote host to initiate a data
connection and to send the requested file over the data connection.

• STOR filename: Used to store (that is, put) a file into the current directory
of the remote host.

There is typically a one-to-one correspondence between the command that the
user issues and the FTP command sent across the control connection. Each com-
mand is followed by a reply, sent from server to client. The replies are three-digit
numbers, with an optional message following the number. This is similar in struc-
ture to the status code and phrase in the status line of the HTTP response message.
Some typical replies, along with their possible messages, are as follows:

• 331 Username OK, password required

• 125 Data connection already open; transfer starting

• 425 Can’t open data connection

• 452 Error writing file

Readers who are interested in learning about the other FTP commands and replies
are encouraged to read RFC 959.

2.4 Electronic Mail in the Internet

Electronic mail has been around since the beginning of the Internet. It was the most
popular application when the Internet was in its infancy [Segaller 1998], and has
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become more and more elaborate and powerful over the years. It remains one of the
Internet’s most important and utilized applications.

As with ordinary postal mail, e-mail is an asynchronous communication
medium—people send and read messages when it is convenient for them, without
having to coordinate with other people’s schedules. In contrast with postal mail, elec-
tronic mail is fast, easy to distribute, and inexpensive. Modern e-mail has many pow-
erful features, including messages with attachments, hyperlinks, HTML-formatted
text, and embedded photos.

In this section, we examine the application-layer protocols that are at the heart
of Internet e-mail. But before we jump into an in-depth discussion of these proto-
cols, let’s take a high-level view of the Internet mail system and its key components.

Figure 2.16 presents a high-level view of the Internet mail system. We see from
this diagram that it has three major components: user agents, mail servers, and the
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Simple Mail Transfer Protocol (SMTP). We now describe each of these compo-
nents in the context of a sender, Alice, sending an e-mail message to a recipient,
Bob. User agents allow users to read, reply to, forward, save, and compose mes-
sages. Microsoft Outlook and Apple Mail are examples of user agents for e-mail.
When Alice is finished composing her message, her user agent sends the message to
her mail server, where the message is placed in the mail server’s outgoing message
queue. When Bob wants to read a message, his user agent retrieves the message
from his mailbox in his mail server.

Mail servers form the core of the e-mail infrastructure. Each recipient, such as
Bob, has a mailbox located in one of the mail servers. Bob’s mailbox manages and
maintains the messages that have been sent to him. A typical message starts its jour-
ney in the sender’s user agent, travels to the sender’s mail server, and 
travels to the recipient’s mail server, where it is deposited in the recipient’s mailbox.
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In December 1995, just a few years after the Web was “invented,” Sabeer Bhatia
and Jack Smith visited the Internet venture capitalist Draper Fisher Jurvetson and
proposed developing a free Web-based e-mail system. The idea was to give a free
e-mail account to anyone who wanted one, and to make the accounts accessible
from the Web. In exchange for 15 percent of the company, Draper Fisher
Jurvetson financed Bhatia and Smith, who formed a company called Hotmail.
With three full-time people and 14 part-time people who worked for stock options,
they were able to develop and launch the service in July 1996. Within a month
after launch, they had 100,000 subscribers. In December 1997, less than 18
months after launching the service, Hotmail had over 12 million subscribers and
was acquired by Microsoft, reportedly for $400 million. The success of Hotmail is
often attributed to its “first-mover advantage” and to the intrinsic “viral marketing”
of e-mail. (Perhaps some of the students reading this book will be among the new
entrepreneurs who conceive and develop first-mover Internet services with inherent
viral marketing.)

Web e-mail continues to thrive, becoming more sophisticated and powerful every
year. One of the most popular services today is Google’s gmail, which offers giga-
bytes of free storage, advanced spam filtering and virus detection, e-mail encryption
(using SSL), mail fetching from third-party e-mail services, and a search-oriented inter-
face. Asynchronous messaging within social networks, such as Facebook, has also
become popular in recent years.
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When Bob wants to access the messages in his mailbox, the mail server 
containing his mailbox authenticates Bob (with usernames and passwords). Alice’s
mail server must also deal with failures in Bob’s mail server. If Alice’s server can-
not deliver mail to Bob’s server, Alice’s server holds the message in a message
queue and attempts to transfer the message later. Reattempts are often done every
30 minutes or so; if there is no success after several days, the server removes the
message and notifies the sender (Alice) with an e-mail message.

SMTP is the principal application-layer protocol for Internet electronic mail. It
uses the reliable data transfer service of TCP to transfer mail from the sender’s mail
server to the recipient’s mail server. As with most application-layer protocols,
SMTP has two sides: a client side, which executes on the sender’s mail server, and a
server side, which executes on the recipient’s mail server. Both the client and server
sides of SMTP run on every mail server. When a mail server sends mail to other
mail servers, it acts as an SMTP client. When a mail server receives mail from other
mail servers, it acts as an SMTP server.

2.4.1 SMTP

SMTP, defined in RFC 5321, is at the heart of Internet electronic mail. As men-
tioned above, SMTP transfers messages from senders’ mail servers to the recipi-
ents’ mail servers. SMTP is much older than HTTP. (The original SMTP RFC
dates back to 1982, and SMTP was around long before that.) Although SMTP has
numerous wonderful qualities, as evidenced by its ubiquity in the Internet, it is
nevertheless a legacy technology that possesses certain archaic characteristics.
For example, it restricts the body (not just the headers) of all mail messages to
simple 7-bit ASCII. This restriction made sense in the early 1980s when trans-
mission capacity was scarce and no one was e-mailing large attachments or large
image, audio, or video files. But today, in the multimedia era, the 7-bit ASCII
restriction is a bit of a pain—it requires binary multimedia data to be encoded to
ASCII before being sent over SMTP; and it requires the corresponding ASCII
message to be decoded back to binary after SMTP transport. Recall from Section
2.2 that HTTP does not require multimedia data to be ASCII encoded before
transfer.

To illustrate the basic operation of SMTP, let’s walk through a common sce-
nario. Suppose Alice wants to send Bob a simple ASCII message.

1. Alice invokes her user agent for e-mail, provides Bob’s e-mail address (for
example, bob@someschool.edu), composes a message, and instructs the
user agent to send the message.

2. Alice’s user agent sends the message to her mail server, where it is placed in a
message queue.
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3. The client side of SMTP, running on Alice’s mail server, sees the message in
the message queue. It opens a TCP connection to an SMTP server, running on
Bob’s mail server.

4. After some initial SMTP handshaking, the SMTP client sends Alice’s message
into the TCP connection.

5. At Bob’s mail server, the server side of SMTP receives the message. Bob’s
mail server then places the message in Bob’s mailbox.

6. Bob invokes his user agent to read the message at his convenience.

The scenario is summarized in Figure 2.17.
It is important to observe that SMTP does not normally use intermediate mail

servers for sending mail, even when the two mail servers are located at opposite
ends of the world. If Alice’s server is in Hong Kong and Bob’s server is in St. Louis,
the TCP connection is a direct connection between the Hong Kong and St. Louis
servers. In particular, if Bob’s mail server is down, the message remains in Alice’s
mail server and waits for a new attempt—the message does not get placed in some
intermediate mail server.

Let’s now take a closer look at how SMTP transfers a message from a send-
ing mail server to a receiving mail server. We will see that the SMTP protocol has
many similarities with protocols that are used for face-to-face human interaction.
First, the client SMTP (running on the sending mail server host) has TCP estab-
lish a connection to port 25 at the server SMTP (running on the receiving mail
server host). If the server is down, the client tries again later. Once this connec-
tion is established, the server and client perform some application-layer
handshaking—just as humans often introduce themselves before transferring
information from one to another, SMTP clients and servers introduce themselves
before transferring information. During this SMTP handshaking phase, the
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SMTP client indicates the e-mail address of the sender (the person who generated
the message) and the e-mail address of the recipient. Once the SMTP client and
server have introduced themselves to each other, the client sends the message.
SMTP can count on the reliable data transfer service of TCP to get the message
to the server without errors. The client then repeats this process over the same
TCP connection if it has other messages to send to the server; otherwise, it
instructs TCP to close the connection.

Let’s next take a look at an example transcript of messages exchanged
between an SMTP client (C) and an SMTP server (S). The hostname of the client
is crepes.fr and the hostname of the server is hamburger.edu. The
ASCII text lines prefaced with C: are exactly the lines the client sends into its
TCP socket, and the ASCII text lines prefaced with S: are exactly the lines the
server sends into its TCP socket. The following transcript begins as soon as the
TCP connection is established.

S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr ... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with “.” on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

In the example above, the client sends a message (“Do you like ketchup?
How about pickles?”) from mail server crepes.fr to mail server ham-
burger.edu. As part of the dialogue, the client issued five commands: HELO (an
abbreviation for HELLO), MAIL FROM, RCPT TO, DATA, and QUIT. These com-
mands are self-explanatory. The client also sends a line consisting of a single period,
which indicates the end of the message to the server. (In ASCII jargon, each mes-
sage ends with CRLF.CRLF, where CR and LF stand for carriage return and line
feed, respectively.) The server issues replies to each command, with each reply hav-
ing a reply code and some (optional) English-language explanation. We mention
here that SMTP uses persistent connections: If the sending mail server has several
messages to send to the same receiving mail server, it can send all of the messages
over the same TCP connection. For each message, the client begins the process with
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a new MAIL FROM: crepes.fr, designates the end of message with an isolated
period, and issues QUIT only after all messages have been sent.

It is highly recommended that you use Telnet to carry out a direct dialogue with
an SMTP server. To do this, issue

telnet serverName 25

where serverName is the name of a local mail server. When you do this, you are
simply establishing a TCP connection between your local host and the mail server.
After typing this line, you should immediately receive the 220 reply from the
server. Then issue the SMTP commands HELO, MAIL FROM, RCPT TO, DATA,
CRLF.CRLF, and QUIT at the appropriate times. It is also highly recommended
that you do Programming Assignment 3 at the end of this chapter. In that assign-
ment, you’ll build a simple user agent that implements the client side of SMTP.
It will allow you to send an e-mail message to an arbitrary recipient via a local
mail server.

2.4.2 Comparison with HTTP

Let’s now briefly compare SMTP with HTTP. Both protocols are used to transfer
files from one host to another: HTTP transfers files (also called objects) from a Web
server to a Web client (typically a browser); SMTP transfers files (that is, e-mail
messages) from one mail server to another mail server. When transferring the files,
both persistent HTTP and SMTP use persistent connections. Thus, the two protocols
have common characteristics. However, there are important differences. First,
HTTP is mainly a pull protocol—someone loads information on a Web server and
users use HTTP to pull the information from the server at their convenience. In par-
ticular, the TCP connection is initiated by the machine that wants to receive the file.
On the other hand, SMTP is primarily a push protocol—the sending mail server
pushes the file to the receiving mail server. In particular, the TCP connection is ini-
tiated by the machine that wants to send the file.

A second difference, which we alluded to earlier, is that SMTP requires
each message, including the body of each message, to be in 7-bit ASCII format.
If the message contains characters that are not 7-bit ASCII (for example, French
characters with accents) or contains binary data (such as an image file), then the
message has to be encoded into 7-bit ASCII. HTTP data does not impose this
restriction.

A third important difference concerns how a document consisting of text and
images (along with possibly other media types) is handled. As we learned in Section
2.2, HTTP encapsulates each object in its own HTTP response message. Internet
mail places all of the message’s objects into one message.
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2.4.3 Mail Message Formats

When Alice writes an ordinary snail-mail letter to Bob, she may include all kinds of
peripheral header information at the top of the letter, such as Bob’s address, her own
return address, and the date. Similarly, when an e-mail message is sent from one per-
son to another, a header containing peripheral information precedes the body of the
message itself. This peripheral information is contained in a series of header lines,
which are defined in RFC 5322. The header lines and the body of the message are
separated by a blank line (that is, by CRLF). RFC 5322 specifies the exact format for
mail header lines as well as their semantic interpretations. As with HTTP, each header
line contains readable text, consisting of a keyword followed by a colon followed by
a value. Some of the keywords are required and others are optional. Every header
must have a From: header line and a To: header line; a header may include a Sub-
ject: header line as well as other optional header lines. It is important to note that
these header lines are different from the SMTP commands we studied in Section 2.4.1
(even though they contain some common words such as “from” and “to”). The com-
mands in that section were part of the SMTP handshaking protocol; the header lines
examined in this section are part of the mail message itself.

A typical message header looks like this:

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Searching for the meaning of life.

After the message header, a blank line follows; then the message body (in ASCII)
follows. You should use Telnet to send a message to a mail server that contains some
header lines, including the Subject: header line. To do this, issue telnet
serverName 25, as discussed in Section 2.4.1.

2.4.4 Mail Access Protocols

Once SMTP delivers the message from Alice’s mail server to Bob’s mail server, the
message is placed in Bob’s mailbox. Throughout this discussion we have tacitly
assumed that Bob reads his mail by logging onto the server host and then executing
a mail reader that runs on that host. Up until the early 1990s this was the standard
way of doing things. But today, mail access uses a client-server architecture—the
typical user reads e-mail with a client that executes on the user’s end system, for
example, on an office PC, a laptop, or a smartphone. By executing a mail client on a
local PC, users enjoy a rich set of features, including the ability to view multimedia
messages and attachments.

Given that Bob (the recipient) executes his user agent on his local PC, it is nat-
ural to consider placing a mail server on his local PC as well. With this approach,
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Alice’s mail server would dialogue directly with Bob’s PC. There is a problem with
this approach, however. Recall that a mail server manages mailboxes and runs the
client and server sides of SMTP. If Bob’s mail server were to reside on his local PC,
then Bob’s PC would have to remain always on, and connected to the Internet, in
order to receive new mail, which can arrive at any time. This is impractical for many
Internet users. Instead, a typical user runs a user agent on the local PC but accesses
its mailbox stored on an always-on shared mail server. This mail server is shared
with other users and is typically maintained by the user’s ISP (for example, univer-
sity or company).

Now let’s consider the path an e-mail message takes when it is sent from Alice
to Bob. We just learned that at some point along the path the e-mail message needs
to be deposited in Bob’s mail server. This could be done simply by having Alice’s
user agent send the message directly to Bob’s mail server. And this could be done
with SMTP—indeed, SMTP has been designed for pushing e-mail from one host to
another. However, typically the sender’s user agent does not dialogue directly with
the recipient’s mail server. Instead, as shown in Figure 2.18, Alice’s user agent uses
SMTP to push the e-mail message into her mail server, then Alice’s mail server uses
SMTP (as an SMTP client) to relay the e-mail message to Bob’s mail server. Why
the two-step procedure? Primarily because without relaying through Alice’s mail
server, Alice’s user agent doesn’t have any recourse to an unreachable destination
mail server. By having Alice first deposit the e-mail in her own mail server, Alice’s
mail server can repeatedly try to send the message to Bob’s mail server, say every
30 minutes, until Bob’s mail server becomes operational. (And if Alice’s mail server
is down, then she has the recourse of complaining to her system administrator!) The
SMTP RFC defines how the SMTP commands can be used to relay a message
across multiple SMTP servers.

But there is still one missing piece to the puzzle! How does a recipient like Bob,
running a user agent on his local PC, obtain his messages, which are sitting in a mail
server within Bob’s ISP? Note that Bob’s user agent can’t use SMTP to obtain the
messages because obtaining the messages is a pull operation, whereas SMTP is a
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push protocol. The puzzle is completed by introducing a special mail access proto-
col that transfers messages from Bob’s mail server to his local PC. There are cur-
rently a number of popular mail access protocols, including Post Office
Protocol—Version 3 (POP3), Internet Mail Access Protocol (IMAP), and HTTP.

Figure 2.18 provides a summary of the protocols that are used for Internet mail:
SMTP is used to transfer mail from the sender’s mail server to the recipient’s mail
server; SMTP is also used to transfer mail from the sender’s user agent to the
sender’s mail server. A mail access protocol, such as POP3, is used to transfer mail
from the recipient’s mail server to the recipient’s user agent.

POP3

POP3 is an extremely simple mail access protocol. It is defined in [RFC 1939], which
is short and quite readable. Because the protocol is so simple, its functionality is
rather limited. POP3 begins when the user agent (the client) opens a TCP connec-
tion to the mail server (the server) on port 110. With the TCP connection estab-
lished, POP3 progresses through three phases: authorization, transaction, and update.
During the first phase, authorization, the user agent sends a username and a password
(in the clear) to authenticate the user. During the second phase, transaction, the user
agent retrieves messages; also during this phase, the user agent can mark messages
for deletion, remove deletion marks, and obtain mail statistics. The third phase,
update, occurs after the client has issued the quit command, ending the POP3
session; at this time, the mail server deletes the messages that were marked for
deletion.

In a POP3 transaction, the user agent issues commands, and the server responds
to each command with a reply. There are two possible responses: +OK (sometimes
followed by server-to-client data), used by the server to indicate that the previous
command was fine; and -ERR, used by the server to indicate that something was
wrong with the previous command.

The authorization phase has two principal commands: user <username> and
pass <password>. To illustrate these two commands, we suggest that you Telnet
directly into a POP3 server, using port 110, and issue these commands. Suppose that
mailServer is the name of your mail server. You will see something like:

telnet mailServer 110
+OK POP3 server ready
user bob
+OK
pass hungry
+OK user successfully logged on

If you misspell a command, the POP3 server will reply with an -ERR message.
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Now let’s take a look at the transaction phase. A user agent using POP3 can
often be configured (by the user) to “download and delete” or to “download and
keep.” The sequence of commands issued by a POP3 user agent depends on which
of these two modes the user agent is operating in. In the download-and-delete mode,
the user agent will issue the list, retr, and dele commands. As an example,
suppose the user has two messages in his or her mailbox. In the dialogue below, C:
(standing for client) is the user agent and S: (standing for server) is the mail server.
The transaction will look something like:

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: (blah blah ...
S: .................
S: ..........blah)
S: .
C: dele 1
C: retr 2
S: (blah blah ...
S: .................
S: ..........blah)
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

The user agent first asks the mail server to list the size of each of the stored mes-
sages. The user agent then retrieves and deletes each message from the server. Note
that after the authorization phase, the user agent employed only four commands:
list, retr, dele, and quit. The syntax for these commands is defined in RFC
1939. After processing the quit command, the POP3 server enters the update
phase and removes messages 1 and 2 from the mailbox.

A problem with this download-and-delete mode is that the recipient, Bob, may
be nomadic and may want to access his mail messages from multiple machines, for
example, his office PC, his home PC, and his portable computer. The download-
and-delete mode partitions Bob’s mail messages over these three machines; in par-
ticular, if Bob first reads a message on his office PC, he will not be able to reread
the message from his portable at home later in the evening. In the download-and-
keep mode, the user agent leaves the messages on the mail server after downloading
them. In this case, Bob can reread messages from different machines; he can access
a message from work and access it again later in the week from home.
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During a POP3 session between a user agent and the mail server, the POP3
server maintains some state information; in particular, it keeps track of which user
messages have been marked deleted. However, the POP3 server does not carry state
information across POP3 sessions. This lack of state information across sessions
greatly simplifies the implementation of a POP3 server.

IMAP

With POP3 access, once Bob has downloaded his messages to the local machine,
he can create mail folders and move the downloaded messages into the folders.
Bob can then delete messages, move messages across folders, and search for
messages (by sender name or subject). But this paradigm—namely, folders and
messages in the local machine—poses a problem for the nomadic user, who
would prefer to maintain a folder hierarchy on a remote server that can be
accessed from any computer. This is not possible with POP3—the POP3 protocol
does not provide any means for a user to create remote folders and assign mes-
sages to folders.

To solve this and other problems, the IMAP protocol, defined in [RFC 3501],
was invented. Like POP3, IMAP is a mail access protocol. It has many more fea-
tures than POP3, but it is also significantly more complex. (And thus the client and
server side implementations are significantly more complex.)

An IMAP server will associate each message with a folder; when a message first
arrives at the server, it is associated with the recipient’s INBOX folder. The recipient
can then move the message into a new, user-created folder, read the message, delete
the message, and so on. The IMAP protocol provides commands to allow users to
create folders and move messages from one folder to another. IMAP also provides
commands that allow users to search remote folders for messages matching specific
criteria. Note that, unlike POP3, an IMAP server maintains user state information
across IMAP sessions—for example, the names of the folders and which messages
are associated with which folders.

Another important feature of IMAP is that it has commands that permit a user
agent to obtain components of messages. For example, a user agent can obtain just
the message header of a message or just one part of a multipart MIME message.
This feature is useful when there is a low-bandwidth connection (for example, a
slow-speed modem link) between the user agent and its mail server. With a low-
bandwidth connection, the user may not want to download all of the messages in
its mailbox, particularly avoiding long messages that might contain, for example,
an audio or video clip.

Web-Based E-Mail

More and more users today are sending and accessing their e-mail through their Web
browsers. Hotmail introduced Web-based access in the mid 1990s. Now Web-based
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e-mail is also provided by Google, Yahoo!, as well as just about every major univer-
sity and corporation. With this service, the user agent is an ordinary Web browser,
and the user communicates with its remote mailbox via HTTP. When a recipient,
such as Bob, wants to access a message in his mailbox, the e-mail message is sent
from Bob’s mail server to Bob’s browser using the HTTP protocol rather than the
POP3 or IMAP protocol. When a sender, such as Alice, wants to send an e-mail
message, the e-mail message is sent from her browser to her mail server over HTTP
rather than over SMTP. Alice’s mail server, however, still sends messages to, and
receives messages from, other mail servers using SMTP.

2.5 DNS—The Internet’s Directory Service

We human beings can be identified in many ways. For example, we can be identi-
fied by the names that appear on our birth certificates. We can be identified by our
social security numbers. We can be identified by our driver’s license numbers.
Although each of these identifiers can be used to identify people, within a given
context one identifier may be more appropriate than another. For example, the com-
puters at the IRS (the infamous tax-collecting agency in the United States) prefer to
use fixed-length social security numbers rather than birth certificate names. On the
other hand, ordinary people prefer the more mnemonic birth certificate names rather
than social security numbers. (Indeed, can you imagine saying, “Hi. My name is
132-67-9875. Please meet my husband, 178-87-1146.”)

Just as humans can be identified in many ways, so too can Internet hosts. One identi-
fier for a host is its hostname. Hostnames—such as cnn.com, www.yahoo.
com, gaia.cs.umass.edu, and cis.poly.edu—are mnemonic and are there-
fore appreciated by humans. However, hostnames provide little, if any, information about
the location within the Internet of the host. (A hostname such as www.eurecom.fr,
which ends with the country code .fr, tells us that the host is probably in France, but
doesn’t say much more.) Furthermore, because hostnames can consist of variable-
length alphanumeric characters, they would be difficult to process by routers. For these
reasons, hosts are also identified by so-called IP addresses.

We discuss IP addresses in some detail in Chapter 4, but it is useful to say a few
brief words about them now. An IP address consists of four bytes and has a rigid
hierarchical structure. An IP address looks like 121.7.106.83, where each
period separates one of the bytes expressed in decimal notation from 0 to 255. An IP
address is hierarchical because as we scan the address from left to right, we obtain
more and more specific information about where the host is located in the Internet
(that is, within which network, in the network of networks). Similarly, when we scan
a postal address from bottom to top, we obtain more and more specific information
about where the addressee is located.
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2.5.1 Services Provided by DNS

We have just seen that there are two ways to identify a host—by a hostname and by
an IP address. People prefer the more mnemonic hostname identifier, while routers
prefer fixed-length, hierarchically structured IP addresses. In order to reconcile
these preferences, we need a directory service that translates hostnames to IP
addresses. This is the main task of the Internet’s domain name system (DNS). The
DNS is (1) a distributed database implemented in a hierarchy of DNS servers, and
(2) an application-layer protocol that allows hosts to query the distributed database.
The DNS servers are often UNIX machines running the Berkeley Internet Name
Domain (BIND) software [BIND 2012]. The DNS protocol runs over UDP and uses
port 53.

DNS is commonly employed by other application-layer protocols—including
HTTP, SMTP, and FTP—to translate user-supplied hostnames to IP addresses. As
an example, consider what happens when a browser (that is, an HTTP client),
running on some user’s host, requests the URL www.someschool.edu/
index.html. In order for the user’s host to be able to send an HTTP request mes-
sage to the Web server www.someschool.edu, the user’s host must first obtain
the IP address of www.someschool.edu. This is done as follows.

1. The same user machine runs the client side of the DNS application.
2. The browser extracts the hostname, www.someschool.edu, from the URL

and passes the hostname to the client side of the DNS application.
3. The DNS client sends a query containing the hostname to a DNS server.
4. The DNS client eventually receives a reply, which includes the IP address for

the hostname.
5. Once the browser receives the IP address from DNS, it can initiate a TCP con-

nection to the HTTP server process located at port 80 at that IP address.

We see from this example that DNS adds an additional delay—sometimes substan-
tial—to the Internet applications that use it. Fortunately, as we discuss below, the
desired IP address is often cached in a “nearby” DNS server, which helps to reduce
DNS network traffic as well as the average DNS delay.

DNS provides a few other important services in addition to translating host-
names to IP addresses:

• Host aliasing. A host with a complicated hostname can have one or more alias
names. For example, a hostname such as relay1.west-coast.enter-
prise.com could have, say, two aliases such as enterprise.com and
www.enterprise.com. In this case, the hostname relay1.west-
coast.enterprise.com is said to be a canonical hostname. Alias host-
names, when present, are typically more mnemonic than canonical hostnames.
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DNS can be invoked by an application to obtain the canonical hostname for a
supplied alias hostname as well as the IP address of the host.

• Mail server aliasing. For obvious reasons, it is highly desirable that e-mail
addresses be mnemonic. For example, if Bob has an account with Hotmail, Bob’s
e-mail address might be as simple as bob@hotmail.com. However, the host-
name of the Hotmail mail server is more complicated and much less mnemonic
than simply hotmail.com (for example, the canonical hostname might be
something like relay1.west-coast.hotmail.com). DNS can be
invoked by a mail application to obtain the canonical hostname for a supplied
alias hostname as well as the IP address of the host. In fact, the MX record (see
below) permits a company’s mail server and Web server to have identical
(aliased) hostnames; for example, a company’s Web server and mail server can
both be called enterprise.com.

• Load distribution. DNS is also used to perform load distribution among repli-
cated servers, such as replicated Web servers. Busy sites, such as cnn.com, are
replicated over multiple servers, with each server running on a different end sys-
tem and each having a different IP address. For replicated Web servers, a set of
IP addresses is thus associated with one canonical hostname. The DNS database
contains this set of IP addresses. When clients make a DNS query for a name
mapped to a set of addresses, the server responds with the entire set of IP
addresses, but rotates the ordering of the addresses within each reply. Because a
client typically sends its HTTP request message to the IP address that is listed
first in the set, DNS rotation distributes the traffic among the replicated servers.
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Like HTTP, FTP, and SMTP, the DNS protocol is an application-layer protocol since it (1) runs
between communicating end systems using the client-server paradigm and (2) relies on an
underlying end-to-end transport protocol to transfer DNS messages between communicating
end systems. In another sense, however, the role of the DNS is quite different from Web,
file transfer, and e-mail applications. Unlike these applications, the DNS is not an applica-
tion with which a user directly interacts. Instead, the DNS provides a core Internet func-
tion—namely, translating hostnames to their underlying IP addresses, for user applications
and other software in the Internet. We noted in Section 1.2 that much of the complexity in
the Internet architecture is located at the “edges” of the network. The DNS, which imple-
ments the critical name-to-address translation process using clients and servers located at
the edge of the network, is yet another example of that design philosophy.
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DNS rotation is also used for e-mail so that multiple mail servers can have the
same alias name. Also, content distribution companies such as Akamai have used
DNS in more sophisticated ways [Dilley 2002] to provide Web content distribu-
tion (see Chapter 7).

The DNS is specified in RFC 1034 and RFC 1035, and updated in several
additional RFCs. It is a complex system, and we only touch upon key aspects of
its operation here. The interested reader is referred to these RFCs and the book
by Albitz and Liu [Albitz 1993]; see also the retrospective paper [Mockapetris
1988], which provides a nice description of the what and why of DNS, and
[Mockapetris 2005].

2.5.2 Overview of How DNS Works

We now present a high-level overview of how DNS works. Our discussion will
focus on the hostname-to-IP-address translation service.

Suppose that some application (such as a Web browser or a mail reader) run-
ning in a user’s host needs to translate a hostname to an IP address. The applica-
tion will invoke the client side of DNS, specifying the hostname that needs to be
translated. (On many UNIX-based machines, gethostbyname() is the func-
tion call that an application calls in order to perform the translation.) DNS in the
user’s host then takes over, sending a query message into the network. All DNS
query and reply messages are sent within UDP datagrams to port 53. After a delay,
ranging from milliseconds to seconds, DNS in the user’s host receives a DNS
reply message that provides the desired mapping. This mapping is then passed to
the invoking application. Thus, from the perspective of the invoking application
in the user’s host, DNS is a black box providing a simple, straightforward transla-
tion service. But in fact, the black box that implements the service is complex,
consisting of a large number of DNS servers distributed around the globe, as well
as an application-layer protocol that specifies how the DNS servers and querying
hosts communicate.

A simple design for DNS would have one DNS server that contains all the map-
pings. In this centralized design, clients simply direct all queries to the single DNS
server, and the DNS server responds directly to the querying clients. Although the
simplicity of this design is attractive, it is inappropriate for today’s Internet, with its
vast (and growing) number of hosts. The problems with a centralized design
include:

• A single point of failure. If the DNS server crashes, so does the entire Internet!

• Traffic volume. A single DNS server would have to handle all DNS queries (for
all the HTTP requests and e-mail messages generated from hundreds of millions
of hosts).
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• Distant centralized database. A single DNS server cannot be “close to” all the
querying clients. If we put the single DNS server in New York City, then all
queries from Australia must travel to the other side of the globe, perhaps over
slow and congested links. This can lead to significant delays.

• Maintenance. The single DNS server would have to keep records for all Internet
hosts. Not only would this centralized database be huge, but it would have to be
updated frequently to account for every new host.

In summary, a centralized database in a single DNS server simply doesn’t scale.
Consequently, the DNS is distributed by design. In fact, the DNS is a wonderful
example of how a distributed database can be implemented in the Internet.

A Distributed, Hierarchical Database

In order to deal with the issue of scale, the DNS uses a large number of servers,
organized in a hierarchical fashion and distributed around the world. No single DNS
server has all of the mappings for all of the hosts in the Internet. Instead, the map-
pings are distributed across the DNS servers. To a first approximation, there are
three classes of DNS servers—root DNS servers, top-level domain (TLD) DNS
servers, and authoritative DNS servers—organized in a hierarchy as shown in Fig-
ure 2.19. To understand how these three classes of servers interact, suppose a DNS
client wants to determine the IP address for the hostname www.amazon.com. To
a first approximation, the following events will take place. The client first contacts
one of the root servers, which returns IP addresses for TLD servers for the top-level
domain com. The client then contacts one of these TLD servers, which returns the
IP address of an authoritative server for amazon.com. Finally, the client contacts
one of the authoritative servers for amazon.com, which returns the IP address
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for the hostname www.amazon.com. We’ll soon examine this DNS lookup
process in more detail. But let’s first take a closer look at these three classes of
DNS servers:

• Root DNS servers. In the Internet there are 13 root DNS servers (labeled A
through M), most of which are located in North America. An October 2006 map
of the root DNS servers is shown in Figure 2.20; a list of the current root DNS
servers is available via [Root-servers 2012]. Although we have referred to each
of the 13 root DNS servers as if it were a single server, each “server” is actually
a network of replicated servers, for both security and reliability purposes. All
together, there are 247 root servers as of fall 2011.

• Top-level domain (TLD) servers. These servers are responsible for top-level
domains such as com, org, net, edu, and gov, and all of the country top-level domains
such as uk, fr, ca, and jp. The company Verisign Global Registry Services
maintains the TLD servers for the com top-level domain, and the company
Educause maintains the TLD servers for the edu top-level domain. See [IANA
TLD 2012] for a list of all top-level domains.

• Authoritative DNS servers. Every organization with publicly accessible hosts
(such as Web servers and mail servers) on the Internet must provide publicly acces-
sible DNS records that map the names of those hosts to IP addresses. An organiza-
tion’s authoritative DNS server houses these DNS records. An organization can
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choose to implement its own authoritative DNS server to hold these records; alter-
natively, the organization can pay to have these records stored in an authoritative
DNS server of some service provider. Most universities and large companies
implement and maintain their own primary and secondary (backup) authoritative
DNS server.

The root, TLD, and authoritative DNS servers all belong to the hierarchy of
DNS servers, as shown in Figure 2.19. There is another important type of DNS
server called the local DNS server. A local DNS server does not strictly belong to
the hierarchy of servers but is nevertheless central to the DNS architecture. Each
ISP—such as a university, an academic department, an employee’s company, or a
residential ISP—has a local DNS server (also called a default name server). When a
host connects to an ISP, the ISP provides the host with the IP addresses of one or
more of its local DNS servers (typically through DHCP, which is discussed in Chap-
ter 4). You can easily determine the IP address of your local DNS server by access-
ing network status windows in Windows or UNIX. A host’s local DNS server is
typically “close to” the host. For an institutional ISP, the local DNS server may be
on the same LAN as the host; for a residential ISP, it is typically separated from the
host by no more than a few routers. When a host makes a DNS query, the query is
sent to the local DNS server, which acts a proxy, forwarding the query into the DNS
server hierarchy, as we’ll discuss in more detail below.

Let’s take a look at a simple example. Suppose the host cis.poly.edu
desires the IP address of gaia.cs.umass.edu. Also suppose that Polytechnic’s
local DNS server is called dns.poly.edu and that an authoritative DNS server
for gaia.cs.umass.edu is called dns.umass.edu. As shown in Figure
2.21, the host cis.poly.edu first sends a DNS query message to its local DNS
server, dns.poly.edu. The query message contains the hostname to be trans-
lated, namely, gaia.cs.umass.edu. The local DNS server forwards the query
message to a root DNS server. The root DNS server takes note of the edu suffix and
returns to the local DNS server a list of IP addresses for TLD servers responsible for
edu. The local DNS server then resends the query message to one of these TLD
servers. The TLD server takes note of the umass.edu suffix and responds with the
IP address of the authoritative DNS server for the University of Massachusetts,
namely, dns.umass.edu. Finally, the local DNS server resends the query
message directly to dns.umass.edu, which responds with the IP address of
gaia.cs.umass.edu. Note that in this example, in order to obtain the mapping
for one hostname, eight DNS messages were sent: four query messages and four
reply messages! We’ll soon see how DNS caching reduces this query traffic.

Our previous example assumed that the TLD server knows the authoritative
DNS server for the hostname. In general this not always true. Instead, the TLD server
may know only of an intermediate DNS server, which in turn knows the authoritative
DNS server for the hostname. For example, suppose again that the University of
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Massachusetts has a DNS server for the university, called dns.umass.edu. Also
suppose that each of the departments at the University of Massachusetts has its own
DNS server, and that each departmental DNS server is authoritative for all hosts in
the department. In this case, when the intermediate DNS server, dns.umass.edu,
receives a query for a host with a hostname ending with cs.umass.edu, it returns
to dns.poly.edu the IP address of dns.cs.umass.edu, which is authorita-
tive for all hostnames ending with cs.umass.edu. The local DNS server
dns.poly.edu then sends the query to the authoritative DNS server, which
returns the desired mapping to the local DNS server, which in turn returns the map-
ping to the requesting host. In this case, a total of 10 DNS messages are sent!

The example shown in Figure 2.21 makes use of both recursive queries and
iterative queries. The query sent from cis.poly.edu to dns.poly.edu is a
recursive query, since the query asks dns.poly.edu to obtain the mapping on its
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behalf. But the subsequent three queries are iterative since all of the replies are
directly returned to dns.poly.edu. In theory, any DNS query can be iterative or
recursive. For example, Figure 2.22 shows a DNS query chain for which all of 
the queries are recursive. In practice, the queries typically follow the pattern in 
Figure 2.21: The query from the requesting host to the local DNS server is recur-
sive, and the remaining queries are iterative.

DNS Caching

Our discussion thus far has ignored DNS caching, a critically important feature of the
DNS system. In truth, DNS extensively exploits DNS caching in order to improve 
the delay performance and to reduce the number of DNS messages ricocheting around
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the Internet. The idea behind DNS caching is very simple. In a query chain, when a 
DNS server receives a DNS reply (containing, for example, a mapping from a host-
name to an IP address), it can cache the mapping in its local memory. For example, 
in Figure 2.21, each time the local DNS server dns.poly.edu receives a reply 
from some DNS server, it can cache any of the information contained in the reply. If a 
hostname/IP address pair is cached in a DNS server and another query arrives to the 
DNS server for the same hostname, the DNS server can provide the desired IP address, 
even if it is not authoritative for the hostname. Because hosts and mappings between 
hostnames and IP addresses are by no means permanent, DNS servers discard cached 
information after a period of time (often set to two days).

As an example, suppose that a host apricot.poly.edu queries 
dns.poly.edu for the IP address for the hostname cnn.com. Furthermore, sup-
pose that a few hours later, another Polytechnic University host, say, kiwi.poly.fr, 
also queries dns.poly.edu with the same hostname. Because of caching, the local 
DNS server will be able to immediately return the IP address of cnn.com to this sec-
ond requesting host without having to query any other DNS servers. A local DNS 
server can also cache the IP addresses of TLD servers, thereby allowing the local DNS 
server to bypass the root DNS servers in a query chain (this often happens).

EXCLUDE THIS SECTION:
2.5.3 DNS Records and Messages

The DNS servers that together implement the DNS distributed database store 
resource records (RRs), including RRs that provide hostname-to-IP address map-
pings. Each DNS reply message carries one or more resource records. In this and 
the following subsection, we provide a brief overview of DNS resource records and 
messages; more details can be found in [Abitz 1993] or in the DNS RFCs [RFC 
1034; RFC 1035].

A resource record is a four-tuple that contains the following fields:

(Name, Value, Type, TTL)

TTL is the time to live of the resource record; it determines when a resource should
be removed from a cache. In the example records given below, we ignore the TTL
field. The meaning of Name and Value depend on Type:

• If Type=A, then Name is a hostname and Value is the IP address for the host-
name. Thus, a Type A record provides the standard hostname-to-IP address map-
ping. As an example, (relay1.bar.foo.com, 145.37.93.126, A)
is a Type A record.

• If Type=NS, then Name is a domain (such as foo.com) and Value is the host-
name of an authoritative DNS server that knows how to obtain the IP addresses
for hosts in the domain. This record is used to route DNS queries further along in
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the query chain. As an example, (foo.com, dns.foo.com, NS) is a Type
NS record.

• If Type=CNAME, then Value is a canonical hostname for the alias hostname
Name. This record can provide querying hosts the canonical name for a host-
name. As an example, (foo.com, relay1.bar.foo.com, CNAME) is a
CNAME record.

• If Type=MX, then Value is the canonical name of a mail server that has an alias
hostname Name. As an example, (foo.com, mail.bar.foo.com, MX)
is an MX record. MX records allow the hostnames of mail servers to have sim-
ple aliases. Note that by using the MX record, a company can have the same
aliased name for its mail server and for one of its other servers (such as its Web
server). To obtain the canonical name for the mail server, a DNS client would
query for an MX record; to obtain the canonical name for the other server, the
DNS client would query for the CNAME record.

If a DNS server is authoritative for a particular hostname, then the DNS server will
contain a Type A record for the hostname. (Even if the DNS server is not authoritative,
it may contain a Type A record in its cache.) If a server is not authoritative for a host-
name, then the server will contain a Type NS record for the domain that includes the
hostname; it will also contain a Type A record that provides the IP address of the DNS
server in the Value field of the NS record. As an example, suppose an edu TLD server
is not authoritative for the host gaia.cs.umass.edu. Then this server will contain
a record for a domain that includes the host gaia.cs.umass.edu, for example,
(umass.edu, dns.umass.edu, NS). The edu TLD server would also contain
a Type A record, which maps the DNS server dns.umass.edu to an IP address, for
example, (dns.umass.edu, 128.119.40.111, A).

DNS Messages

Earlier in this section, we referred to DNS query and reply messages. These are the
only two kinds of DNS messages. Furthermore, both query and reply messages have
the same format, as shown in Figure 2.23.The semantics of the various fields in a
DNS message are as follows:

• The first 12 bytes is the header section, which has a number of fields. The first field
is a 16-bit number that identifies the query. This identifier is copied into the reply
message to a query, allowing the client to match received replies with sent queries.
There are a number of flags in the flag field. A 1-bit query/reply flag indicates
whether the message is a query (0) or a reply (1). A 1-bit authoritative flag is set in a
reply message when a DNS server is an authoritative server for a queried name. A
1-bit recursion-desired flag is set when a client (host or DNS server) desires that the
DNS server perform recursion when it doesn’t have the record. A 1-bit recursion-
available field is set in a reply if the DNS server supports recursion. In the header,
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there are also four number-of fields. These fields indicate the number of occurrences
of the four types of data sections that follow the header.

• The question section contains information about the query that is being made.
This section includes (1) a name field that contains the name that is being
queried, and (2) a type field that indicates the type of question being asked about
the name—for example, a host address associated with a name (Type A) or the
mail server for a name (Type MX).

• In a reply from a DNS server, the answer section contains the resource records
for the name that was originally queried. Recall that in each resource record there
is the Type (for example, A, NS, CNAME, and MX), the Value, and the TTL.
A reply can return multiple RRs in the answer, since a hostname can have multi-
ple IP addresses (for example, for replicated Web servers, as discussed earlier in
this section).

• The authority section contains records of other authoritative servers.

• The additional section contains other helpful records. For example, the answer
field in a reply to an MX query contains a resource record providing the canoni-
cal hostname of a mail server. The additional section contains a Type A record
providing the IP address for the canonical hostname of the mail server.

How would you like to send a DNS query message directly from the host
you’re working on to some DNS server? This can easily be done with the nslookup
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program, which is available from most Windows and UNIX platforms. For exam-
ple, from a Windows host, open the Command Prompt and invoke the nslookup pro-
gram by simply typing “nslookup.” After invoking nslookup, you can send a DNS
query to any DNS server (root, TLD, or authoritative). After receiving the reply
message from the DNS server, nslookup will display the records included in the
reply (in a human-readable format). As an alternative to running nslookup from your
own host, you can visit one of many Web sites that allow you to remotely employ
nslookup. (Just type “nslookup” into a search engine and you’ll be brought to one of
these sites.) The DNS Wireshark lab at the end of this chapter will allow you to
explore the DNS in much more detail.

Inserting Records into the DNS Database

The discussion above focused on how records are retrieved from the DNS database.
You might be wondering how records get into the database in the first place. Let’s look
at how this is done in the context of a specific example. Suppose you have just created
an exciting new startup company called Network Utopia. The first thing you’ll surely
want to do is register the domain name networkutopia.com at a registrar. A
registrar is a commercial entity that verifies the uniqueness of the domain name,
enters the domain name into the DNS database (as discussed below), and collects a
small fee from you for its services. Prior to 1999, a single registrar, Network Solutions,
had a monopoly on domain name registration for com, net, and org domains. But
now there are many registrars competing for customers, and the Internet Corporation
for Assigned Names and Numbers (ICANN) accredits the various registrars. A com-
plete list of accredited registrars is available at http://www.internic.net.

When you register the domain name networkutopia.com with some reg-
istrar, you also need to provide the registrar with the names and IP addresses of your
primary and secondary authoritative DNS servers. Suppose the names and IP
addresses are dns1.networkutopia.com, dns2.networkutopia.com,
212.212.212.1, and 212.212.212.2. For each of these two authoritative
DNS servers, the registrar would then make sure that a Type NS and a Type A record
are entered into the TLD com servers. Specifically, for the primary authoritative
server for networkutopia.com, the registrar would insert the following two
resource records into the DNS system:

(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

You’ll also have to make sure that the Type A resource record for your Web server
www.networkutopia.com and the Type MX resource record for your mail
server mail.networkutopia.com are entered into your authoritative DNS
servers. (Until recently, the contents of each DNS server were configured statically,
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