CHAPTER 3

An Introduction to LDAP

In Chapter 2, “A Brief History of Directories,” we talked about the history of
directories and how LDAP was born. In this chapter, we take a much closer
look at LDAP, both in its role as a network protocol and as a set of models that
guide you in constructing and accessing your directory. We’ll also examine two
other important aspects of LDAP: the LDAP application programming inter-
faces (APIs), which you can use to develop LDAP applications; and the LDAP
Data Interchange Format (LDIF), which is a common, text-based format for
exchanging directory data between systems.

What Is LDAP?
At its core, LDAP is a standard, extensible directory access protocol—a com-
mon language that LDAP clients and servers use to communicate with each
other. Standardization of the protocol has the benefit that client and server
software from different vendors can interoperate. When you buy an LDAP-
enabled program, you can expect that it will work with any standards-
compatible LDAP server. This has many advantages, but we’ll discuss those
later in this chapter.

LDAP is a “lightweight” protocol, which means that it is efficient, straight-
forward, and easy to implement, while still being highly functional. Contrast
this with a “heavyweight” protocol, such as the X.500 Directory Access
Protocol (DAP). X.500 DAP uses complex encoding methods and requires use
of the OSI network protocol stack—a networking system that has failed to gain
wide acceptance.

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
68

LDAP, on the other hand, uses a simplified set of encoding methods and runs
directly on top of TCP/IP. Every major desktop and server computing platform
currently available (Microsoft Windows, DOS, UNIX, and the Apple
Macintosh) either ships with a TCP/IP implementation or can be easily
equipped with one. OSI networking, on the other hand, is not universally
available, and it is almost always an extra-cost option. LDAP, by virtue of its
light weight, removes significant barriers to implementation and deployment.

As mentioned in Chapter 2, there have been two major revisions of the LDAP
protocol. The first widely available version was LDAP version 2, defined in
RFCs 1777 and 1778. As of this writing, LDAP version 3 is a Proposed Internet
Standard, defined in RFCs 2251 through 2256. Because it is so new, not all ven-
dors completely support LDAPV3 yet. As we discuss LDAP in this chapter, we
will focus our discussion on LDAPv3. However, we will point out new features
found only in LDAPvV3 so that you can understand the limitations you will
encounter if you are using LDAPV2.

In addition to its role as a network protocol, the LDAP standards also define
four models that guide you in your use of the directory. These models promote
interoperability between directory installations while still allowing you the
flexibility to tailor the directory to your specific needs. The models borrow con-
cepts from X.500, but they generally lack many of the restrictions that the X.500
models include. The four LDAP models are as follows:

= The LDAP information model, which defines the kind of data you can
put into the directory.

= The LDAP naming model, which defines how you organize and refer to
your directory data.

= The LDAP functional model, which defines how you access and update
the information in your directory.

= The LDAP security model, which defines how information in the directo-
ry can be protected from unauthorized access.

In addition to guiding you in the use of your directory, the LDAP models
guide directory developers when designing and implementing LDAP
server and client software. The LDAP models are discussed in detail later in
the chapter.

There are several LDAP APIs, the oldest of which is for the C programming
language. The C API is supported by several freely available software develop-
ment kits (SDKSs), including one available in binary and source code format

CHAPTER 3 AN INTRODUCTION TO LDAP
69

from Netscape Communications Corporation. In addition to the C API,
Netscape’s freely available Java SDK (also available in binary and source code
formats) supports all LDAPv3 features. Netscape also provides PerLDAP, a
toolkit for the Perl language that allows you to access LDAP directories.

SunSoft’s INDI is a proprietary, unified directory access API that supports
access to multiple types of directory services (NIS+, LDAP, and others).
Microsoft offers its own proprietary unified directory access API, known as
Active Directory Services Interface (ADSI). These APIs and their various
strengths are covered later in this chapter and in Chapter 20, “Developing New
Applications.”

LDAP also defines the LDAP Data Interchange Format (LDIF), a common,
text-based format for describing directory information. LDIF can describe a set
of directory entries or a set of updates to be applied to a directory. Directory
data can also be exported from one directory and into another using LDIF.
Most of the commonly available command-line utilities also read and write
LDIF. The LDIF format is discussed in more detail later in this chapter.

What Can LDAP Do for You?
If you are a system administrator, then LDAP

= Makes it possible for you to centrally manage users, groups, devices, and
other data.

= Helps you do away with the headache of managing separate application-
specific directories (such as LAN-based electronic mail software).

If you are a IT decision maker, then LDAP

= Allows you to avoid tying yourself exclusively to a single vendor and/or
operating system platform.

= Helps you decrease the total cost of ownership by reducing the number
of distinct directories your staff needs to manage.

If you are a software developer, then LDAP

= Allows you to avoid tying your software exclusively to a single vendor
and/or operating system platform.

= Helps you save development time by avoiding the need to construct your
own user and group management database.

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
70

For example, before the advent of LDAP, each of your applications probably
had its own directory of user information. If you had a LAN-based email pack-
age, there was probably an interface you used to create and manage users and
groups. If you had a LAN-based collaboration package from a different vendor,
it most likely had its own directory and method of accessing that directory.
And, often, if you used LAN-based file server software, it probably had its own
distinct user directory.

Some vendors offered packaged solutions, which made it possible to manage
users and groups in one place—as long as you used only their software suite.
However, if you needed to mix and match software from multiple vendors,
you probably ended up developing an elaborate procedure for ensuring that
new employees were added to each package’s proprietary directory.

With LDAP comes the promise of eliminating this management nightmare.
Instead of creating an account for each user in each system he or she needs to
access, you will be able to simply create a single directory entry for the user—
and all directory-enabled applications will simply refer to the user’s entry in
the LDAP directory. When an employee is terminated, access to all systems can
be revoked by removing the user’s directory entry instead of hunting down all
accounts granted to the person and disabling each one. Users benefit as well
because they need to remember and manage only a single password instead of
one for each system.

In addition to consolidating the management of your users’ access privileges,
LDAP directories allow easier sharing of directory information with trading
partners in an extranet environment. If you have established business relation-
ships with other companies, you can use the directory to share common user
information between your two organizations. This allows you to set up work-
flow processes that cross company boundaries, making both organizations
more efficient.

LDAP directories also can be used to build entirely new applications. An
Internet service provider, for example, might create an LDAP directory that
contains information about all its subscribers and the special add-on services it
may have purchased. The directory can be consulted each time the user wants
to access a given service. If the user has appropriate permissions, as registered
in the directory, the application grants the user access; otherwise, access is
denied. Management of all the value-added services is handled by updating
the directory.

Not all software vendors have made the transition to LDAP-based manage-
ment, but LDAP has tremendous momentum in the software industry.

CHAPTER 3 AN INTRODUCTION TO LDAP
71

Over time, more and more applications will be directory-enabled with the net
benefit of reducing the total cost of ownership of your applications.

How Does LDAP Work?
In this section, we’ll delve into the LDAP protocol in detail. We’ll start with an
overview of LDAP as a client/server protocol. We’ll then discuss the individual
LDAP protocol operations and show how clients can use them to perform use-
ful tasks such as sending secure email. We’ll also discuss LDAP extensibility,
and we’ll conclude by showing you how LDAP works “on the wire” by dis-
cussing the actual wire protocol.

A client/server protocol is a protocol model in which a client program running on
one computer constructs a request and sends it over the network to a computer
(possibly the same computer) running a server program. The server program
receives the request, takes some action, and returns a result to the client pro-
gram. Examples of other client/server protocols are Hypertext Transfer
Protocol (HTTP), which is typically used to serve Web pages; and Internet
Message Access Protocol (IMAP), a protocol used to access electronic mail mes-
sages.

The basic idea behind a client/server protocol is that it allows work to be
assigned to computers that are optimized for the task at hand. For example, a
typical LDAP server computer will probably have a lot of RAM that it uses for
caching the directory contents for fast performance. It will also probably have
very fast disks and a fast processor, but it probably doesn’t need a large-screen
monitor and expensive graphics support. A client computer, on the other hand,
might be on an employee’s desk, probably optimized for the type of work that
the employee does. Rather than putting a copy of the corporate directory on
every employee’s workstation, it’s a better idea to maintain the directory cen-
trally on a server (or replicated set of servers).

The LDAP protocol is a message-oriented protocol. The client constructs an
LDAP message containing a request and sends it to the server. The server
processes the request and sends the result or results back to the client as a
series of LDAP messages.

For example, when an LDAP client searches the directory for a specific entry, it
constructs an LDAP search request message and sends it to the server. The
server retrieves the entry from its database and sends it to the client in an
LDAP message. It also returns a result code to the client in a separate LDAP
message. This interaction is shown in Figure 3.1.

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
72

1. Search operation

2. Returned entry

A

3. Result code

A

LDAP client v
LDAP server

Ficure 3.1 Aclient retrieves a single entry from the directory.

If the client searches the directory and multiple matching entries are found, the
entries are sent to the client in a series of LDAP messages, one for each entry.
The results are terminated with a result message, which contains an overall
result for the search operation, as shown in Figure 3.2.

1. Search operation - e |
‘ 2. First entry returned —
<
P 3. Second entry returned .
< " =
< 4. Nth entry returned C)
P 5. Result code LDAP server
<

Ficure 3.2 Aclient searches the directory, and multiple entries are returned.

Because the LDAP protocol is message-based, it also allows the client to issue
multiple requests at once. Suppose, for example, a client might issue two search
requests simultaneously. In LDAP, the client would generate a unique message
ID for each request; returned results for specific request would be tagged with
its message ID, allowing the client to sort out multiple responses to different
requests arriving out of order or at the same time. In Figure 3.3, the client has
issued two search requests simultaneously. The server processes both opera-
tions and returns the results to the client.

Search operation, msgid

I
N
Yvy

Search operation, msgid

Returned entry, msgid = 1

Returned entry, msgid = 2

Result code, msgid = 2

Result code, msgid = 1 —
< LDAP serve

ol |OIN]|—=

Ficure 3.3 Aclient issues multiple LDAP search requests simultaneously.

CHAPTER 3 AN INTRODUCTION TO LDAP
73

Notice that in Figure 3.3 the server sends the final result code of message ID 2
to the client before it sends the final result code from message ID 1. This is per-
fectly acceptable and happens quite frequently. These details are typically hid-
den from the programmer by an LDAP SDK. Programmers writing an LDAP
application don’t need to be concerned with sorting out these results; the SDKs
take care of this automatically.

Allowing multiple concurrent requests “in flight” allows LDAP to be more
flexible and efficient than protocols that operate in a “lock-step” fashion (for
example, HTTP). With a lock-step protocol, each client request must be
answered by the server before another may be sent. For example, an HTTP
client program—such as a Web browser that wants to download multiple files
concurrently—must open one connection for each file. LDAP, on the other
hand, can manage multiple operations on a single connection, reducing the
maximum number of concurrent connections a server must be prepared to
handle.

The LDAP Protocol Operations
LDAP has nine basic protocol operations, which can be divided into three cate-
gories:

= Interrogation operations: search, compare. These two operations allow you to
ask questions of the directory.

= Update operations: add, delete, modify, modify DN (rename). These operations
allow you to update information in the directory.

= Authentication and control operations: bind, unbind, abandon. The bind opera-
tion allows a client to identify itself to the directory by providing an iden-
tity and authentication credentials; the unbind operation allows the client
to terminate a session; and the abandon operation allows a client to indi-
cate that it is no longer interested in the results of an operation it had pre-
viously submitted.

We will discuss each of the individual protocol operations when we describe
the LDAP functional model later in this chapter.

A typical complete LDAP client/server exchange might proceed as depicted in
Figure 3.4.

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
74

Open connection and bind

Y

Result of bind operation

A

Search operation

LJ

Y

Returned entry #1

=
—
Returned entry #2
————

A A A

LDAP client Result of search operation

LDAP server
Unbind operation

Y

@ INo|a|s |w|N e

Closes connection

A

Ficure 3.4 Atypical LDAP exchange.

In Figure 3.4, an LDAP client and server perform the following steps:

Step 1: The client opens a TCP connection to an LDAP server and submits
a bind operation. This bind operation includes the name of the directory
entry the client wants to authenticate as, along with the credentials to be
used when authenticating. Credentials are often simple passwords, but
they might also be digital certificates used to authenticate the client.

Step 2: After the directory has verified the bind credentials, it returns a
success result to the client.

Step 3: The client issues a search request.

Steps 4 and 5: The server processes this request, which results in two
matching entries.

Step 6: The server sends a result message.

Step 7: The client then issues an unbind request, which indicates to the
server that the client wants to disconnect.

Step 8: The server obliges by closing the connection.

By combining a number of these simple LDAP operations, directory-enabled
clients can perform complex tasks that are useful to their users. For example, as
shown in Figure 3.5, an electronic mail client such as Netscape Communicator
can look up mail recipients in a directory, helping a user address an email mes-
sage. It can also use a digital certificate stored in the directory to digitally sign
and encrypt an outgoing message. Behind the scenes, the user’s email program
performs a number of directory operations that allow the mail to be addressed,
signed, and encrypted. But from the user’s point of view, it is all taken care of
automatically.

CHAPTER 3 AN INTRODUCTION TO LDAP
75

1. Search for user John Smith

2. Entry for John Smith returned

LDAP client LDAP serve
(Netscape
Messenger)

4. Client sends outgoing message to recipient
3. Client encrypts
and signs outgoing

message using
certificate read
from directory

Messaging server
Ficure 3.5 A directory-enabled application performing a complex task.

Although end-user applications can certainly be directory enabled, they are not
the only kind of directory enabled applications. Server-based applications often
benefit from being directory enabled, too. For example, the Netscape
Messaging Server can use an LDAP directory when routing incoming electronic
mail, as shown in Figure 3.6.

1. Incoming email is addressed to
Barbara.Jensen@arrius.com

2. Messaging server looks up email
address in directory

3. Messaging server ——
learns user's mailbox
is local and delivers
mail

I.—l
Messaging server

LDAP server

Ficure 3.6 A directory-enabled server application.

PART
76

AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP

These are just two examples of how directory-enabled applications can lever-
age the power of the directory to add functionality and ease of management.
We will see more and more of this in the future.

In addition to providing the nine basic protocol operations, LDAP version 3 is
designed to be extensible via three methods:

= LDAP extended operations—A new protocol operation, like the nine basic
LDAP operations discussed earlier. If in the future there is a need for a
new operation, it can be defined and made standard without requiring
changes to the core LDAP protocol. An example of an extended operation
is startTLS, which indicates to the server that the client wants to begin
using transport layer security (TLS) to encrypt and optionally authenti-
cate the connection.

= LDAP controls—Extra pieces of information carried along with existing
LDAP operations, altering the behavior of the operation. For example, the
manageDSAIT control is sent along with a modify operation when the client
wants to manipulate certain types of meta-information stored in the
directory (this meta-information is normally hidden from users of the
directory). In the future, additional controls may be defined that alter the
behavior of existing LDAP operations in useful ways.

= Simple Authentication and Security Layer (SASL)—A framework for
supporting multiple authentication methods. By using the SASL frame-
work to implement authentication, LDAP can easily be adapted to
support new, stronger authentication methods. SASL also supports a
framework for clients and servers to negotiate lower-layer security mech-
anisms, such as encryption of all client/server traffic. SASL is not specific
to LDAP, though; its general framework can be adapted to a wide range
of Internet protocols.

How does an LDAP client know whether a particular LDAP extended opera-
tion, LDAP control, or SASL mechanism is supported by the server itis in
contact with? LDAP version 3 servers are required to advertise the extended
operations, controls, and SASL mechanisms they support in a special directory
entry called the root DSE. The root DSE contains a number of attributes that
describe the capabilities and configuration of the particular LDAP server.

CHAPTER 3 AN INTRODUCTION TO LDAP

Standardization of LDAP
Extensions

How does an enhancement such as a
new extended operation, LDAP con-
trol, or SASL authentication method
become a standard? It goes through a
standardization process in the Internet
Engineering Task Force (IETF).

First, the enhancement is described in
a document called an Internet Draft.
The draft is reviewed by participants in
the IETF, changes and improvements
are made, and revised drafts are sub-
mitted by the authors. Once there is
consensus in the I[ETF that the
enhancement is a good idea, and is
soundly designed, the document
becomes a Proposed Internet
Standard. It then goes through more

and finally becomes a full Internet
Standard. However, multiple interoper-
able implementations are required
before a document makes it all the way
through the standards process to
prove that implementation is feasible.

At all times during this process, the
document is freely available on the
Internet for anyone to download, read,
comment on, and implement. The
whole process is designed to encour-
age open development of standards
and thorough peer review, without
bogging it down with a complex stan-
dardization process. This approach has
worked quite well historically; it's how
the Internet was designed and built!

77

peer review, becomes a Draft Standard,

The LDAP Protocol on the Wire
What information is actually transmitted back and forth between LDAP clients
and servers? We won’t go into a great deal of detail here because this book isn’t
about protocol design, but we do feel that there are a few things you might
want to know about the LDAP wire protocol.

LDAP uses a simplified version of the Basic Encoding Rules (BER). BER s a set
of rules for encoding various data types, such as integers and strings, in a
system-independent fashion. It also defines ways of combining these primitive
data types into useful structures such as sets and sequences. The simplified
BER that LDAP uses is often referred to as lightweight BER (LBER). LBER does
away with many of the more esoteric data types that BER can represent, and
instead it represents most items as simple strings.

Because LDAP is not a simple string-based protocol like HTTP, you can’t sim-
ply telnet to the LDAP port on your server and start typing commands. The
LDAP protocol primitives are not simple strings, so it’s difficult, if not impossi-
ble, to converse with an LDAP server by typing at it. If you are familiar with
text-based Internet protocols such as POP, IMAP, and SMTP, this may seem like

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
78

an unfortunate limitation. On the other hand, DNS, a very successful distrib-
uted system, uses a protocol that has nontextual protocol primitives. The
presence of universal implementations of client libraries for both DNS and
LDAP makes this limitation less problematic.

The LDAP Models

LDAP defines four basic models that fully describe its operation, what data can
be stored in LDAP directories, and what can be done with that data. These
models are described in the following sections.

The LDAP Information Model
The LDAP information model defines the types of data and basic units of
information you can store in your directory. In other words, the LDAP informa-
tion model describes the building blocks you can use to create your directory.

The basic unit of information in the directory is the entry, a collection of
information about an object. Often, the information in an entry describes some
real-world object such as a person, but this is not required by the model. If you
look at a typical directory, you'll find thousands of entries that correspond to
people, departments, servers, printers, and other real-world objects in the
organization served by the directory. Figure 3.7 shows a portion of a typical
directory, with objects corresponding to some of the real-world objects in the
organization.

The organization
itself dc=airius dc=com

ou=People ou=Servers

ou=Engineering ou=Sales cn=Engineering Web server

Server

Organizational units o
applications

(departments)

uid=bjensen

Person

Ficure 3.7 Part of a typical directory.

CHAPTER 3 AN INTRODUCTION TO LDAP
79

An entry is composed of a set of attributes, each of which describes one particu-
lar trait of the object. Each attribute has a type and one or more values. The type
describes the kind of information contained in the attribute, and the value con-
tains the actual data. For example, Figure 3.8 zooms in on an entry describing a
person, with attributes for the person’s full name, surname (last name), tele-
phone number, and email address.

Attribute type Attribute type

cn: | Barbara Jensen

Babs Jensen

sn: | Jensen

telephonenumber: | +1 408 555 1212

mail: | babs@airius.com

Ficure 3.8 Adirectory entry showing attribute types and values.

LDIF

Throughout this book you'll see directory entries shown in the LDIF text format. This is a standard
way of representing directory data in a textual format that is used when exporting data from and
importing data into a directory server. LDIF files consist solely of ASCII text, making it possible to
pass them through email systems that are not 8-bit clean. Because it's a legible and text-based for-
mat, LDIF is used in this book when we want to represent a directory entry.

Let’s look at a typical directory entry represented in LDIF:

dn: uid=bjensen, dc=airius, dc=com

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

cn: Barbara Jensen

cn: Babs Jensen

sn: Jensen

mail: bjensen@airius.com

telephoneNumber: +1 408 555 1212

description: A big sailing fan.

An LDIF entry consists of a series of lines. It begins with dn:, followed by the distinguished name of
the entry, all on one line. After this come the attributes of the entry, with one attribute value per line.

continues

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
80

continued

Each attribute value is preceded by the attribute type and a colon (:). The order of the attribute val-
ues is not important; however, it makes the entry more readable if you place all the objectclass
values first and keep all the attribute values of a given attribute type together.

There are other, more-sophisticated things you can do with LDIF, including representing modifica-
tions to be applied to directory entries. We'll cover these more-sophisticated uses of LDIF later in this
chapter.

Attribute types also have an associated syntax, which describes the types of
data that may be placed in attribute values of that type. It also defines how the
directory compares values when searching. For example, the caseIgnoreString
syntax specifies that strings are ordered lexicographically and that case is not
significant when searching or comparing values. Hence, the values smith and
smith are considered equivalent if the syntax is caseIgnoreString. The
caseExactString syntax, by contrast, specifies that case is significant when com-
paring values. Thus, smith and smith are not equivalent values if the syntax is
caseExactString.

With both caseIgnoreString and caseExactString syntaxes, trailing and leading
spaces are not significant, and multiple spaces are treated as a single space
when searching or comparing. The rules for how attribute values of a particu-
lar syntax are compared are referred to as matching rules.

X.500 servers typically support a number of different syntaxes that are either
some primitive type (such as a string, integer, or Boolean value) or some com-
plex data type built from sets or sequences of the primitive types. LDAP
servers typically avoid this complicated abstraction layer and support only the
primitive types. The Netscape Directory Server, for example, supports the case-
ignore and case-exact string, distinguished name, integer, and binary syntaxes.
However, a plug-in interface allows new syntaxes to be defined.

Attributes are also classified broadly in two categories: user and operational.
User attributes, the “normal” attributes of an entry, may be modified by the
users of the directory (with appropriate permissions). Operational attributes are
special attributes that either modify the operation of the directory server or
reflect the operational status of the directory. An example of an operational
attribute is the modifytimestamp attribute, which is automatically maintained by
the directory and reflects the time that the entry was last modified. When an
entry is sent to a client, operational attributes are not included unless the client
requests them by name.

Attribute values can also have additional constraints placed on them. Some
server software allows the administrator to declare whether a given attribute
type may hold multiple values or if only a single attribute value may be stored.

The

CHAPTER 3 AN INTRODUCTION TO LDAP
81

For example, the givenName attribute is typically multivalued, for when a per-
son may want to include more than one given name (e.g., Jim and James). On
the other hand, an attribute holding an employee ID number is likely to be
single-valued.

The other type of attribute constraint is the size of the attribute. Some server
software allows the administrator to set the maximum size value that a given
attribute may hold. This can be used to prevent users of the directory from
using unreasonable amounts of storage.

Maintaining Order: Directory Schemas

Any entry in the directory has a set of attribute types that are required and a
set of attribute types that are allowed. For example, an entry describing a per-
son is required to have a cn (common name) attribute and an sn (surname)
attribute. A number of other attributes are allowed, but not required, for
person entries. Any other attribute type not explicitly required or allowed is
prohibited.

The collections of all information about required and allowed attributes are
called the directory schemas. Directory schemas, which are discussed in detail in
Chapter 7, “Schema Design,” allow you to retain control and maintain order
over the types of information stored in your directory.

In summary, the LDAP information model describes entries, which are the basic
building blocks of your directory. Entries are composed of attributes, which are
composed of an attribute type and one or more values. Attributes may have
constraints that limit the type and length of data placed in attribute values. The
directory schemas place restrictions on the attribute types that must be or are
allowed to be contained in an entry.

However, building blocks aren’t very interesting unless you can actually use
them to build something. The rules that govern how you arrange entries in a
directory information tree are what comprise the LDAP naming model.

LDAP Naming Model

The LDAP naming model defines how you organize and refer to your data. In
other words, it describes the types of structures you can build out of your indi-
vidual building blocks, which are the directory entries. After you’ve arranged
your entries into a logical structure, the naming model also tells you how you
can refer to any particular directory entry within that structure.

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
82

The flexibility afforded by the LDAP naming model allows you to place your
data in the directory in a way that is easy for you to manage. For example, you
might choose to create one container that holds all the entries describing peo-
ple in your organization, and another container that holds all your groups. Or,
you might choose to arrange your directory in a way that reflects the hierarchy
of your organizational structure. Chapter 8, “Namespace Design,” guides you
in making good choices when you design your directory hierarchy or name-
space.

The LDAP naming model specifies that entries are arranged in an inverted tree
structure, as shown in Figure 3.9.

Ficure 3.9 Adirectory tree.

Readers familiar with the hierarchical file system used by UNIX systems will
note its similarities to this directory structure. Such a file system consists of a
set of directories and files; each directory may have zero or more files or direc-
tories beneath it. Part of a typical UNIX file system is shown in Figure 3.10.

CHAPTER 3 AN INTRODUCTION TO LDAP
83

Ficure 3.10 Part of a typical UNIX file system.

There are three significant differences between the UNIX file system hierarchy
and the LDAP directory hierarchy, however.

The first major difference between the two models is that there isn’t really a
root entry in the LDAP model. A file system, of course, has a root directory,
which is the common ancestor of all files or directories in the file system hierar-
chy. In an LDAP directory hierarchy, on the other hand, the root entry is con-
ceptual—it doesn’t exist as an entry you can place data into. There is a special
entry called the root DSE that contains server-specific information, but it is not
a normal directory entry.

The second major difference is that in an LDAP directory every node contains
data, and any node can be a container. This means that any LDAP entry may
have child nodes underneath it. Contrast this with a file system, in which a
given node is either a file or a directory, but not both. In the file system, only
directories may have children, and only files may contain data.

Another way of thinking of this is that an entry in a directory may be both a
file and a directory simultaneously. The directory tree shown in Figure 3.11
illustrates this concept. Notice how the entries dc=airius, dc=com, ou=People,
and ou=Devices all contain data (attributes) but are also containers with child
nodes beneath them.

PART
84

AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP

dn: dc=airius, dc=com
0: airius.com

dn: ou=People, dc=airius, dc=com dn: ou=Devices, dc=airius, dc=com
ou: People ou: Devices

dn: uid=bjensen, ou=people, dc=airius, dc=com dn: cn=LaserPrinter, ou=Devices, dc=airius, dc=com
cn: Barbara Jensen cn: Laser Printer

cn: Babs Jensen resolution: 600

sn: Jensen description: In room 931

Ficure 3.11 Partof a typical LDAP directory.

The third and final difference between the file system hierarchy and LDAP
hierarchy is how individual nodes in the tree are named. LDAP names are
backward relative to file system names. To illustrate this, let’s consider the
names of the shaded nodes in Figures 3.10 and 3.11. In Figure 3.10, the shaded
node is a file with a complete filename of /usr/bin/grep. Notice that if you read
the filename from left to right, you move from the top of the tree (/) down to
the specific file being named.

Contrast this with the name of the shaded directory entry in Figure 3.11. Its
name is uid=bjensen, ou=people, dc=airius, dc=com. Notice that, if you read
from left to right, you move from the specific entry being named back up
toward the top of the tree.

As you’ve seen, LDAP supports a hierarchical arrangement of directory entries.
It does not, however, mandate any particular type of hierarchy. Just as you're
free to arrange your file system in a way that makes sense to you and is easy
for you to manage, you're free to construct any type of directory hierarchy you
desire. Of course, some directory structures are better than others, depending
on your particular situation; we’ll cover the topic of designing your directory
namespace in Chapter 8.

The one exception to this freedom is if your LDAP directory service is actually
a front end to an X.500 service. The X.500 naming model is much more restric-
tive than the LDAP naming model. In the X.500 1993 standard, directory
structure rules limit the types of hierarchies you can create. The standard
accomplishes this by specifying what types of “objectclasses” may be direct

CHAPTER 3 AN INTRODUCTION TO LDAP
85

children of an entry. For example, in the X.500 model, only entries representing
countries, localities, or organizations may be placed at the root of the directory
tree. The LDAP naming model, on the other hand, does not limit the tree struc-
ture in any way; any type of entry may be placed anywhere in the tree.

In addition to specifying how you arrange your directory entries into hierarchi-
cal structures, the LDAP naming model describes how you refer to individual
entries in the directory. We mentioned this briefly when we were discussing the
similarities and differences between file system hierarchy and LDAP directory
hierarchy. Now let’s go into more detail about naming.

Why Is Naming Important?

A naming model is needed so that you can give a unique name to any entry in
the directory, allowing you to refer to any entry unambiguously. In LDAP, dis-
tinguished names (DNSs) are how you refer to entries.

Like file system pathnames, the name of an LDAP entry is formed by connect-
ing in a series all the individual names of the parent entries back to the root.
For example, look back at the directory tree shown in Figure 3.11. The shaded
entry’s name is uid=bjensen, ou=People, dc=airius, dc=com. Reading this
name from left to right, you can trace the path from the entry itself back to the
root of the directory tree. The individual components of the name are separated
by commas. Spaces after the commas are optional, so the following two distin-
guished names are equivalent:

uid=bjensen, ou=People, dc=airius, dc=com
uid=bjensen,ou=People,dc=airius,dc=com

In any entry’s DN, the leftmost component is called the relative distinguished
name (RDN). Among a set of peer entries (those which share a common imme-
diate parent), each RDN must be unique. This rule, when recursively applied to
the entire directory tree, ensures that no two entries may have the same DN. If
you attempt to add two entries with the same name, the directory server will
reject the attempt to add the second entry; this is similar to a UNIX host, which
will reject an attempt to create a file with the same name as an existing file
within a directory.

Note that RDNs have to be unique only if they share a common immediate
parent. Look at the tree in Figure 3.12. Even though there are two entries

with the RDN cn=John smith in the directory, they are in different subtrees—
making the tree completely legal. Whether this is a good way to construct your
directory is another matter, one we will address in Chapter 8.

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
86

dc=airius, dc=com

ou=Engineering ou=Sales

cn=John Smith cn=John Smith

Ficure 3.12 Entries with the same RDNs are permitted if they are in different parts of
the tree.

Messy RDN Topics: Multivalued RDNs and Quoting

You’ve probably noticed that each RDN we’ve shown is composed of two
parts: an attribute name and a value, separated by an equal sign (=). It’s also
possible for an RDN to contain more than one such name/value pair. Such a
construction, called a multivalued RDN, looks like the following:

cn=John Smith + mail=jsmith@airius.com

The RDN for this entry consists of two attribute=value pairs: cn=John Smith
and mail=jsmithe@airius.com.

Multivalued RDNs can be used to distinguish RDNs that would otherwise be
the same. For example, if there is more than one John Smith in the same
container, a multivalued RDN would allow you to assign unique RDNs to each
entry. However, you should generally avoid using multivalued RDNs in your
directory. They tend to clutter your namespace, and there are better ways to
arrive at unique names for your entries. (Approaches for uniquely naming
your entries are discussed in Chapter 8.)

Recall that the individual RDNs in a DN are separated by commas. You may be
curious how to proceed if an RDN contains a comma. How do you tell which
commas are contained in RDNs, and which commas separate the individual
RDN components? For example, what if you have an entry named o=United
Widgets,Ltd. in your directory?

If you have DNis like this in your directory, you must escape all literal
commas (those within an RDN) with a backslash. In our example, then, the
DN would be

CHAPTER 3 AN INTRODUCTION TO LDAP
87

o=United Widgets\, Ltd., c=GB

Certain other characters must also be quoted when they appear within a com-
ponent of a DN. Table 3.1 shows all the characters that must be quoted, accord-
ing to the LDAPvV3 specification.

TABLE 3.1 CHARACTERS REQUIRING QUOTING WHEN CONTAINED IN DISTINGUISHED NAMES

Character Decimal Value Escaped as
Space at the beginning or end 32 \<space>
of a DN or RDN

Octothorpe (#) character at the 35 \#

beginning of a DN or RDN

Comma (,) 44 \,
Plus sign (+) 43 \+
Double-quote (") 34 \"
Backslash (\) 92 \\
Less-than symbol (<) 60 \<
Greater-than symbol (>) 62 \>
Semicolon (;) 59 \;
Aliases

Alias entries in the LDAP directory allow one entry to point to another one,
which means you can devise structures that are not strictly hierarchical. Alias
entries perform a function like symbolic links in the UNIX file system or short-
cuts in the Windows 95/NT file system. In Figure 3.13, the dotted entry is an
alias entry pointing to the “real” entry.

dc=airius, dc=widgets, =
dc=com dc=com 2
—
—
Server B

Ficure 3.13 An alias entry points to another directory entry.

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP

88

The

To create an alias entry in the directory, you must first create an entry with the
object class alias and an attribute named aliasedobjectName. The value of the
aliasedObjectName attribute must be the DN of the entry you want this alias to
point to.

Not all LDAP directory servers support aliases. Because aliases can point to
any directory entry, even one that is on a different server, aliases may exact a
severe performance penalty. Consider the directory trees shown in Figure 3.13.
Alias entries in one of the trees point to entries in the other tree, which is
housed in another server. To support searching across the entire ou=Marketing,
dc=airius,dc=com tree, Server A must contact Server B each time an alias entry
is encountered while servicing the search operation. This can significantly slow
down searches, which is the main reason certain software does not support
aliases.

Often, the goals you are trying to achieve by using aliases can be met by using
referrals, or by placing LDAP URLs in entries that clients can use to chase
down the referred-to information. More information on using referrals can be
found in Chapter 9, “Topology Design.”

LDAP Functional Model

Now that you understand the LDAP information and naming models, you
need some way to actually access the data stored in the directory tree. The
LDAP functional model describes the operations that you can perform on the
directory using the LDAP protocol.

The LDAP functional model consists of a set of operations divided into three
groups. The interrogation operations allow you to search the directory and
retrieve directory data. The update operations allow you to add, delete, rename,
and change directory entries. The authentication and control operations allow
clients to identify themselves to the directory and control certain aspects of a
session.

In addition to these three main groups of operations, version 3 of the LDAP
protocol defines a framework for adding new operations to the protocol via
LDAP extended operations. Extended operations allow the protocol to be extend-
ed in an orderly fashion to meet new marketplace needs as they emerge.
Extended operations were described earlier in this chapter.

The LDAP Interrogation Operations
The two LDAP interrogation operations allow LDAP clients to search the direc-
tory and retrieve directory data.

CHAPTER 3 AN INTRODUCTION TO LDAP
89

The LDAP search operation is used to search the directory for entries and
retrieve individual directory entries. There is no LDAP read operation. When
you want to read a particular entry, you must use a form of the search opera-
tion in which you restrict your search to just the entry you want to retrieve.
Later in the chapter we’ll discuss how to search the directory and retrieve spe-
cific entries, as well as how to list all the entries at a particular location in the
tree.

The LDAP search operation requires eight parameters. The first parameter is
the base object for the search. This parameter, expressed as a DN, indicates the
top of the tree you want to search.

The second parameter is the scope. There are three types of scope. A scope of
subtree indicates that you want to search the entire subtree from the base
object all the way down to the leaves of the tree. A scope of onelevel indicates
that you want to search only the immediate children of the entry at the top of
the search base. A scope of base indicates that you want to limit your search to
just the base object; this is used to retrieve one particular entry from the direc-
tory. Figure 3.14 depicts the three types of search scope.

The third search parameter, derefAliases, tells the server whether aliases
should be dereferenced when performing the search. There are four possible
values for this parameter’s value:

= neverDerefAliases—Do0 not dereference aliases in searching or in locating
the base object of the search.

= derefInSearching—Dereference aliases in subordinates of the base object
in searching, but not in locating the base object of the search.

= derefFindingBaseObject—Dereference aliases in locating the base object of
the search, but not when searching subordinates of the base object.

= derefAlways—Dereference aliases both in searching and in locating the
base object of the search.

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP

90

dc=airius, dc=com

ou=people

search base = "ou=people, dc=airius, dc=com"
search scope = base

dc=airius, dc=com

ou=people

search base = "ou=people, dc=airius, dc=com"
search scope = onelevel

dc=airius, dc=com

ou=people

search base = "ou=people, dc=airius, dc=com"
search scope = subtree

Ficure 3.14 The three types of search scope.

The fourth search parameter is the size limit. This parameter tells the server
that the client is interested in receiving only a certain number of entries. For
example, if the client passes a size limit of 100, but the server locates 500

CHAPTER 3 AN INTRODUCTION TO LDAP
91

matching entries, only the first 100 will be returned to the client, along with a
result code of LDAP_SIZELIMIT_EXCEEDED. A size limit of 0 means that the client
wants to receive all matching entries. (Note that servers may impose a maxi-

mum size limit that cannot be overridden by unprivileged clients.)

The fifth search parameter is the time limit. This parameter tells the server the
maximum time in seconds that it should spend trying to honor a search
request. If the time limit is exceeded, the server will stop processing the request
and send a result code of LDAP_TIMELIMIT_EXCEEDED to the client. A time limit of
0 indicates that no limit should be in effect. (Note that servers may impose a
maximum time limit that cannot be overridden by unprivileged clients.)

The sixth search parameter, the attrsonly parameter, is a Boolean parameter. If
it is set to true, the server will send only the attribute types to the client;
attribute values will not be sent. This can be used if the client is interested in
finding out which attributes are contained in an entry but not in receiving the
actual values. If this parameter is set to false, attribute types and values are
returned.

The seventh search parameter is the search filter, an expression that describes
the types of entries to be returned. The filter expressions used in LDAP search
operations are very flexible, and are discussed in detail in the next section.

The eighth and final search parameter is a list of attributes to be returned for
each matching entry. You can specify that all attributes should be returned, or
you can request that only specific attributes of an entry be returned. We’ll focus
on how to request specific attributes later in this chapter. First, though, let’s
look at the different types of LDAP filters you can use when searching the
directory.

An LDAP filter is a Boolean combination of attribute-value assertions. An
attribute value assertion consists of two parts: an attribute name and a value
assertion, which you can think of as a value with wildcards allowed. The fol-
lowing sections look at the various types of search filters.

Equality Filters
An equality filter allows you to look for entries that exactly match some value.
Here’s an example:

(sn=smith)

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
92

This filter matches entries in which the sn (surname) attribute contains a value
that is exactly smith. Because the syntax of the sn attribute is a case-ignore
string, the case of the attribute and the filter is not important when locating
matching entries.

Substring Filters
When you use wildcards in filters, they are called substring filters. Here’s an
example:

(sn=smith*)

This filter matches any entry that has an sn attribute value that begins with
smith. Entries with a surname of smith, Smithers, Smithsonian, and so on will be
returned.

Wildcards may appear anywhere in the filter expression, so the filter

(sn=*smith)

matches entries in which the surname ends with smith (e.g., Blacksmith). The
filter

(sn=smi*th)

matches entries in which the surname begins with smi and ends with th, and
the filter

(sn=*smith*)

matches entries that contain the string smith in the surname attribute. Note that
the wildcard character matches zero or more instances of any character, so the
filter (sn=*smith*) would match the entry with the surname smith as well as
any surnames in which the string smith is embedded.

Approximate Filters
In addition to the equality and substring filters, servers support an approximate
filter. For example, on most directory servers, the filter

(sn~=jensen)

returns entries in which the surname attribute has a value that sounds like
jensen (for example, jenson). Exactly how the server implements this is particu-
lar to each vendor and the languages supported by the server. The Netscape
Directory Server, for example, uses the metaphone algorithm to locate entries
when an approximate filter is used. Internationalization also throws an inter-
esting wrinkle into the concept of approximate matching; each language may
need its own particular sounds-like algorithm.

CHAPTER 3 AN INTRODUCTION TO LDAP
93

“Greater Than or Equal To” and “Less Than or Equal To” Filters

LDAP servers also support “greater than or equal to” and “less than or
equal to” filters on attributes that have some inherent ordering. For example,
the filter

(sn<=Smith)

returns all entries in which the surname is less than or equal to smith lexico-
graphically. The ordering used depends on the ordering rules for the syntax of
any particular attribute. The sn attribute, which has the case-ignore string syn-
tax, is ordered lexicographically without respect to case. An attribute that has

integer syntax would be ordered numerically. Attributes that have no inherent
ordering, such as JPEG photos, cannot be searched for with this type of filter.

If you find that you need a greater than or less than filter (without the equals
part), note that “greater than” is the complement of “less than or equal to” and
“less than” is the complement of “greater than or equal to.” In other words,

(age>21)

which is equivalent to

(!(age<=21))

Similarly, the filter

(age<21)

which is also not a valid LDAP filter, is equivalent to

(!(age>=21))

In these cases, ! is the negation operator, which we will discuss in more detail

shortly.

Presence Filters
Another type of search filter is the presence filter. It matches any entry that has
at least one value for the attribute. For example, the filter

(telephoneNumber=*)

matches all entries that have a telephone number.

Extensible Matching
The last type of search filter is the extensible match filter. It is only supported
by LDAPV3 servers.

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
94

The purpose of an extensible match filter is to allow new matching rules to be
implemented in servers and used by clients. Recall our earlier example involv-
ing the caseIgnoreString and caseExactString syntaxes. Each syntax has an
associated method for comparing values, depending on whether case is to be
considered significant when comparing values. When new attribute syntaxes
are developed, it may also be necessary to define a new way of comparing val-
ues for equality. Extensible matching also allows language-specific matching
rules to be defined so that values in languages other than English can be mean-
ingfully compared.

As an added benefit, extensible matching allows you to specify that the attrib-
utes that make up the DN of the entry should be searched. So, for example,
using extensible matching you can locate all the entries in the directory that
contain the attribute value assertion ou=Engineering anywhere in their DN.

To see the usefulness of this feature, consider an entry named cn=Babs Jensen,
ou=Engineering, dc=bigco, dc=com. Suppose you’'re interested in finding all the
Babs Jensens in the engineering department, and you search from the top of
your subtree using a search filter like (&(cn=Babs Jensen) (ou=engineering)).
Normally, this filter would not find Babs’s entry unless it explicitly contained
an ou attribute with a value of engineering. Using extensible matching feature,
you can treat the attribute values contained in a DN as attribute values of the
entry that can match the search.

The syntax of an extensible matching filter is a bit complicated. It consists of
five parts, three of which are optional. These parts are

= An attribute name. If omitted, any attribute type that supports the given
matching rule is compared against the value.

= The optional string :dn, which indicates that the attributes forming the
entry’s DN are to be treated as attributes of the entry during the search.

= An optional colon and matching rule identifier that identifies the particu-
lar matching rule to be used. If no matching rule is provided, the default
matching rule for the attribute being searched should be used. If the
attribute name is omitted, the colon and matching rule must be present.

« The string ":=".

« An attribute value to be compared against.

Formally, the grammar for the extensible search filter is

attr [":dn"] [":" matchingrule] ":=" value

CHAPTER 3 AN INTRODUCTION TO LDAP
95

The elements of this syntax are as follows:

attr is an attribute name.

matchingrule is usually given by an Object Identifier (OID), although if a
descriptive name has been assigned to the matching rule, that may be
used as well. The OIDs of the matching rules supported by your directo-

ry server will be given in its documentation.

value is an attribute value to be used for comparison.

Object Identifiers

Object Identifiers, commonly referred
to as OIDs, are unique identifiers
assigned to objects. They are used to
uniquely identify many different types
of things, such as X.500 directory
object and attribute types. In fact, just
about everything in the X.500 directo-
ry system is identified by an OID. OIDs
are also used to uniquely identify
objects in other protocols, such as the
Simple Network Management Protocol
(SNMP).

OIDs are written as strings of dotted
decimal numbers. Each part of an OID
represents a node in a hierarchical OID
tree. This hierarchy allows an arbitrarily
large number of objects to be named,
and it supports delegation of the
namespace. For example, all the user
attribute types defined by the X.500
standards begin with 2.5.4. The cn
attribute is assigned the OID 2.5.4.3,
and the sn attribute is assigned the
OID 2544,

An individual subtree of the OID tree is
called an arc. Individual arcs may be
assigned to organizations, which can
then further divide the arc into subarcs,
if so desired. For example, Netscape
Communications has been assigned
an arc of the OID namespace for its
own use. Internally, it has divided that
arc into a number of subarcs for use by

the various product teams. By delegat-
ing the management of the OID name-
space in this fashion, conflicts can be
avoided.

The X.500 protocol makes extensive
use of OIDs to uniquely identify various
protocol elements. LDAP, on the other
hand, favors short, textual names for
things: cn to describe the common
name attribute and person to identify
the person object class, for example.
To maintain compatibility with X.500,
LDAP allows a string representation of
an OID to be used interchangeably
with the short name for the item.
For example, the search filters
(cn=Barbara Jensen) and
(2.5.4.3=Barbara Jensen) are
equivalent. Unless you are working
with an LDAP-based gateway into an
X.500 system, you should generally
avoid using OIDs in your directory-
enabled applications.

Although LDAP largely does away with
the mandatory use of OIDs, you will see
them from time to time, especially if
you use extensible matching rules or if
you design your own schema exten-
sions. The topic of extending your
directory schema is discussed in
Chapter 7.

PART
96

AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP

Let’s look at some examples of extensible matching filters.

The following filter specifies that the all entries in which the cn attribute
matches the value Barbara Jensen should be returned:
(cn:1.2.3.4.5.6:=Barbara Jensen)

When comparing values, the matching rule given by the OID 1.2.3.4.5.6 should
be used.

The following filter specifies that all entries that contain the string jensen in the
surname should be returned:
(sn:dn:1.2.3.4.5.7:=jensen)

The sn attributes within the DN are also searched. When comparing values, the
matching rule given by the OID 1.2.3.4.5.7 should be used.

The following filter returns any entries in which the o (organization) attribute
exactly matches Airius and any entries in which o=Airius is one of the compo-
nents of the DN:

(o:dn:=Airius)
The following filter returns any entries in which a DN component with a syn-
tax appropriate to the given matching rule matches Airius:

(:dn:1.2.3.4.5.8:=Airius)

The matching rule given by the OID 1.2.3.4.5.8 should be used.

Negation
Any search element can be negated by preceding the filter with an exclamation
point (1). For example, the filter

(!(sn=Smith))

matches all entries in which the sn attribute does not contain the value smith,
including entries with no sn attribute at all.

Combining Filter Terms

Filters can also be combined using AND and OR operators. The AND operator
is signified by an ampersand (&) symbol, and the OR operator is signified by
the vertical bar (}) symbol. When combining search filters, you use prefix

CHAPTER 3 AN INTRODUCTION TO LDAP
97

notation, in which the operator precedes its arguments. Those familiar with the
“reverse polish notation” common on Hewlett-Packard calculators will be
familiar with this concept (although reverse polish is a postfix notation, not a
prefix notation like that used in LDAP search filters).

Let’s look at some examples of combinations of LDAP search filters. The filter
(&(sn=Smith) (1=Mountain View))

matches all entries with a surname of smith that also have an 1 (locality)
attribute of Mountain view. In other words, this filter will find everyone named
Smith in the Mountain View location.

The filter

(1 (sn=Smith) (sn=dones))
matches everyone with a surname of smith or Jones.

You use parentheses to group more-complex filters to make the meaning of the
filter unambiguous. For example, if you want to search the directory for all
entries that have an email address but do not have a telephone number, you
would use the filter

(&(mail=*) (! (telephoneNumber=*)))

Note that the parentheses bind the negation operator to the presence filter for
telephone number.

Technically speaking, parentheses are always required, even if the filter consists
of only a single term. Some LDAP software allows you to omit the enclosing
parentheses and inserts them for you before sending the search request to the
server. However, if you are developing your own software using one of the
available SDKs, you need to include the enclosing parentheses.

Table 3.2 summarizes the six types of search filters and the three Boolean
operators.

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP

98

TABLE 3.2 TYPES OF LDAP SEARCH FILTERS

Filter Type Format Example Matches

Equality (attr=value) (sn=jensen) Surnames exactly
equal to jensen

Substring (attr=[leading] (sn=*jensen*) Surnames contain

Approximate

Greater than
or equal to

Less than
or equal to

Presence
AND

OR

NOT

[any][trailing]

(attr~=value)

(attr>=value)

(attr<=value)

(attr=*)

(&(filtert)
(filter2)...))

(! (filter1)
(filter2)...))

(!(filter)

(sn=jensen¥*)

(sn=*jensen)

(sn=jen*s*en)

(sn~=jensin)

(sn>=dJensen)

(sn<=dJensen)

(sn=%)

(&(sn=dJdensen)
(objectclass=person))

(1 (sn~=densin)
(sn=*jensin))

(1 (mail=*))

ing the string jensen

Surnames starting
with the string jensen

Surnames ending with
the string jensen

Surnames starting
with jen, containing
an s, and ending with
en

Surnames approxi-
mately equal to
Jensin (for example,
surnames that sound
like Jensin—note the
misspelling)
Surnames
lexicographically
greater than or equal
to Jensen

Surnames
lexicographically less
than or equal to
Jensen

All surnames

Entries with an
object class of person
and surname exactly
equal to Jensen

Entries with a sur—
name approximately
equal to Jensin or
common name ending
in jensin

All entities without a
mail attribute

CHAPTER 3 AN INTRODUCTION TO LDAP
99

Quoting in Search Filters

If you need to search for an attribute value that contains one of five specific
characters, you need to substitute the character with an escape sequence con-
sisting of a backslash and a two-digit hexadecimal sequence representing the
character’s value. Table 3.3 shows the characters that must be escaped, along
with the escape sequence you should use for each.

TaBLE 3.3 CHARACTERS THAT MUST BE ESCAPED IF USED IN A SEARCH FILTER

Value Value
Character (Decimal) (Hex) Escape Sequence
* (asterisk) 42 0x2A \2A
((left parenthesis) 40 0x28 \28
) (right parenthesis) 41 0x29 \29
\ (backslash) 92 0x5C \5C
NUL (the null byte) 0 0x00 \00

For example, if you want to search for all entries in which the cn attribute
exactly matches the value A*star, you would use the filter (cn=A\2AStar).

Readers should note that the rules for quoting search filters and the rules for
quoting distinguished names are different and not interchangeable.

Specifying Which Attributes Are to Be Returned

As previously mentioned, the last search parameter is a list of attributes to be
returned for each matching entry. If this list is empty, all user attributes are
returned. The special value * also means that all user attributes are to be
returned, but it allows you to specify additional nonuser (operational) attribut-
es that should be returned. (Without this special value, there would be no way
to request all user attributes plus some operational attributes.)

If you want to retrieve no attributes at all, you should specify the attribute
name 1.1 (there is no such attribute OID, so no attributes can be returned).
Table 3.4 provides some examples of attribute lists and the attributes that are
returned by the server.

TABLE 3.4 EXAMPLES OF ATTRIBUTE LISTS AND CORRESPONDING ATTRIBUTES RETURNED BY THE SERVER

Attribute List Attributes Returned

cn, sn, givenname cn, sn, and givenname only

* All user attributes

1.1 No attributes

modifiersname modifiersname only (an operational attribute)

*, modifiersname All user attributes plus modifiersname

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
100

Common Types of Searches
Although the LDAP search operation is extremely flexible, there are some
types of searches that you’ll probably use more frequently than others:

= Retrieving a single entry—To retrieve a particular directory entry, you use a
scope of base, a search base equal to the DN of the entry you want to
retrieve, and a filter of (objectclass=*). The filter, which is a presence fil-
ter on the objectclass attribute, will match any entry that contains at
least one value in its objectclass attribute. Because every entry in the
directory must have an objectclass attribute, this filter is guaranteed to
match any directory entry. And because you’ve specified a scope of base,
only one entry will be returned by the search (if the entry exists at all).
This is how you use the search operation to read a particular entry.

< Listing all entries directly below an entry—To list all the directory entries at
a particular level in the tree, you use the same filter (objectclass=*) as
when retrieving a particular entry; but you use a scope of onelevel and a
search base equal to the DN just above the level you want to list. All the
entries immediately below the searchbase entry are returned. The search
base entry itself is not returned in a onelevel search. (The search base
entry is returned in a base or subtree search if it matches the search filter.)

= Searching for matching entries within a subtree—Another common search
operation occurs within a subtree of the directory for all entries that
match some search criteria. To perform this type of search, use a filter
that selects the entries you are interested in retrieving—or
(objectclass=*) if you want all entries—along with a scope of subtree
and a search base equal to the DN of the entry at the top of the tree you
want to search.

Hiding LDAP Filters from Users

You might justifiably be thinking that your users will never be able to under-
stand LDAP filter syntax. The prefix notation it uses is hardly intuitive, after
all! Bear in mind, though, that any good directory access GUI will hide the
details of filter construction from end users.

Instead of requiring users to type raw LDAP filters, a set of pop-up menus and
text boxes is typically used to allow the user to specify the search criteria, and
the GUI client constructs the filter for the user. For example, in Figure 3.15,
Netscape Communicator’s Search window uses the provided information to
construct the filter (&(cn=*smith*) (1=*Dearborn*)).

CHAPTER 3 AN INTRODUCTION TO LDAP
101

#_ Search =[] x|
Search for items [University of Michigan | where
the [Name = | [contains = | [Smith Clear Search
and the [City = | [cantains = | [pearbom Help
More | Fewer

Name [Email [Digarization [Phone Number [FIE|

fiddia pidress ook | | Eompase Wessage

[4

Ficure 3.15 A GUI interface for searching the directory.

If you are a directory administrator, it’s a good idea to become familiar with
LDAP filter syntax. You can use this knowledge to provide complex “canned”
queries for your end users, for example. Filter syntax also crops up in LDAP
URLs and configuration files. Spending a little time understanding filter syntax
is well worth the effort.

The Compare Operation

The second of the two interrogation operations, the LDAP compare operation,
is used to check whether a particular entry contains a particular attribute value.
The client submits a compare request to the server, supplying a DN, an
attribute name, and a value. The server returns an affirmative response to the
client if the entry named by the DN contains the given value in the given
attribute type. If not, a negative response is returned.

It may seem odd that the compare operation even exists. After all, if you want
to determine whether a particular entry contains a particular attribute value,
you can just perform a search with a search base equal to the DN of the entry, a
scope of base, and a filter expressing the test you want to make. If the entry is
returned, the test was successful; if no entry is returned, the test was not suc-
cessful.

The reasons that the compare operation exists are historical and related to
LDAP’s roots in X.500. There is only one case in which the compare and search
operations behave differently. If a comparison is attempted on an attribute, but
the attribute is not present in the entry, the compare operation will return a
special indication to the client that the attribute does not exist. The search
operation, on the other hand, would simply not return the entry. This ability to
distinguish between “the entry has the attribute but contains no matching

PART
102

AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP

value” and “the entry does not have the attribute at all” may be convenient in
some situations. The other advantage of the compare operation is that it is
more compact in terms of the number of protocol bytes exchanged between the
client and the server.

The LDAP Update Operations

There are four LDAP update operations: add, delete, rename (modify DN), and
modify. These four operations define the ways that you can manipulate the
data in your directory.

The add operation allows you to create new directory entries. It has two para-
meters: the distinguished name of the entry to be created and a set of attributes
and attribute values that will comprise the new entry. In order for the add
operation to complete successfully, four conditions must be met:

= The parent of the new entry must already exist in the directory.
= There must not be an entry of the same name.
=« The new entry must conform to the schema in effect.

= Access control must permit the operation.

If all these conditions are met, the new entry is added to the directory.

The delete operation removes an entry from the directory. It has a single para-
meter: the DN of the entry to be deleted. In order for the delete operation to
complete successfully, three conditions must be met:

= The entry to be deleted must exist.
< It must have no children.

= Access control must permit the entry to be deleted.

If these conditions are all met, the entry is removed from the directory.

The rename, or modify DN operation, is used to rename and/or move entries
in the directory. It has four parameters: the DN of the entry to be renamed, the
new RDN for the entry, an optional argument giving the new parent of the
entry, and the delete-old-RDN flag. In order for the modify DN operation to
succeed, the following conditions must be met:

CHAPTER 3 AN INTRODUCTION TO LDAP
103

= The entry being renamed must exist.
= The new name for the entry must not already be in use by another entry.

= Access control must permit the operation.

If all these conditions are met, the entry is renamed and/or moved.

If the entry is to be renamed but will still have the same parent entry, the new
parent argument is left blank. Otherwise, the new parent argument gives the
DN of the container where the entry is to be moved. The delete-old-RDN flag is
a Boolean flag that specifies whether the old RDN of the entry is to be retained
as an attribute of the entry or removed. Figures 3.16 through 3.20 show the var-
ious combinations of renaming and moving entries that can be performed with
the modify DN operation.

dc=airius, dc=com dc=airius, dc=com
ou=Engineering ou=Administration ou=Engineering ou=Administration

uid=bjensen uid=babsj

original dn: uid=bjensen, ou=Engineering, dc=airius, dc=com
new dn: uid=babsj, ou=Engineering, dc=airius, dc=com

Ficure 3.16 Renaming an entry without moving it.

dc=airius, dc=com dc=airius, dc=com

ou=Engineering ou=Administration ou=Engineering ou=Administration

uid=bjensen |:>

original dn: uid=bjensen, ou=Engineering, dc=airius, dc=com
new dn: uid=bjensen, ou=Administration, dc=airius, dc=com

uid=bjensen

Ficure 3.17 Moving an entry without changing its RDN.

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
104

dc=airius, dc=com dc=airius, dc=com
ou=Engineering ou=Administration ou=Engineering ou=Administration
uid=babsj

uid=bjensen

original dn: uid=bjensen, ou=Engineering, dc=airius,dc=com
new dn: uid=babsj, ou=Administration, dc=airius,dc=com

Ficure 3.18 Moving an entry and changing its RDN simultaneously.

dc=airius, dc=com dc=airius, dc=com
ou=Engineering ou=Administration ou=Engineering ou=Administration
uid=bjensen uid=babsj
?n:uid:bjensen, ou=Engineering, dc=airius, dc.com ?n:uid:babsh ou=Engineering, dc=airius, dc=com
I:Jid: bjensen I:Jid: babsj

Ficure 3.19 Renaming an entry, deleteoldrdn=true.

dc=airius, dc=com dc=airius, dc=com
ou=Engineering ou=Administration ou=Engineering ou=Administration
Uid=bjensen uid=babsj
original dn:uid-bjensen, ou-Engineering, do-airius, do-com original dn:uid-bjensen, ou-Engineering, do-airius, do-con
uid: bjensen uid: babsj
. ‘.uu: bjensen

Ficure 3.20 Renaming an entry, deleteoldrdn=false.

LDAPV2 did not have a modify DN operation—it had only a modify RDN
operation. As the name implies, modify RDN allows only the RDN of an entry
to be changed. This means that an LDAPV2 server may rename an entry but
may not move it to a new location in the tree. To accomplish a move with
LDAPvV2, you must copy the entry, along with any child entries underneath it,
to the new location in the tree and delete the original entry or entries.

CHAPTER 3 AN INTRODUCTION TO LDAP
105

The modify operation allows you to update an existing directory entry. It takes
two parameters: the DN of the entry to be modified and a set of modifications
to be applied. These modifications can specify that new attribute values are to
be added to the entry, that specific attribute values are to be deleted from the
entry, or that all attribute values for a given attribute are to be replaced with a
new set of attribute values. The modify request can include as many attribute
modifications as needed.

In order for the modify operation to succeed, the following conditions must
be met:

= The entry to be modified must exist.
= All of the attribute modifications must succeed.
= The resulting entry must obey the schema in effect.

= Access control must allow the update.

If all these conditions are met, the entry is modified. Note that all the modifica-
tions must succeed, or else the entire operation fails and the entry is not modi-
fied. This prevents inconsistencies that might arise from half-completed modify
operations.

This last point raises one additional but very important topic about the LDAP
update operations: Each operation is atomic, meaning that the whole operation
is processed as a single unit of work. This unit either completely succeeds or no
modifications are performed. For example, a modify request that affects multi-
ple attributes within an entry cannot half-succeed, with certain attributes
updated and others not updated. If the client receives a success result from the
server, then all the modifications were applied to the entry. If the server returns
an error to the client, then none of the modifications were applied.

The LDAP Authentication and Control Operations
There are two LDAP authentication operations, bind and unbind, and one con-
trol operation, abandon.

The bind operation is how a client authenticates itself to the directory. It does
so by providing a distinguished name and a set of credentials. The server
checks whether the credentials are correct for the given DN and, if they are,
notes that the client is authenticated as long as the connection remains open or
until the client re-authenticates. The server can grant privileges to the client
based on its identity.

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
106

There are several different types of bind methods. In a simple bind, the client
presents a DN and a password in cleartext to the LDAP server. The server veri-
fies that the password matches the password value stored in the userpassword
attribute of the entry and, if so, returns a success code to the client.

The simple bind does send the password over the network to the server in the
clear. However, you can protect against eavesdroppers intercepting passwords
by encrypting the connections using secure sockets layer (SSL) or TLS, which
are discussed in the next section. In the future, LDAPv3 will include a digest-
based authentication method that does not require that a cleartext password be
sent to the server.

LDAPv3 also includes a new type of bind operation, the SASL bind. SASL is an
extensible, protocol-independent framework for performing authentication and
negotiation of security parameters. With SASL, the client specifies the type of
authentication protocol it wants to use. If the server supports the authentica-
tion protocol, the client and server perform the agreed-upon authentication
protocol.

For example, the client could specify that it wants to authenticate using the
Kerberos protocol. If the server knows how to speak the Kerberos protocol, it
indicates this to the client that sends a service ticket for the LDAP service. The
server verifies the service ticket and returns a mutual authentication token to
the client. Whenever the Kerberos authentication completes, the SASL bind is
complete and the server returns a success code to the client. SASL can also sup-
port multistep authentication protocols such as S/KEY.

Incorporation of SASL into LDAPv3 means that new authentication methods,
such as smart cards or biometric authentication, can be easily implemented for
LDAP without requiring a revision of the protocol.

The second authentication operation is the unbind operation. The unbind oper-
ation has no parameters. When a client issues an unbind operation, the server
discards any authentication information it has associated with the client’s con-
nection, terminates any outstanding LDAP operations, and disconnects from
the client, thus closing the TCP connection.

The abandon operation has a single parameter: the message ID of the LDAP
operation to abandon. The client issues an abandon operation when it is no
longer interested in obtaining the results of a previously initiated operation.
Upon receiving an abandon request, the server terminates processing of the
operation that corresponds to the message ID. The abandon request, typically
used by GUI clients, is sent when the user cancels a long-running search
request.

CHAPTER 3 AN INTRODUCTION TO LDAP
107

Note that it’s possible for the abandon request (coming from the client) and the
results of the abandoned operation (going to the client) to pass each other in
flight. The client needs to be prepared to receive (and discard) results from
operations it has abandoned but the server sent anyway. If you are using an
LDAP SDK, however, you don’t need to worry about this; the SDK takes care
of this for you.

The LDAP Security Model
We’ve discussed three of the four LDAP models so far. We have a set of directo-
ry entries, which are arranged into a hierarchy, and a set of protocol operations
that allow us to authenticate to, search, and update the directory. All that
remains is to provide a framework for protecting the information in the direc-
tory from unauthorized access. This is the purpose of the LDAP security
model.

The security model relies on the fact that LDAP is a connection-oriented proto-
col. In other words, an LDAP client opens a connection to an LDAP server and
performs a number of protocol operations on the same connection. The LDAP
client may authenticate to the directory server at some point during the lifetime
of the connection, at which point it may be granted additional (or fewer)
privileges. For example, a client might authenticate as a particular identity that
has been granted read-write access to all the entries in the directory. Before this
authentication, it has some limited set of privileges (usually a default set of
privileges extended to all users of the directory). After it authenticates,
however, it is granted expanded privileges as long as the connection remains
open.

What exactly is authentication? From the client’s perspective, it is the process
of proving to the server that the client is some entity. In other words, the client
asserts that it has some identity and provides some credentials to prove this
assertion. From the server’s perspective, the process of authentication involves
accepting the identity and credentials provided by the client and checking
whether they prove that the client is who it claims to be.

To illustrate this abstract concept with a concrete example, let’'s examine how
LDAP simple authentication works. In simple authentication, an LDAP client
provides to an LDAP server a distinguished name and a password, which are
sent to the server in the clear (not hashed or encrypted in any way). The server
locates the entry in the directory corresponding to the DN provided by the
client and checks whether the password presented by the client matches the
value stored in the userpassword attribute of the entry. If it does, the client is
authenticated; if it does not, the authentication operation fails and an error
code is returned to the client.

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
108

The process of authenticating to the directory is called binding. An identity is
bound to the connection when a successful authentication occurs via the bind
operation we introduced in the previous section. If a client does not authenti-
cate, or if it authenticates without providing any credentials, the client is bound
anonymously. In other words, the server has no idea who the client is, so it
grants some default set of privileges to the client. Usually, this default set of
privileges is very minimal. In some instances, the default set of privileges is
completely restrictive—no part of the directory may be read or searched. How
you treat anonymously bound clients is up to you and depends on the security
policy appropriate to your organization. You can find more information on
security and privacy in Chapter 11, “Privacy and Security Design.”

There are many different types of authentication systems available that are
independent of LDAP. LDAP version 2 supported only simple authentication,
in which a DN and password are transmitted in the clear from the client to the
server.

Note

The previous statement is not completely correct because LDAPV2 also supported Kerberos version
4 authentication, which does not require that passwords be sent in the clear. However, KerberosV4
was not commercially successful and has been superseded by Kerberos version 5. Kerberos support
was therefore dropped from the core LDAPv3 protocol, although it’s entirely feasible to support it
via an SASL mechanism.

Acknowledging the need to support many different authentication methods,
LDAPvV3 has adopted the SASL framework. SASL provides a standard way for
multiple authentication protocols to be supported by LDAPvV3. Each type of
authentication system corresponds to a particular SASL mechanism. An SASL
mechanism is an identifier that describes the type of authentication protocol
being supported.

Note

The IETF's Internet Engineering Steering Group (IESG) has requested that the LDAPv3 specification
be altered to mandate that all clients and servers implement some authentication method more
secure than sending cleartext passwords over the wire. The intent is to raise the bar for interoper-
ability so that people using LDAPv3 clients and servers can be assured that their authentication cre-
dentials are not susceptible to network eavesdropping. As of September 1998, the details about the
new mandatory-to-implement authentication methods were still to be worked out within the IETF.
If you are considering purchase of LDAP software, you should ask your vendor about support for the
final version of the LDAPv3 standard.

CHAPTER 3 AN INTRODUCTION TO LDAP
109

After the server has verified the identity of the client, it can choose to grant
additional privileges based on some site-specific policy. For example, you
might have a policy that, when authenticated, users may search the directory,
but that they may not modify their own directory entries. Or, you might have a
more permissive policy that allows some authenticated users to modify certain
attributes of their own entries whereas other users (your administrative staff)
may modify any attribute of any entry. The way you describe the access rights,
the entities to which those rights are granted, and the directory entries to
which those rights apply is called access control.

Access Control Models

It may come as somewhat of a disappointment to learn that LDAP does not
currently define a standard access control model. However, this does not mean
that individual LDAP server implementations have no access control model. In
fact, any commercially successful server software must have such a model.

The Netscape Directory Server, for example, has a rich access control model.
The model works by describing what a given identity can do to some set of
entries, with granularity down to the attribute level. For example, with the
Netscape Server it is possible to specify an access control item (ACI) that
allows a person to modify only the description attribute of his or her own
entry. Or, the model can allow you to grant complete rights to the directory to
all persons who are in a particular group. This allows easy creation of a set of
directory administrators; a given person’s rights can be easily revoked by
removing them from the group. The model is fully documented in the Netscape
Directory Server Administrator’s Guide.

Work has begun in the IETF on defining a standard access control model and a
standard syntax for representing access control rights. The promise for the
future is that you, as a directory deployer, will be able to deploy directory
servers from several vendors and implement a consistent security policy across
those servers—whether they cooperate to serve a distributed directory or they
are replicas of each other. Unfortunately, that is not the case today. You would
be wise to document your access control policy in plain language so that you
can adapt it to whatever model and syntax emerge from the standards bodies
in the future.

SSL and TLS

SSL and TLS are new security technologies that encrypt all the data flowing
between a client and a server. SSL, the older of the two technologies, has been a
successful technology for the World Wide Web, securing electronic commerce
and other transactions that depend on transmission of data being hidden from

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
110

eavesdroppers. TLS, the follow-up to SSL, is an emerging Internet standard.
LDAP offers a standard way for clients to begin encrypting all data flowing to
and from LDAP on the connection using TLS.

Just as SSL enabled a new class of applications on the Web, TLS will enable
new uses of directory technology. For example, two companies in a trading
partner relationship can allow directory queries from their trading partners to
travel over the Internet. Because TLS encrypts these queries and the results,
each company can rest assured that the directory data is protected while in
transit over the Internet. Figure 3.21 depicts this scenario.

Encrypted LDAP session
is secure from eavesdropping
— on the Internet —

Company A

Company B

LDAP
server

Firewall Firewall
Ficure 3.21 TLS allows secure transmission of directory data over the Internet.

In addition to allowing bulk encryption of all data flowing between clients and
servers, SSL and TLS both allow mutual authentication using strong cryptogra-
phy. Using X.509-based certificates, clients may prove their identity to servers
while in turn verifying the identity of the server to which they are connected.

This technology is already widely deployed on the World Wide Web. The
Hypertext Transfer Protocol over SSL (HTTPS) is used to provide secure Web
access and client authentication. In a similar fashion, LDAP over SSL (LDAPS)
allows secure LDAP client access and client authentication facilities today. In
the future, LDAPV3 clients can use the startTLS extended operation to begin
encrypting an LDAP connection, and TLS to prove their identity to the server,
as well as verify the server’s identity.

CHAPTER 3 AN INTRODUCTION TO LDAP
111

LDAP APIs
Early on, the developers of LDAP realized that the creation of directory-
enabled applications would happen much more quickly if there existed a
standard API for accessing and updating the directory. The original LDAP dis-
tribution from the University of Michigan (often referred to as the U-M LDAP
release; refer to Chapter 2) included a C programming library and several sam-
ple client programs built on this library. For quite a while, the C API included
in the U-M distribution was the only API/SDK available. With the current
industry momentum behind LDAP, however, the number of SDKs is increas-
ing, and additional SDKs are becoming available. (We will discuss these addi-
tional SDKSs later in this section and in Chapter 20.) Figure 3.22 shows how the
LDAP SDK fits into a directory-enabled client application.

Directory-enabled
client application
A

LDAP =
protocol oo

»
>

LDAP application
LDAP API
LDAP client library
A

—

LDAP
server

FiGure 3.22 The LDAP API provides a common interface to an LDAP client
library SDK.

The LDAP C API for LDAP version 2 is documented in RFC 1823, and a pro-
posed C API for LDAP version 3 is in draft form at this time (available from the
IETF Web site at http://www.ietf.org). The C APl document simply defines the
API calls and their semantics.

To obtain an actual SDK, you need to download one from one of a number of
sources:

= The original University of Michigan SDK, which supports LDAPV2, is
available in source code form from http://www.umich.edu/~dirsvcs/1ldap/.

= An updated C SDK that supports LDAPvV2 and LDAPV3 is available free
of charge in binary form from Netscape at http://developer.netscape.com.

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP

112

= Source code for the Netscape SDK is publicly available from mozilla.org
at http://www.mozilla.org

= Another LDAPv2/LDAPvV3 SDK is available from Innosoft at
http://www.innosoft.com

All of the C SDKs can, of course, be used from a C++ program.

An Overview of the C LDAP API
The LDAP C API defines a set of core functions that map almost one-to-one
onto the LDAP protocol operations. Those core functions are shown in

Table 3.5.

TABLE 3.5 THE MAIN LDAP C API FUNCTIONS

Function

Description

ldap_search()

ldap_compare()

ldap_bind()

ldap_unbind()
ldap_modify()
ldap_add()
ldap_delete()

ldap_rename()

ldap_result()

Searches for directory entries

Sees whether an entry contains a given attribute
value

Authenticates (proves your identity) to a directory
server

Terminates an LDAP session

Makes changes to an existing directory entry
Adds a new directory entry

Deletes an existing directory entry

Renames an existing directory entry (this call is
named ldap_modrdn() in LDAPv2-only SDKSs)

Retrieves the results of one of the previous operations

The APIs listed in Table 3.5 provide an asynchronous interface to the directory;
that is, the calls are used to initiate a protocol operation to the server, and the
1dap_result () call is used later to collect results from the previously initiated
operations. This allows your client to issue multiple protocol requests or per-
form other work, such as updating window contents, while the operation is in

progress on the server.

The API also provides a synchronous interface, in which the API calls are
blocked until all results are returned from the server. The synchronous calls are
generally simpler to use and are appropriate for simple command-line clients
and multithreaded applications.

CHAPTER 3 AN INTRODUCTION TO LDAP

In addition to the API calls listed in Table 3.5 and their synchronous counter-
parts, the LDAP API defines a set of utility routines that can be used to parse
returned results from the server; iterates over sets of entries, attributes, and
attribute values; and performs other useful operations. For a complete descrip-
tion of the various API calls available in the SDK you are using, consult the
documentation.

A useful reference book that covers the C API in detail and offers general
advice on building directory-enabled applications was written by two of the
authors of this book. It is called LDAP: Programming Directory-Enabled
Applications with Lightweight Directory Access Protocol, by Tim Howes and Mark
Smith, published by Macmillan Technical Publishing.

Other LDAP APIs
In addition the various implementations of the C API, four other APIs are
available:

= Netscape has developed an LDAPV2 and LDAPvV3 Java API that, like the
C API, has a close mapping onto the LDAP protocol. The Java API speci-
fication, currently in draft form, is available from the IETF Web site at
http://www.ietf.org. An SDK that implements the draft API is available
from http://developer.netscape.com/ and, like the C SDK, is available in
source code form at http://www.mozilla.org. Online documentation is
also available. The Java classes that implement the Netscape SDK are also
included with versions of Netscape Communicator currently being
shipped.

= Perl fans can use PerLDAP, available from http://www.mozilla.org.

= JavaSoft has developed the proprietary Java Naming and Directory
Interface (JNDI). This API/SDK defines a common interface for accessing
a number of different directory systems from a Java application or applet.
Additional types of directory systems and protocols can be supported by
developing additional service provider interfaces (SPIs) for JNDI. This
allows a JNDI client to access a number of distinct directory services,
such as NIS, DNS, LDAP, NDS, or X.500. JNDI is available from JavaSoft
at http://www.javasoft.com/.

= Microsoft also has a proprietary, object-oriented SDK, called ADSI, for
accessing multiple directory systems. ADSI APls are available for Visual
Basic, C, and C++. For more information on ADSI, see
http://www.microsoft.com.

113

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
114

These “directory-agnostic” access APIs (APIs that can access a number of dif-
ferent directory systems) can be useful if you are writing client software that
must simultaneously access multiple directory services running incompatible
protocols. However, because they present a single API across all the different
directory protocols they support, these tools may not have sufficient fidelity for
your needs. In other words, some features supported by the underlying proto-
col may not be available in the unified API.

In order to support these new features, the unified API must be revised to
expose the new features. If the new feature exposes functionality in some pro-
tocol you aren’t using, this is unnecessary clutter and overhead. LDAP-only
APIs don’t suffer from this problem.

LDIF

LDIF is a standard text-based format for describing directory entries. LDIF
allows you to export your directory data and import it into another directory
server, even if the two servers use different internal database formats. In the
database/spreadsheet world, the tab-delimited format performs a similar func-
tion: It provides a simple format that virtually all spreadsheets and databases
can import and export.

There are two different types of LDIF files. The first form describes a set of
directory entries, such as your entire corporate directory, or perhaps a subset of
it. The other type of LDIF file is a series of LDIF update statements that
describes changes to be applied to directory entries. In the following sections
we’ll look at both formats in detail.

LDIF Representation of Directory Entries
Listing 3.1 represents two directory entries in LDIF format.

LisTING 3.1 ATYPICAL LDIF FILE
dn: uid=bjensen, ou=people, dc=airius, dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: Barbara Jensen
cn: Babs Jensen
givenname: Barbara
sn: Jensen
uid: bjensen
mail: bjensen@airius.com
telephoneNumber: +1 408 555 1212
description: Manager, switching products division

dn: uid=ssmith, ou=people, dc=airius, dc=com

CHAPTER 3 AN INTRODUCTION TO LDAP
115

objectclass: top

objectclass: person

objectclass: organizationalPerson
objectclass: inetOrgPerson

cn: Steve Smith

cn: Stephen Smith

givenname: Stephen

sn: Smith

uid:ssmith

mail: ssmith@airius.com
telephoneNumber: +1 650 555 1212
description: Member of Technical Staff.

An individual entry expressed in LDIF format consists of two parts: a
distinguished name and a list of attribute values. The DN, which must be the
first line of the entry, is composed of the string dn followed by a colon (:) and
the distinguished name of the entry. After the DN comes the attributes of the
entry. Each attribute value is composed of an attribute type, a colon (:), and the
attribute value. Attribute values may appear in any order; for readability, how-
ever, we suggest that you list the objectclass values for the entry first and
group multiple values for the same attribute type together, as in Listing 3.1.

Any line in an LDIF file may be folded into multiple lines, which is typically
done when an individual line is extremely long. To fold a line, insert a newline
character and a space character into the value. Folding is not required, but
some editors do not handle extremely long lines. Listing 3.2 shows an entry
with a folded line; note how the description attribute is folded into four lines.

LisTING 3.2 AN LDIF FILE WITH A FOLDED ATTRIBUTE VALUE

dn: uid=bjensen, ou=people, dc=airius, dc=com

objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

cn: Barbara Jensen

cn: Babs Jensen

givenname: Barbara

sn: Jensen

uid: bjensen

mail: bjensen@airius.com

telephoneNumber: +1 408 555 1212

description: I will be out of the
office from August 12, 1998, to September 10, 1998. If you need
assistance with the Ostrich project, please contact Steve Smith
at extension 7226.

If an LDIF file contains an attribute value or a distinguished name that is not
ASCII, that value or DN must be encoded in a special format called base 64.
This encoding method can represent any arbitrary data as a series of printable
characters. When an attribute is base 64—-encoded, the attribute type and value

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
116

are separated by two colons, instead of a single colon. Listing 3.3 shows an
entry in LDIF format that contains a base 64—-encoded binary attribute
(jpegPhoto). Notice how, in addition to being base 64-encoded, the attribute is
folded.

LisTING 3.3 AN ENTRY IN LDIF FORMAT CONTAINING A BASE 64—ENCODED ATTRIBUTE VALUE

dn: uid=bjensen, ou=people, dc=airius, dc=com

objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

cn: Barbara Jensen

cn: Babs Jensen

givenname: Barbara

sn: Jensen

uid: bjensen

mail: bjensen@airius.com

telephoneNumber: +1 408 555 1212

jpegPhoto:: /9j/4AAQSkZJRgABAAAAAQABAAD /2wBDABALDA4MChAODQ4
SERATGCgaGBYWGDE jJR@00jMIPDkzODAASFXOQERXRTc4UG1RV19iZ2hnP
k1xeXBkeFx1Z2P/2wBDARESEhgVGC8aGi9jQjhCY2NjY2NjY2NjY2NjY2N
FY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NFY2NjY2NjY2NjY2P /wAARCACCA
LgDASIAAhEBAXEB/8QAHWAAAQUBAQEBAQEAAAAAAAAAAAECAWQFBgCICQo
L /8QAtRAAAgEDAWIEAWUFBAQAAAF9AQIDAAQRBRINMUEGE1FhByJXxFDKBk
aEITIOKxwRVSOfAkM2JyggkKFhcYGRo1JicoKSoONTY30Dk6QORFRkdISUp
TVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJ ipKT1JWW15iZmgKjp
KWmp6ipqrKztLW2t7i5usLDXMXGx8]jJytLTINXW19jZ2uHi4+T15ufo6er
X8VPO9fb3+

More formally, the syntax of an entry represented in LDIF format is

("dn:" <DN of entry> | "dn::" <base 64-encoded DN of entry>)
<attribute type> (":" <attribute value> |"::" <base 64 attribute value>)

A complete formal definition of the LDIF syntax is available from the IETF Web
site at http://www.ietf.org.

LDIF Update Statements
The second type of LDIF file describes a set of changes to be applied to one or
more directory entries. An individual LDIF update statement consists of a DN,
a change type, and possibly a set of modifications. Typically, you will use this
type of LDIF file as input to a command-line utility such as the 1dapmodify pro-
gram, which is included with the Netscape Directory Server and Netscape
LDAP SDK. The 1dapmodify program reads the update statements, converts
those statements to LDAP protocol operations, and sends them to a server for
processing.

CHAPTER 3 AN INTRODUCTION TO LDAP
117

There are four types of changes that can be described by an LDIF update state-
ment. These change types correspond exactly to the types of update operations
that can be performed over the LDAP protocol: add a new entry, delete an
existing entry, modify an existing entry, and rename an existing entry.
Although the examples in the following sections do not show either folding or
base 64-encoding, both are permitted in LDIF update statements.

Adding a New Entry

The add changetype statement indicates that an entry is to be added to the direc-
tory. The syntax of this update statement is

dn: <dn of entry to be added>

changetype: add
<attribute type>: value

For example, you would use the following to add a new entry to the directory:

dn: uid=bjensen, ou=people, dc=airius, dc=com
changetype: add

objectclass: top

objectclass: person

objectclass: organizationalPerson
objectclass: inetOrgPerson

cn: Barbara Jensen

cn: Babs Jensen

givenname: Barbara

sn: Jensen

uid: bjensen

mail: bjensen@airius.com
telephoneNumber: +1 408 555 1212

Deleting an Entry
The delete changetype statement indicates that an entry is to be removed from
the directory. The syntax of this type of update statement is

dn: <dn of entry to be deleted>
changetype: delete

For example, you would use the following to delete an entry from the
directory:

dn: uid=bjensen, ou=people, dc=airius, dc=com
changetype: delete

Modifying an Entry

The modify changetype statement indicates that an existing entry is to be modi-
fied. It also allows you to add new attribute values, remove specific attribute
values, remove an attribute entirely, or replace all attribute values with a new
set of values. The syntax of the modify update statement is

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
118

dn: <dn of entry to be modified>
changetype: modify

<modifytype> <attribute type>
[<attribute type>: <attribute value>]

Note that there is an additional operator: modifytype. This is either add, delete,
or replace, and is interpreted as follows.

To add one or more new attribute values, use a modifytype of add and include
the attribute values you want to add. The following example adds two new
values to the telephoneNumber attribute; if there are already existing values for
this attribute, they are unaffected:

dn: uid=bjensen, ou=people, dc=airius, dc=com

changetype: modify

add: telephoneNumber

telephoneNumber: +1 216 555 1212
telephoneNumber: +1 408 555 1212

To delete one or more specific attribute values, use a modifytype of delete and
include the values you want to delete. The following example removes the
value +1 216 555 1212 from the telephoneNumber attribute; any other
telephoneNumber attribute values are unaffected:

dn: uid=bjensen, ou=people, dc=airius, dc=com

changetype: modify

delete: telephoneNumber
telephoneNumber: +1 216 555 1212

To completely remove an attribute, use a modifytype of delete, but do not
include any specific attribute value to be deleted. The following example com-
pletely removes the telephoneNumber attribute from the entry:

dn: uid=bjensen, ou=people, dc=airius, dc=com

changetype: modify
delete: telephoneNumber

To replace an attribute with a new set of values, use a modifytype Of replace
and include the values that should replace any existing attribute values. The
following example replaces any existing values of the telephoneNumber attribute
with the two given values:

dn: uid=bjensen, ou=people, dc=airius, dc=com

changetype: modify

replace: telephoneNumber

telephoneNumber: +1 216 555 1212
telephoneNumber: +1 405 555 1212

CHAPTER 3 AN INTRODUCTION TO LDAP
119

Multiple modifytypes can be combined into a single update statement. Each set
of lines comprising one modifytype must be separated by a line that contains
only a single dash. For example, the following update statement adds a new
value to the mail attribute, removes a specific value from the telephoneNumber
attribute, completely removes the description attribute, and replaces the
givenname attribute with a new set of values:

dn: uid=bjensen, ou=people, dc=airius, dc=com

changetype: modify

add: mail
mail: bjensen@airius.com

delete: telephoneNumber
telephoneNumber: +1 216 555 1212

delete: description

replace: givenname
givenname: Barbara
givenname: Babs

When multiple modifications are included in a single LDIF update statement
and the 1dapmodify program sends the corresponding LDAP operations to an
LDAP server, the server performs the update only if all the individual attribute
modifications succeed. In the last example, if the entry did not contain the tele-
phone number attribute value +1 216 555 1212, it would not be possible to
delete that specific value. The server treats each update statement as a single
unit, so none of the attribute modifications would be made, and an error would
be returned to the client.

Renaming and/or Moving an Entry

The moddn changetype statement indicates that an existing entry is to be
renamed and optionally moved to a new location in the directory tree. The syn-
tax of the moddn update statement is

dn: <dn of entry to be modified>

changetype: moddn

[newsuperior: <dn of new parent>]

[deleteoldrdn: (@ | 1)]
[newrdn: <new relative distinguished name for the entry>]

If an entry’s RDN is to be changed, the newrdn and deleteoldrdn parameters
must be provided. If an entry is to be moved to a new location in the tree, the
newsuperior parameter must be provided. Both operations can be performed at
once; that is, an entry can have its RDN changed at the same time it is moved
to a new location in the tree.

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
120

For example, to change an entry’s name without moving it to a new location
in the tree, you’d use the following:

dn: uid=bjensen, ou=People, dc=airius, dc=com

changetype: moddn

newrdn: uid=babsj
deleteoldrdn: 0

After this update is performed on the server, the entry would look like this:

dn: uid=babsj, ou=People, dc=airius, dc=com

[other attributes omitted for brevity]

uid: babsj

uid: bjensen

Notice how the old RDN, uid: bjensen, is still present in the entry. When o is
provided for the deleteoldrdn flag, the old RDN is retained as an attribute of
the entry. If you want the old RDN to be removed from the entry, include
deleteoldrdn: 1 in your moddn update statement. If this were done, the entry
would look like this after being renamed:

dn: uid=babsj, ou=People, dc=airius, dc=com

[other attributes omitted for brevity]

uid: babsj

If you want to move an entry to a new location in the tree, you can use the
newsuperior parameter to specify the DN of the entry you would like the entry
to be moved to. For example, if you want to move Babs’s entry under the
Terminated Employees organizational unit, you would use the following LDIF
update statement:

dn: uid=bjensen, ou=People, dc=airius, dc=com

changetype: moddn
newsuperior: ou=Terminated Employees, dc=airius, dc=com

The moddn changetype statement may behave differently depending on

whether the server supports LDAPvV3. If the server supports only LDAPvV2,

the newsuperior parameter may not be used; LDAPV2 does not support moving
an entry to a new location in the tree.

LDAP and Internationalization
Directory services, by their very nature, span language boundaries.
Multinational companies might have offices in dozens of countries, each with a
distinct language. To address this growing need, LDAPV3 has been designed so
that it can easily support multiple languages.

CHAPTER 3 AN INTRODUCTION TO LDAP
121

LDAPv3 uses the UTF-8 (Unicode Transformation Format-8) character set for
all textual attribute values and distinguished names. UTF-8 is a standard char-
acter coding system that can represent text in virtually all written languages in
use today. It is defined and developed by the Unicode Consortium, an industry

group.

There are two important points to understand about UTF-8. First, because of
the way UTF-8 is designed, ASCII data is also valid UTF-8 data. This has the
benefit of being highly compatible with existing English-language directory
data; no work needs to be done to transform the data into valid UTF-8.

The second point is that when you use UTF-8, it becomes unnecessary to
declare an attribute value to be in a particular character set. In other systems,
values must be tagged with their character set (e.g., Latin-1, Shift-JIS) so that
the data may be correctly interpreted. However, because the UTF-8 character
set contains codes for the glyphs of virtually all languages, this is unnecessary.
It’s even possible to use multiple languages within a single attribute value.

Because LDAPV3 servers can store text in multiple languages, it is useful to
have some way to store and access attributes by language type. For example, in
an international corporation with offices in the United States and Japan, it may
be desirable to store several representations of a Japanese employee’s name in
the directory, including a version in Japanese and a version in English. The
LDAP Extensions Working Group in the IETF has proposed a method for
accomplishing this through the use of language codes.

A language code is an option on an LDAP attribute name. Separated from the
base attribute name with a semicolon, it gives the particular language for the
attribute in a standard format. For example, the attribute type cn;lang-fr refers
to a common name in the French language, and the attribute type sn;lang-ja
refers to a surname in the Japanese language. All language names are repre-
sented by a two-character code defined in ISO Standard 639, “Code for the rep-
resentation of names of languages.”

The LDAP language code standard also allows for names to be represented in a
particular regional dialect or usage of a particular language. For example, there
are some minor differences in how the English language is written in the
United States and the United Kingdom. The language code lang-en-us identi-
fies an attribute in the U.S. dialect, whereas the language code lang-en-GB indi-
cates the British dialect. The country codes used to specify the region are
defined in ISO Standard 3166, “Codes for the representation of names of coun-
tries.”

PART
122

AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP

An LDAP client may use language codes in search filters and attribute lists. In
other words, an LDAP client may limit its search to only those attributes in the
specific language it is interested in, and it may request that only specific lan-
guages be returned by specifying language codes in the list of attributes to be
returned. For example, a client could search the French common name attribute
with the filter (cn;lang-fr=Jdules) and specify that the French common name
and description attributes be returned by including only cn;lang-fr and
description;lang-fr in the list of attributes to be returned.

Note that there is no way to retrieve all dialects of a particular language code.
For example, the attribute type cn;lang-en is not the same as the attribute type
cn;lang-en-US. Each dialect must be specifically requested. In general, avoid
the use of dialects unless necessary. However, attributes with language codes
are treated as subtypes of attributes without language codes. So, for example,
the attribute cn;lang-en is a subtype of the attribute cn. Requesting the cn
attribute will retrieve all language code variations of the cn attribute.

Language codes are a relatively new development, and not all servers support
them at this time. Check with your software vendor to see if language codes
are supported.

LDAP Overview Checklist

The term LDAP has come to mean four things:

o A set of models that guides you in your use of the directory; a data
model that describes what you can put in the directory; a naming model
that describes how you arrange and refer to directory data; a functional
model that describes what you can do with directory data; and a security
model that describes how directory data can be protected from unautho-
rized access.

o The LDAP protocol itself.
o An API for developing directory-enabled applications.

o LDIF, a standard interchange format for directory data.

Further Reading

A Summary of the X.500(96) User Schema for use with LDAPv3 (RFC 2256).
M. Wahl, 1997. Available on the World Wide Web at http://info.internet.
isi.edu:80/in-notes/rfc/files/rfc2256.txt

CHAPTER 3 AN INTRODUCTION TO LDAP
123

Active Directory Services Interface (ADSI). Available on Microsoft’s SDK World
Wide Web site at http://www.microsoft.com/msdn/sdk/.

Code for the representation of names of languages, 1SO Standard 639. The
International Organization for Standardization, 1st edition, 1988.

Codes for the representation of names of countries, ISO Standard 3166. The
International Organization for Standardization, 3rd edition, 1988.

Java Naming and Directory Interface (JNDI). Available on JavaSoft’s INDI Web
site at http://java.sun.com/products/jndi/.

LDAP Data Interchange Format: Technical Specification, Internet Draft. G. Good,
1998. Available on the World Wide Web at http://www.ietf.org.

Lightweight Directory Access Protocol (v3) (RFC 2251). M. Wahl, T. Howes,
S. Kille, 1998. Available on the World Wide Web at http://
info.internet.isi.edu:80/in-notes/rfc/files/rfc2251.txt.

Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions (RFC 2252).
M. Wahl, A. Coulbeck, T. Howes, S. Kille, 1998. Available on the World Wide
Web at http://info.internet.isi.edu:80/in-notes/rfc/files/rfc2252.txt.

Lightweight Directory Access Protocol (v3): The String Representation of LDAP
Search Filters (RFC 2254). M. Wahl, T. Howes, S. Kille, 1998. Available on the
World Wide Web at http://info.internet.isi.edu:80/in-notes/rfc/files/
rfc2254. txt.

Lightweight Directory Access Protocol (v3): UTF-8 String Representation of
Distinguished Names (RFC 2253). M. Wahl, T. Howes, S. Kille, 1998. Available on
the World Wide Web at http://info.internet.isi.edu:80/in-notes/rfc/files/
rfc2253. txt.

PerLDAP: an Object-Oriented LDAP Perl Module for Perl5. Available on
Netscape’s Directory Developer Central Web site at http://
developer.netscape.com/tech/directory/.

Programming Directory-Enabled Applications with Lightweight Directory Access
Protocol. T. Howes, M. Smith, Macmillan Technical Publishing, 1997.

The C LDAP Application Program Interface, Internet Draft. M. Smith, T. Howes,
A. Herron, C. Weider, M. Wahl, A. Anantha, 1998. Available on the World Wide
Web at http://www.ietf.org.

The Java LDAP Application Program Interface, Internet Draft. R. Weltman,
T. Howes, M. Smith, 1998. Available on the World Wide Web at
http://www.ietf.org.

PART | AN INTRODUCTION TO DIRECTORY SERVICES AND LDAP
124

The Unicode Standard, Version 2.0. The Unicode Consortium, Addison-Wesley,
1996.

Understanding X.500: The Directory. D. Chadwick, International Thomson
Computer Press, 1996. Now out of print; selected portions available on the
World Wide Web at http://www.salford.ac.uk/its024/X500.htm.

Looking Ahead
In Part I of this book, “An Introduction to Directory Services and LDAP,”
we’ve laid the groundwork for the rest of the book by giving you an overview
and history of directory services and an introduction to the LDAP protocol and
models. In Part I, “Designing Your Directory Service,” we’ll focus on design-
ing your directory service from the ground up. We’ll discuss the life cycle of a
directory system and how you should assess your directory needs. Then we’ll
cover each major directory design topic in detail.

