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Preface 

These lecture notes form a primer to the study of Brownian motion by colloidal 
particles. The main theme is the Stokes-Einstein diffusion coefficient for a single 
colloidal sphere, freely diffusing in a viscous (Newtonian) fluid. These notes 
certainly do not form an exhaustive review of Brownian motion:  main topics of 
current research such as effects of concentration or confinement are not addressed. 
The various references in theses notes provide access to ample literature on many 
more aspects of Brownian motion. 

The author is very grateful to Marina Uit de Bulten for her skill (and patience) in the 
preparation of these notes, and to Ingrid van Rooijen and Jan den Boesterd for 
figures and photography. Prof. G. Koenderink and Prof. A. Vrij are acknowledged for 
many enlightening discussions on Brownian motion. Dr. K. Planken and Drs. B. 
Kuipers are thanked for careful proof reading; any remaining errors or mistakes 
are, of course, the author’s responsibility. 
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1 Introduction 

A brick sinks in water by the action of gravity, whereas a very finely divided brick 
remains suspended in the liquid, even though its total weight remains the same. 
Under a microscope with sufficient resolution we would observe suspended brick 
particles, which perform erratic rotations and translations in arbitrary directions, 
with little or no effect of gravity for particles with a diameter below about one 
micron. Small particles, in other words, spontaneously diffuse and evolve without 
any external assistance towards a homogeneous distribution in a liquid. Diffusion is 
actually the 'thermal' transport mechanism for all components of a solution: solvent 
molecules and electrolyte as well as large solutes such as inorganic colloids or 
proteins. The diffusion coefficient is therefore a central quantity in a large set of 
kinetic processes, including chemical reaction kinetics of molecules, aggregation 
kinetics of colloids, and nucleation and growth in supersaturated solutions. 

Diffusion coefficients have been intensively studied with respect to, among many 
other things, concentration effects or the influence of a confining medium (gel, 
porous material, a capillary). These effects are always compared to a well-
understood reference process, namely the free diffusion of a single particle in a 
liquid, far away from other particles or a wall, for which the diffusion coefficient D is 
given by Einstein’s equation1 

,
kT

D
f

   (1.1) 

where kT is the thermal energy, k is the Boltzmann constant, and f is the friction 
coefficient of the particle. The simplest case is a spherical particle with radius R in a 
Newtonian liquid with viscosity for which the friction coefficient for translational 
motion equals the so-called Stokes friction factor: 

6f R   (1.2) 

The combined result 

6

kT
D

R
   (1.3) 

is called the Stokes-Einstein (SE) diffusion coefficient for translational sphere 
diffusion. It allows us, for example, to determine the radius of a colloidal sphere 
from diffusion measurements on a very dilute dispersion. Concentration effects in 
dense dispersions or confinement of a sphere in a small geometry lead to 
(sometimes drastic) deviations from eq. (1.3). These effects, however, do not 
concern us here. The main goal in later chapters is to derive and explain the SE 
equation and discuss some of its applications in colloidal kinetics. 

                                           
1 A. Pais points in his Einstein biography Subtle is the Lord (Oxford University Press, 1982) to the remarkable 
coincidence that eq. (1.3) was discovered by William Sutherland (1859-1911) at practically the same time as Einstein 
in 1905. See W. Sutherland, Phil. Mag. 9, 781 (1905). According to Pais, (1.3) should be properly called the 
Sutherland-Einstein relation. Sutherland, however, can claim priority as he published eq. (1.3) already in 1904, see 
W. Sutherland “The measurement of large molecular masses”, Australian Association for the Advancement of 
Science. Report of Meeting, 10 (Dunedin, 1904), 117-121. Firmly established naming of equations, however, is nearly 
impossible to change. 
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Brownian motion also comprises the rotational diffusion of particles, which is of 
importance to understand the response of colloids or molecules to external fields. 
The alignment of a magnetic or electric dipole moment of particles by an external 
field is counteracted by rotational Brownian motion which tends to randomize 
particle orientations, just as translational diffusion randomizes particle positions. 
The rotational diffusion coefficient Drot has the same form as the translational 
coefficient, be it with a different friction factor: 

38
 r

r

kT kT
D

f R
  (1.4) 

The rotational Stokes friction fr, incidentally, is easier to derive than the 
translational friction factor f (see chapter 6) so there is every reason to include 
rotational diffusion in an introductory text.  

The outline of these lecture notes is as follows. The two main topics underlying 
Brownian motion in a liquid are thermal diffusion and hydrodynamics which 
eventually appear in the diffusion coefficients (1.3) and (1.4) as, respectively, the 
thermal energy kT and the Stokes friction factor. The first topic rests on the general 
diffusion equation which is, among other things, explained in chapter 3, and applied 
in chapter 4 to find the quadratic displacement of Brownian particles in time. This 
finding is still independent of the medium in which Brownian motion takes place. 
Since we are interested in colloids in a liquid phase, we address in chapter 5 the 
second main topic, namely hydrodynamics based on the Stokes equation for 
viscous flow. This equation is solved in chapter 6 to obtain the friction factors for 
translating and rotating spheres. The now completed Stokes-Einstein diffusion 
coefficient is applied in chapter 7 to processes such as colloidal aggregation and 
diffusional growth, the kinetics of which is determined by the Brownian motion of 
spherical particles. 

An introduction to Brownian motion would be incomplete without any attention for 
the historical significance of its relation in eqs. (1.3) and (1.4) to the Boltzmann 
constant k. Therefore we first situate in chapter 2 Brownian motion in its historical 
context.  
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2 The discovery of Brownian motion 

Diffusion of colloids (i.e. particles with at least one dimension in the range 1-1000 
nm) is often referred to as Brownian motion, and colloids are also called Brownian 
particles. There is no principal distinction between diffusion and Brownian motion: 
both denote the same thermal motion, be it of a molecule or a colloid. The adjective 
‘Brownian’ for colloids has nevertheless stuck, for good reasons because Robert 
Brown’s discovery ultimately became a corner stone of colloid science as we know it 
today. The account given below is certainly not exhaustive, but outlines some 
aspects of a fascinating history behind the Stokes-Einstein diffusion coefficient in 
which physics and chemistry came to terms with the concept of molecules in 
thermal motion. 

 

 

 

Fig. 2.1. Brown used a microscope of this type for his study of Brownian motion. This 
microscopic has only one lens in the form of a small glass grain.(Courtesy Dr. J. Deiman, 
Utrecht University Museum, photograph J. den Boesterd). 
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Fig. 2.2. The ornamental flower Clarkia Pulchella (H.W. Richett, Wild Flowers of the United 
States, vol. 6 (Mc Graw Hill, New York 1967) 

A small grain of glass 
The Brownian motion of visible particles suspended in a fluid led to one of the first 
accurate determinations of the mass of invisible molecules. The name giver of 
Brownian motion, however, was completely unaware of molecules in their present 
meaning, namely compounds of atoms from the Periodic System. The Scottish 
botanist Robert Brown (1773-1858) was already in his own time well-known as an 
expert observer with the single-lens microscope. With this modest instrument, 
essentially a miniature magnifying glass (fig. 2.1), Brown not only identified the cell 
nucleus but also studied the fertilisation process in plants, for which purpose he 
investigated the white pollen of the ornamental plant Clarkia Pulchella (fig. 2.2).  

In June 1827 he observed under his microscope the zigzag motion of tiny objects in 
water which had escaped from the pollen grains. Such motions, of course, could be 
expected for small organisms which, in analogy with bacteria or spermatozoa, move 
in water without any external assistance. Brown decided to investigate the 
significance of these zigzagging organisms for the love life of Clarkia Pulchella in 
more detail. Soon, however, he started to doubt whether the tiny particles were 
indeed living organisms, even though their motions did not seem to stop. For 
Brown also scrutinized finely powdered inorganic substances (silica, clay, grains of 
sand) under his single-lens microscope and found that also inorganic particles, if 
sufficiently small, exhibit erratic motions when dispersed in water. Brown came to 
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the startling conclusion that small, dead pieces of matter spontaneously move in a 
liquid.  

This conclusion was controversial for many years. Especially the spontaneity of the 
particle motion was contested in view of factors such as mechanical vibrations, 
solvent evaporation, and liquid convections, which could cause the observed motion 
of suspended particles. Such objections are not unreasonable; dust particles are 
seen to whirl around in sunlight due to airconvection, and even minute temperature 
gradients set up liquid flows in dispersions.  

Nevertheless, an experiment by the author with the microscope in Fig. 2.1 using an 
aqueous dispersion of monodisperse latex spheres (diameter 1.0 m) confirms that 
Brown indeed must have been able to observe Brownian motion. The irregular, 
diffusive movements of individual latex particles can be distinguished under the 
microscope of fig. 2.1, be it with some difficulty, from convective motions due to 
liquid flow, in which particles jointly move in the same direction. Such an 
experiment, of course, not only employs our modern, monodisperse latex particles 
in a clean solution, but is certainly also guided by what we expect to see. An 
unprejudiced 19th century observer trying to repeat Brown’s experiments must, 
apart from external disturbances, have been easily confused by the complex image 
of moving and stagnant objects (dust, bacteria, cells, colloids of various size and 
shape etc.) observed in a drop of sap or water under a microscope. It is very 
difficult to interpret – or sometimes even to put into words – observations without 
sufficient guidance by expectations or theory. 

This guidance developed slowly: it took nearly fifty years until Brown's observations 
were linked to thermal motion. The concept of molecules in thermal motion was 
central to the kinetic theory of gases that was developed in the 19th century. 
However, making a connection with Brownian motion in a liquid was anything but 
obvious. Christian Wiener (1826-1896) who observed Brownian motion in what we 
now call a colloidal silica sol, made in 1863 a first attempt to relate it to inherent 
fluctuations of the suspending fluid. It was, however, the Belgian Jesuit Delsaux ( - 
) who stated in 1877 for the first time explicitly that Brownian motion results "from 
the interior dynamic state that the mechanical theory of heat attributes to liquids". 
He also notes that the Brownian motion is a remarkable confirmation of this 
mechanical theory. This confirmation remained qualitative, if not speculative, until 
statistical thermodynamics had sufficiently developed, and until it was clearly 
apprehended that large particles (colloids) obey the same statistical laws as 
molecules. This realisation was a turning point in a long-standing controversy on 
the status of atoms and molecules, as will be explained below.  

Colloids are molecules 
Proton, neutrons and electrons unite to form the atoms of the Periodic System. 
These atoms built molecules by covalent or ionic bonds and these molecules in turn 
assemble to form solids or liquids. We take this hierarchy for granted, though this 
certainly does not imply that the various steps in the hierarchy are easy to 
understand. On the contrary: why, for example, molecules form liquids and how 
liquids can be described in terms of molecular interactions are technically very 
difficult, only partly solved problems. However, we usually do not question the 
validity of the strategy itself, namely to explain matter in terms of its constituent 
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molecules. Nevertheless, even as late as 1900, the status and even the very 
existence of atoms and molecules were fiercely debated.  

Chemists were drawing schematic diagrams, the forerunners of our chemical 
formulae and stoichiometric equations, at least since Dalton (1766-1844). For a 
critical 19th century student, however, the physical evidence that such chemical 
symbols might represent 'real' particles was anything but convincing. The student 
could point in the first place to the confusion about the nature of such particles. 
Were they indivisible atoms in the strict sense of the word? (‘atom’ derives from the 
ancient Greek ‘-s= un-cuttable). Or were they agglomerates of such atoms? 
And was there only one type of atom, for example hydrogen as postulated by Prout 
(1785-1850), or could there be a whole family of ‘chemical’ atoms as advocated by 
Dalton? Our 19th century student could also point to the absence of any compelling 
evidence on the size of atoms or molecules, and that no one knew how many 
molecules, if they existed, went in one mole of substance.  

One of the first credible estimates of molecular size was made by Loschmidt (1821-
1895) using Maxwell’s kinetic theory for the viscosity of a gas of hard spheres 
(Exercise 1). However, this result was apparently not the proof that could convince 
sceptics such as the physicist Ernst Mach (1838-1916), who admitted that 
molecules were a very useful hypothesis, but anyhow a hypothesis. Wilhelm 
Ostwald (1853-1932) rejected the reality of molecules, being convinced that all 
science should be based on phenomenological thermodynamics. We should note the 
consistency in this view point: the validity of the First law (total energy is 
conserved in any process) and the Second law (total entropy cannot decrease) does 
not rely on any particular molecular of microscopic model. So strict adherence to 
phenomenological thermodynamics is compatible with denying the existence of 
molecules. 

Statistical thermodynamics, in contrast, is much less without engagement. It 
explains the Second law of thermodynamics by applying the laws of mechanics and 
the theory of probability to a collection of discrete particles in thermal motion. 
Ludwig Boltzmann (1844-1906), a founder of statistical mechanics, proposed in 
1875 the relation between entropy S and the probability  

lnS = k  ,   (2.1) 

an equation carved on Boltzmann's tombstone in Vienna. Here  is the number of 
microscopic states that correspond to a certain macroscopic state with fixed total 
energy. Further k, the Boltzmann constant, is the ratio of the molar gas constant Rg 
to Avogadro's number: 

23 11 38 10 JKg

Av

R
k . ,

N
     (2.2) 

and has the dimension of entropy. Boltzmann's entropy formula has an important 
consequence for the distribution of an assembly of N particles in an isolated 
system. According to the Second law, the entropy in an isolated system must 
increase until equilibrium, that is the state with maximal entropy, is reached. For 
the N particles the maximum of the entropy function 
S = k ln  is reached when the particles adopt the Boltzmann distribution: 
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 
 

exp

exp
i ii

i i
i

g / kTN

N g / kT








  (2.3) 

Here Ni is the population at the energy level i, with a degeneracy gi; the sum in the 
denominator over energy levels is the partition function of a particle. Such results 
of statistical thermodynamics are clearly only meaningfull when there are really 
particles 'out there', which are thermally moving such that they can evolve to and 
remain in the equilibrium distribution of eq. (2.3).  

The verification of eq. (2.3), however, presents a problem. One cannot directly 
count molecules in such a distribution by, for example, microscopic observations. 
Or so it seems, for it was realised by A. Einstein (1879-1955) and J. Perrin (1870-
1942) that the Boltzmann distribution not only applies to atoms or molecules.  It 
equally holds for the much larger particles in a colloidal suspension (see fig. 2.3), 
because the principle of “equipartition of energy” does not distinguish the thermal 
motion of a solvent molecule from that of a suspended colloid. The kinetic energy of 
a particle with mass m , translating with a speed v is 

21

2kinE m v   (2.4) 

The equipartition principle guarantees that in thermal equilibrium all components of 
a solution (solvent molecules as well as colloids, polymers or any other particles) 
have the same average translational kinetic energy, which is fixed by the absolute 
temperature T: 

3

2
 kinE kT   (2.5) 

Thus the root-mean-square speed of a particle is: 

2 3
  

kT
v

m
 ,  (2.6) 

showing that at a given temperature a colloid with a large mass moves slower than 
a molecule. This large mass also 'compresses' the Bolzmann distribution in the 
earth gravity field. At a height x above the surface of the Earth at x = 0, the 
potential energy of a particle with mass m is: 

U mgx ,   (2.7) 

where g is the acceleration of gravity. The Boltzmann distribution (2.3) for colloids 
in the gravity field leads to an equilibrium profile of the form (exercise 2): 

( ) ( 0)exp 
-mgx

x x
kT

       
  (2.8) 

Here  is the colloid number density; x = 0 is the reference plane where U = 0. 
This exponential or ‘barometric’ distribution, which only holds for non-interacting 
particles, has a thickness characterised by the 'gravitational length': 

g

kT
l ,

mg
   (2.9) 
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which is the height at which the number density has dropped to (x) = (x= 0) /e. 
One easily verifies (exercise 2) that for oxygen molecules lg is several kilometers, 
whereas colloidal spheres may adopt equilibrium profiles of only several cm or less. 
Since such spheres can be observed with an optical microscope, Perrin (fig. 2.3) 
was able to directly count the number densities predicted by eq (2.8). He 
determined the mass of his colloidal spheres from measurements of their Stokes 
sedimentation velocity (see Chapter 6). Then when  (x) in eq. (2.8) is measured 
as a function of height x at a given temperature, the Bolzmann constant k remains 
the only unknown. Perrin thus determined experimentally k, and found in this way a 
reasonable value for Avogadro's number. 

Perrin initiated the use of 'well-defined colloids' to study molecular statistics on a 
spatial scale which is accessible to an optical microscope. In colloid science this 
'upscaling' is still an important strategy, and one is still wrestling with the problem 
that also Perrin had to face: colloidal particles always have a certain distribution in 
shape and mass (they are 'polydisperse') whereas atoms are monodisperse – if one 
disregards isotopes. The distribution in eq. (2.8), however, presupposes particles 
with identical mass m. Perrin used fairly monodisperse latex spheres, obtained from 
laborious fractionation procedures on natural latex ('gamboge') solution: by 
repeated sedimentation a few hundred milligrams of spheres were obtained from 
one kilo of rubber. Nowadays well-defined colloids can be prepared by precipitation 
or polymerisation of insoluble substances in a solution. 

The equivalence between colloids and molecules also lead Perrin to another 
microscopic determination of Avogadro's number. Einstein was motivated to 
develop arguments to support the existence of molecules and the applicability of 
statistical thermodynamics. In his annus mirabilis 1905 (in which he also first 
published on special relativity and the photo-electric effect) Einstein reported 
equations for the diffusion of a particle in a liquid. They are the expression for the 
diffusion coefficient in eq. (1.1) and the relation: 

2 6 r Dt ,   (2.10) 

stating that a particle with diffusion coefficient D diffuses in such a way that the 
average quadratic displacement <r2> is proportional to time t. Einstein noted - 
allegedly unaware of earlier literature on Brown's observations –that his work could 
explain Brownian motion as an observable manifestation of particles in thermal 
motion. Perrin verified eq. (2.10) by measuring the displacements of his colloidal 
latex spheres (see Fig. 4.1) under a microscope and, via the Stokes-Einstein eq. 
(1.1), again found a reasonable value for Avogadro's number. Perrin's experiments 
made quite an impact as they quantitatively confirmed that through a microscope 
one indeed directly observes the 'heat motion' of large molecules. Even a sceptic 
such as Wilhelm Ostwald accepted eventually the reality of molecules, being 
convinced by Perrin's experiments.  
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Fig. 2.3. Perrin’s microscopic image of the sedimentation-diffusion equilibrium of resin 
spheres (diameter one micron) in water. Source: F. Randriamasy, Revue du Palais de la 
Découverte 20, no. 197, 18-27 (1992). 
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Does Brownian motion really demonstrate the existence of molecules? The 
significance of Perrin’s work is the experimental demonstration that Brownian 
particles provide a visible example of thermal motion. Textbooks sometimes 
misrepresent this result by suggesting that Brownian motion is caused by 
‘uncompensated’ collisions of solvent molecules, which kick around an otherwise 
totally inert colloidal particle. Consequently, if a colloid is seen to diffuse, there 
must be unseen solvent molecules. This inference, however, is incorrect, because 
each colloid has an intrinsic motion or translational kinetic energy, which has 
nothing to do with the surrounding liquid. Irrespective of whether a colloid is 
suspended in a liquid or, say, a water vapor or photon gas, it moves randomly 
about an equilibrium position due to its kinetic energy. Only the distance it moves 
is determined by the energy dissipation to its surroundings; a viscous damping in 
case of a liquid. The Stokes-Einstein diffusion coefficient in eq. (1.3) summarises 
this state of affairs: diffusion is driven by the thermal energy kT with no reference 
to the surroundings of the colloid, and damped by the Stokes friction factor which 
specifies that the colloid in question is suspended in a continuous fluid with 
viscosity . 

Exercises 
1. The first estimate of a molecular diameter d in 1865 by Loschmidt is based on 

the proportionality: 

 ,d   (2.11) 

where  is the mean free path length of molecules in a gas where molecules 
occupy a volume fraction . 

a. Verify that this proportionality is correct. 
b. Find out how Loschmidt was able to deduce or estimate . 
c. How would you determine  for, say, nitrogen gas at T = 298 K and P = 1 

bar? Could Loschmidt also have used your method? 
d. Estimate d for this nitrogen gas using the proportionality in (2.11). Try to 

find the correct proportionality factor in (2.11). Does this improve your 
estimate of the diameter of N2-molecules? 

e. Calculate Avogadro’s number on the basis of your estimate of d. 

2. Derive the barometric height distribution in eq.(2.8). Start with formulating the 
force balance on the particles in the equilibrium profile. How large is lg for 
oxygen molecules, and for colloidal spheres with a radius R = 100 nm and 
mass density of 2 g cm-3? [7.9 km, respectively 50 m, taking T = 298 K]. 

3. Which two methods did Perrin use to determine NAv? Can you think of other 
methods to determine NAv? 

4. Explain in what sense Brownian motion contradicts the Second Law of 
Thermodynamics. 
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3 The continuity equation and Fick’s law 

Brownian motion is a sequence of random steps in the position or orientation of a 
colloidal particle. Such a sequence, also called diffusion, is described by a diffusion 
equation which informs us how particle positions and orientations evolve in time. 
Diffusion belongs to the large class of transport phenomena, with other members 
such as the transport of heat or electricity, and also the viscous flow of liquids 
treated in Chapter 5. Transport phenomena obey certain conservation laws, which 
stipulate that some quantity is conserved. For example, when colloids diffuse in a 
closed system, their total mass will remain constant. Such a conservation of mass, 
charge, energy or any other quantity is conveniently expressed in the language of 
vector analysis (see Appendix A) by a continuity equation. Transport phenomena, 
of course, differ with respect to the substance that is displaced, and the type of 
force or gradient that sets the substance in motion. These distinctions are described 
by constitutive equations. 

The continuity equation 
Let j


 be the flux density of some property f, such as the concentration of 

molecules or colloids in a fluid; then j


 is the flux density of particles through a unit 

area per second. Suppose there are no 'sources' or 'sinks' for molecules in the fluid. 
Then f obeys a conservation law, which in vector notation is formulated as follows. 
Consider a surface S enclosing a region V in a fluid (Fig. 3.1), with a normal unit 

vector n

 pointing outwards from a surface element dS. 

 
 

Fig. 3.1. Flux through the surface of a volume V.  

The flux density component along the normal is the dot product j n
 

 so the net 

amount of f flowing through the total S surface in unit time is the surface integral: 

S

j n dS
 

  (3.1) 

Note the sign convention: in the case of a closed surface as in Fig. 3.1 the normal is 
pointing in the positive, outward direction and the surface integral (3.1) is positive 
if f is leaving the volume.  
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Suppose, without any loss of generality, that we consider the flow of water such 
that f is the local water concentration. Then at any time t the total amount of water 
in volume V is the volume integral: 

V

f dV ,  (3.2) 

and the rate at which this total changes is: 

V V

d f
f dV dV

dt t




  ,  (3.3) 

where it is assumed that /f t   is continuous such that the derivative can be 

moved under the integral sign. Conservation of water requires that 

S V

f
j n dS dV

t


  

 
 

  (3.4) 

According to the divergence theorem (see Appendix A) the surface integral also 
equals: 

S V

j n dS j dV    
 

  (3.5) 

The physical significance of this theorem for water flow is as follows. The 

divergence . j
 

 is the net water flow, per unit volume, out of a volume element. 

This volume element has a positive divergence. The outgoing water enters another 
volume element contributing to an opposite, negative divergence. Thus in the 
volume-integral in eq. (3.5) all divergences cancel, except for the water leaving or 
entering the region V through its surface. The latter water flow is quantified by the 
surface integral in eq. (3.5). From eqs. (3.4) and (3.5) it follows that: 

0
V

f
j dV ,

t

    
 

  (3.6) 

The fact that the volume integral in eq. (3.6) is zero does not necessarily imply a 
zero integrand. One could imagine a source inside V (integrand positive) which is 
exactly compensated by a sink (integrand negative). However, we already excluded 
the existence of sources and sinks inside V so the quantity f is conserved 
everywhere in V. Under this assumption the integrand is always zero: 

0
f

. j ,
t


  



 
  (3.7) 

This is the continuity equation, a basic equation both in diffusion (chapter 4) and 
hydro-dynamics (chapter 5), with no other physical meaning than that f is a 

conserved quantity. Let us apply this result to the mass flux j u
 

 of a fluid with 

velocity u

 and mass density 

  0. u
t

 
  



 
    ,  (3.8) 

to find for a fluid which has everywhere the same constant mass density that: 
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constant0  
 

. u ,    (3.9) 

This is the continuity equation for an incompressible fluid. It is an important 

constraint on the velocity field u

 around a colloid in a suspension, because the 

solvent usually is an incompressible liquid. Eq. (3.9) describes a steady state which 
by definition means that the distribution of the quantity f in (3.7) does not change 
in time. In a stationary flow, for example, of water in Fig. 3.1, water molecules 
enter and leave volume V at the same rate such that the water concentration f 
remains constant. Then / 0f t    so from the continuity eq. (3.7) it follows that 

the steady state automatically satisfies: 

0j 
 

  (3.10) 

In the steady state the divergence of the flux is zero, which should not be confused 
with the equilibrium state in which the flux itself is zero. The fluxes in the steady 
state are due to irreversible processes (diffusion, viscous flow), which produce 
entropy, whereas in thermodynamic equilibrium (for example the Boltzmann 
distribution from Chapter 2) no entropy producing transport processes can occur. 
One can also view equilibrium as the limiting case of a steady state in which all 
fluxes vanish. The concept of a steady or stationary state will be applied repeatedly 
in later chapters (exercise 3). 

Constitutive equations; Fick’s laws 
The conservation eq. (3.7) has two unknowns so to find the quantity f a second 

relation between f and its flux j


is needed. Such a relation is the constitutive 

equation which specifies the transport problem and identifies the gradient that is 
responsible for the existence of the flux j. An example is a concentration gradient of 
colloids which drives collective diffusion. The concept of a flux driven by a gradient 
of an intensive variable is quite general: 

 

Flux of = transport property x gradient in 

particles diffusivity particle density (Fick) 

charge conductivity potential (Ohm) 

liquid permeability pressure (Darcy) 

momentum viscosity momentum density 
(Newton) 

energy heat conductivity  temperature (Fourier) 

 

The momentum flux will be dealt with later in Chapter 5. Liquid flow according to 
Darcy’s law is briefly addressed in Chapter 6. Below we will formulate Fick’s 
diffusion laws. 

Brownian motion is a random motion: colloids diffuse in all directions with equal 
probability. Thus there is no net displacement of particles in a homogeneous 
distribution with a constant concentration of colloids. A concentration gradient, 
however, induces a collective displacement of colloids, also referred to as collective 
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or gradient diffusion. The corresponding diffusion flux is given by a constitutive 
equation known as Fick’s first law: 

,dj D   


  (3.11) 

where  is the colloid concentration, which should not be confused with the mass 
density  in eq. (3.8). The number of colloids is conserved so the conservation law 
eq. (3.7) yields: 

. ,djt


 



 
  (3.12) 

which is also known as Fick’s second law. If there is only a particle flux due to 
diffusion we can substitute eq. (3.11) to obtain: 

2.( ) ,D D
t

  
     



 
  (3.13) 

assuming that the diffusion coefficient D is a constant (see Appendix A for further 
explanation of the vector notation). This diffusion equation can be solved to give 
the concentration of the diffusing particles at every point in space for every time. If, 
for example, the particles are situated in a thin slab, the solution (exercise 2) of eq. 
(3.13) is a family of bell-shaped curves as depicted in Fig. 3.2.  

For a steady (or stationary) diffusion process the concentration profile of diffusing 
particles does not change in time. Then / 0t    so the Laplacian of the 

concentration in eq. (3.13) is zero: 

2 0    (3.14) 

This result is also known as the Laplace equation. To solve it the geometry and the 
boundary conditions of the diffusion problem must first be specified (Exercise 1). 
Often diffusion or Brownian motion is accompanied by convection, i.e. transport of 
particles by an external force (gravity, an electric field) or flow field. For a 

concentration of colloids each moving with a velocity u

, the convective particle 

flux is: 

cj u
 

  (3.15) 

Adding a diffusive flux dj


 the continuity equation (3.7) for the colloid concentration 

becomes: 

2.( ) .( )d cj j D u
t

  
     



   
  (3.16) 

This is the convection – diffusion equation which will be employed in Chapter 4 to 
derive the Stokes-Einstein diffusion coefficient, and in chapter 7 to analyse 
Brownian motion in an external force field. 

Exercises 

1. A vessel with constant colloid concentration CA is connected by a tube of length 
L to another vessel with constant concentration CB  CA. Solve the diffusion 
equation (3.13) for diffusion in the tube. 
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2. a. Solve the diffusion eq. (3.13) for the case in which all particles are located at 
t=0 in a thin slab from which they start to diffuse in the positive and negative x-
direction. (Hint: this problem can be solved using Laplace transformation). 

b. Suppose at t = 3 sec, 2 3 cm.  x Calculate the probability that at t = 3 

sec a particle is found within 3 cm  of the thin slab [0.68]. 

3. Identify where in later chapters the concept of a steady state is applied an 
verify that indeed eq. (3.10) has been used. 

4. Re-interpret eqs. (3.1) - (3.10) for the case the flux lines in Fig. 3.1 represent 

an electric field 

E . Rewrite these equations for the case the volume V contains 

a net charge density q.  
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 For further informal discussion of surface integrals and the divergence theorem 
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(Norton, New York 1973) 



 

22 
 

 

 

Fig. 3.2. Concentration profiles of Brownian particles which were located on a thin slab at 
t=0. The bell-shaped curve on a box represents the relative density of the particles for each 
point in the x-direction. The curve at the bottom illustrates the case in which the root-mean-
square displacement at t= 3 s equals 3  cm, see exercise 2. 
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4 Brownian Motion  

Brownian motion of colloids and the diffusion of solvent molecules are both the 
manifestation of translational (and rotational) kinetic energy. In thermal equilibrium 
this kinetic energy is on average the same for colloids and molecules. An important 
difference, however, arises with respect to time scales: for solvent molecules a 
colloidal particle is an extremely sluggish object, whereas the colloid experiences a 
dense swarm of molecules colliding with it at extremely high frequency. The various 
characteristic times are important for understanding Brownian motion and to 
apprehend what is actually observed when viewing the zigzagging colloids through 
an optical microscope (fig. 4.1). We will identify timescales below and provide 
typical times for the case of a standard colloidal sphere with properties listed in 
table 4.1. 

Table 4.1 Standard colloidal sphere in water 

Sphere radius R = 100 nm 

Sphere mass density  = 1 g cm-3

Temperature T = 298 K 

Water viscosity  = 1 centipoise1) 

   = 10-3 Pa sec

1) 1 poise is 1 g/cm sec 

Time scales 

The molecular collision time c 

The fastest process in a colloidal dispersion, relevant for Brownian motion, is the 
collision of solvent molecules with each other and with a colloid. The average 
kinetic energy of particles with mass m with speed v equals 

21 3

2 2
  kinE mv kT   (4.1) 

Thus for solvent molecules with radius a the collision time c is of the order 

~
/

c

a

kT m
   (4.2) 

because in a liquid the molecules are closely packed together. (The symbol ‘~’ 
should be read as “is approximately equal to”.) For water at room temperature 

<v2>1/2 = 370 m/sec and taking 1a   Å we find 132.10 secc
 . Since the colloid is 

completely static on this time scale, c is also the characteristic time for a colloid – 
molecule encounter. In other words, the molecules hit the colloid with a staggering 

frequency of 1 13 1~ 10 secc
   on a colloid area of order one (Å)2. Thus on a time scale 

 ct  the colloid experiences a continuous fluid rather than a collection of discrete 
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molecules. In such a fluid the motion of a colloid is damped by the Stokes friction 
and it is this viscous damping by which a colloid ‘relaxes’ its momentum. 

The momentum relaxation time mr 

Suppose a colloidal sphere has an initial velocity 0


v  and a momentum 0 0p mv

 
 at t 

= 0. We ask for the time mr it takes for this sphere to lose all its momentum due to 
viscous energy dissipation to the solvent. Bearing in mind that the viscous force on 
the sphere equals ( )f v t


, we find by integrating Newton’s second law 

( ) , for ,c

dp
f v t t

dt
 

     (4.3) 

that the instantaneous velocity ( )v t


 decays as 

 0( ) exp / ,mrv t v t  
 

  (4.4) 

with a decay time 

22
,

9




 mr

m
R

f
  (4.5) 

for a sphere with mass m = (4/3)ߜߨR3 and friction factor f = 6ߨR. For the standard 
sphere (see Table 4.1) in water mr (2/9)10-8 sec, which is much larger than the 
molecular collision time c so it was indeed justified to use the Stokes friction factor 
in  (4.3). The distance l(t) travelled by the sphere during the momentum relaxation 
process (the ‘relaxation step length’) equals: 

 
0

1/ 2
0 0

( ) ( ') '

1 exp[ / ] ; ( ) /

t

mr mr mr

l t v t dt

v t mkT f   



  




 (4.6) 

For the initial velocity v0 we take the rms-speed from eq. (4.1) which for the 

reference sphere equals 2 1/ 2 3cm / secv   . Thus the maximum travelling distance 

in eq. (4.6) for the reference sphere is about 0 0.7Åmrv   . So in its kinetic energy 

exchange with the surrounding solvent, the colloid executes ‘ballistic’ steps which in 
length are comparable to those taken by solvent molecules. Due to its much larger 
mass, however, the colloid takes these steps at a very much lower frequency. 

The diffusive or Brownian time scale t >>mr 

When the colloid has performed many ‘moment-exchanging’ steps it enters the 
diffusive time regime t >>mr. This means that the net displacement of the colloid 
has become independent of its mass. This disappearance of the mass density in the 
diffusive regime and the appearance of the characteristic time dependence of 
Brownian displacements can be demonstrated as follows.  

Consider a sphere on a straight line that executes ‘ballistic’ steps on the relaxation 
time scale mr. These steps may have different lengths; eq. (4.6) suggests to 

consider an average displacement of order 0 mrl v  . The step frequency is typically 

1/ mr  so if all steps are in the same direction the net displacement x at time t 

equals: 
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0
 

mr

l
x t v t ; 0 ~ 3 /v kT m   (4.7) 

This result represents uniform, ballistic motion at a constant speed 0v . The uniform 

displacement increases linearly in time and depends on the colloid mass. However, 
in reality the Brownian sphere does not step all the time in the same direction. The 
momentum exchange with the solvent is a random process: the sphere steps with 

equal probability either to the left (unit vector ̂ ) or to the right (unit vector ̂ ). 
In that case the average displacement equals <x> = 0, by definition. However, for 
the square of the displacement vector we find on average for a large number 

/ 1mrn t    of ballistic steps: 

1 1

2 2

2

ˆ ˆ.

ˆ ˆ ˆ ˆ. .

n n

j k
j k

n n

j j j k
j kmr

mr

x x l l

t
l l

t
l

 

   




 



    

     



 

 

  

 (4.8) 

The average of the double-summation of cross-terms j k vanishes: the summation 
produces a sequence of dot products equal to 1 or –1 with equal probability. The 
colloid mass drops out in (4.8) because  

 22 2
0 /mr mrl v kT m  ,   (4.9) 

so the mean quadratic displacement is proportional to: 

2

, for





  

 

mr

mr

kT
x t

m
kT

t t
f

  (4.10) 

The conclusion is that in the diffusive time regime it is the mean-squared 
displacement that grows linearly in time, rather than the displacement itself as for 
the ballistic motion in eq. (4.7). The difference is due to the fact that in the ballistic 
case all steps are added, whereas for Brownian motion, steps are not only added 
but just as frequently subtracted. We recognise in the proportionality constant in 
(4.10) the translational diffusion coefficient D = kT/f. The correct constant in (4.10) 
is actually 2D, as we will show later in this chapter on the basis of the diffusion 
equation. 

The configurational relaxation time cr 

Since the momentum relaxation steps are so small, a colloid enters the diffusive 
regime while its net displacement is still insignificant in comparison to its own 
radius. For Brownian motion to change positions of spheres (their ‘configuration’) 
significantly, we have at least to wait the time cr needed for a sphere to diffuse 
across its own radius R. From eq. (4.8) we obtain: 

2( / )cr mrR l    (4.11) 
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Clearly relaxation of particle configurations is extremely slow in comparison to 
moment relaxation. For the standard sphere from Table 4.1 with R = 100 nm and 

1Ål  , the difference is six orders of magnitude: 210cr s  . An alternative 

expression for cr follows from (4.10): 

2 3

cr

fR R

kT kT

      ,  (4.12) 

which will return in our discussion of diffusion-controlled processes in chapter 7. 

The angular momentum relaxation time ar  

Suppose a colloidal sphere rotates at an angular velocity 0


 at t = 0. We ask for 

the time ar  it takes for the sphere to dissipate all its angular moment due to 

viscous friction in the solvent. First it is helpful to note the analogy between 
translation and angular motion: 

 

Newton’s second law for translational motion is given by (4.3); its equivalent for 
rotational motion is:  

( ) ,r

dJ
f t

dt
  
 

  (4.13) 

where fr is the rotational friction factor. The angular momentum is J I= W


, with I 
the moment of inertia. Integrating (4.13) yields for the angular particle velocity on 
time t: 

0 0( ) exp[ / ] exp[ / ]      
  

r art f t I t   (4.14) 

The decay time equals: 

21

15ar
r

I
R

f




    (4.15) 

Here we have substituted the rotational friction factor 38rf R  and the moment 

of inertia 5(8 /15)I R   for a homogeneous sphere with mass density (see 

exercise 9). Comparing ar to the momentum relaxation time mr in eq. (4.5) we can 
conclude that translations and rotations of the sphere decay on the same time 
scale. Thus on the diffusive time scale both translational and angular momenta 
have completely relaxed. In other words, the sum of all forces and the sum of all 
torques on a diffusing, Brownian particle are both zero. 

Translational momentum p mv
 

 

Force /F dp dt
 

 

Mass m 

Velocity v


 

Angular momentum J I 
 

 

Torque /T dJ dt
 

 

Moment of inertia I 

Angular velocity 


 



 

27 
 

 

The rotational relaxation time RR 

When the colloidal sphere has performed many angular steps in which it exchanges 

angular momentum with the solvent, it enters the diffusive time regime art  . 

Initially the net angular displacement  of the sphere is still insignificant. For  to 
deviate substantially from its value    = 0 at t = 0 we have to wait at least a time 

31
RR

r

R

D kT

     (4.16) 

Here 3/ 8rD kT R  is the rotational diffusion coefficient that determines the 

decay of sphere orientation, as given by eq. (4.52). Thus the time cr  in eq. (4.12) 

taken by a sphere to significantly change its position coincides with the time RR  

needed to significantly change its orientation. 

The Brownian collision time bc

We have already evaluated the collision time c for molecules and it will come as no 
surprise that the collision time bc for Brownian spheres will be very much larger. 
This collision time follows from Smoluchovski’s theory for rapid coagulation in 

chapter 7; here we give a brief argument that leads to the same estimate for  bc . 

Consider a tracer sphere with radius R diffusing in a dispersion with colloid number 
density The tracer diffuses an area of the order of Dt square meter in t seconds. 
Since spheres collide at a center-to-center distance 2R, the tracer sweeps in t 
seconds a ‘collision volume’ 2DRt in which it encounters about ߩDRt other spheres. 
Therefore, the typical time between two such encounters is of the order: 

1
bc DR



   (4.17) 

Substituting / 6D kT R and the volume fraction 3(4 / 3) R    we can rewrite 

this to:

3

,


 
 cr

bc

R

kT
  (4.18) 

Where ߬cr    is  the configural relaxation time from eq. (4.12). The R-dependence in 
(4.18) stems from the conversion of number density to volume fraction: if for a 
given   we reduce the particle radius, the number density increases and particles 

collide at higher frequency. The time scale bc  determines the coagulation kinetics 

of colloids and we will return to it in Chapter 7 (see, for example, eqs. (7.14) and 
(7.29)). 

The hydrodynamic decay time hd  

A moving colloid disturbs the surrounding fluid in two ways. First it causes a 
pressure wave that travels at the speed of sound. Secondly the colloid motion 
initiates a shear wave, namely a flow pattern of fluid layers moving at different 
speeds (see for example Fig. 5.1). When a  liquid layer moving in the x-direction 
contacts a slower layer, it transfers x-momentum to the slower layer. This transfer 
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is further discussed in Chapter 5, where it is concluded that the time hd needed for 
momentum to travel via a shear wave a distance R is, in order of magnitude: 

2 


 hd mrR   (4.19) 

where  is the fluid mass density (not to be confused with the number density  in 
(4.17)). This time is comparable to the moment relaxation time mr, in eq. (4.5) 
needed for a colloid to dissipate its (translational and angular) momentum.  This 
makes sense because viscous dissipation is primarily loosing momentum via waves. 
Also the propagation of pressure (sound) waves occurs on a time scale similar to 
mr. In water, for example, the velocity of sound is 1500 m/sec so it takes about 10-

9 sec. for a pressure disturbance to travel a distance of R = 100 nm. 

The important conclusion is that a hydrodynamic disturbance (either sound or 
shear) travels extremely fast on the diffusive time scale. When we slightly displace 
a sphere in a configuration of spheres, the flow field in the surrounding solvent 
almost instantaneously adapt itself. In other word, in the time region 

  mr crt   (4.20) 

colloids only experience each other (or a wall, or any other obstacle) via 
hydrodynamic flow fields (‘hydrodynamic interactions’). Only on the timescale t>cr, 
the colloids encounter each other directly and experience the colloidal (or ‘direct’) 
interactions. 

Quadratic displacement 
The trajectory of a Brownian particle is an erratic curve with the characteristic 
feature that the observed distance in a given time interval t, depends on the 
magnification of the microscope (Fig. 4.1). Thus it is not possible to differentiate 
this distance unambiguously with respect to time to obtain a velocity. Einstein 
proposed to focus on the displacement of the particle, defined as the shortest 
distance between two positions of the colloid (Fig 4.1). Measurements of 
displacements yield the diffusion coefficient D of the colloid. The required relation 
between D and the average kwadratic displacement was derived by Einstein, who 
also showed how D depends on the Stokes friction factor. The derivation is 
essentially based on the diffusion eq. (3.13). As shown below, to find the quadratic 
displacement no explicit solution of the diffusion equation is needed. 

Consider a particle which diffuses for a time t to reach a (positive or negative) 
displacement x with respect to the particle position at t = 0. We assume that there 
is no external force on the colloid, so positive and negative displacements occur 
with equal probability. The average displacement for a large number of particles is 
therefore: 

( )





+

-

<x>= P x,t x dx=0,   (4.21) 

where P(x,t)dx is the probability that after t seconds, a particle displacement is in 
the interval  between x and x + dx. The function P(x,t) is a probability density (with 
dimension 1/m) normalized via 
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( ) 1
+

-

P x,t dx = 



 ,  (4.22) 

which expresses that the probability to find a particle somewhere equals one. The 
average of the quadratic displacement is calculated as follows. The probability to 
find a particle at a certain location x is proportional to the particle concentration 
(x,t) at that location: 

constant( ) ( )P x,t x,t    (4.23) 

This concentration is the solution of the diffusion equation (3.13), which reads for 
diffusion in the x-direction: 

2

2
( ) ( )x,t D x,t

t x
  


 

  (4.24) 

where D is the diffusion coefficient. Substitution of (4.23) yields for the probability 
density: 

2

2
( ) ( )P x,t D P x,t

t x

 


 
,  (4.25) 

which allows us to evaluate the average quadratic displacement via the integration: 

2 2 ( ) 




  
-

x P x,t x dx   (4.26) 

We assume that the colloids have entered the diffusive time regime, i.e. the time t 
is much larger than the time mr in eq. (4.5) for colloids to lose their momentum. 

We are interested in the change of the average in (4.25) with time on this diffusive 
time scale: 

2
2 2 2 

2
( ) D ( ) 

d
x P x,t x dx P x,t x dx

dt t x

 

 

  
      

   (4.27) 

We now assume that P(x,t) and its derivative monotonically decrease to zero for x 
  . Then two integrations by parts yield (exercise 4): 

2 2 
d

x D
dt

  (4.28) 

which results in the Einstein equation for the average quadratic displacement: 

2 2 for   mrx Dt; t   (4.29) 

Note that this result has been obtained without solving the diffusion equation to 
find an explicit expression for P(x,t), see also exercise 3. For the other Cartesian 
coordinates y and z the result is exactly the same. Thus the average quadratic 
radial displacement for a colloid diffusing in any direction r


 from a central point is 

given by:  

2 2 2 2 26<r =   Dt; r  = x +y +z   (4.30) 
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Comparing eqs. (4.29) and (4.10) we must conclude that D is proportional (or 
possibly even equal) to kT/f. To investigate this proportionality further, it is 
instructive to consider colloids in an external field, again an idea due to Einstein. 

 

 

Fig.4.1. Brownian motion observed by Perrin for mastic spheres (radius 0.53 m) in water. Particle positions were 

marked every 30 seconds. The side of a square in A is about 3 m. Source: J. Perrin, Atoms (transl. D.L. Hammick), 
Constable & Company Ltd, London, 1916.

 

  



 

31 
 

 

Translational diffusion coefficient 
Suppose colloids in a dispersion experience an external force K, for example gravity 
or an electrical or magnetic force. The colloids accumulate in one part of the vessel 
(fig. 4.2). This accumulation is counteracted by diffusion which tends to 
homogenise the particle distribution. In equilibrium the two tendencies balance, 
leading to a concentration profile (x) which remains constant in time. This 
equilibrium implies that in any volume element the net flux of both momentum and 
colloids is zero.  

The momentum flux results from two forces. The gradient in concentration 
produces a gradient in osmotic pressure, , which corresponds to a force per unit 
volume of dispersion, also referred to as a force density. 

 

 

Fig 4.2. Equilibrium between osmotic pressure and an external force K 

This osmotic force density is balanced by the external force which, per unit volume, 
equals K times the number density  of colloids. In equilibrium the sum of force 
densities (the net momentum flux) is zero: 

0K  
 

  (4.31) 

We now assume that the colloids do not interact such that they obey Van ‘t Hoff’s 
law = kT. Then the solution of eq. (4.31) for a profile which changes only in the 
x-direction is: 

 0( ) exp / x Kx kT  ,  (4.32) 

where 0 is the number density at x = 0. This is the Boltzmann distribution of non-
interacting particles in an external force field. For colloids sedimenting in gravity, K 
can be identified as the weight of a colloid corrected for buoyancy. For that case 
eq.(4.32) is also called the sedimentation-diffusion equilibrium.  

We can also describe equilibrium in terms of the particle flux j


 which appears in 

the continuity equation 

. j
t






 
  (4.33) 

Suppose the external force K propels particles at a stationary, constant velocity u. 
The corresponding convective flux u has to be added to the diffusive flux due to 
Brownian motion. Hence for convection and diffusion in the x-direction eq. (4.33) 
becomes: 
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u D
t x x

         
  (4.34) 

In a stationary state the concentration  is independent of time t: 

0 ,
d d

u D
dx dx

     
  (4.35) 

implying that the total flux is a constant, independent of x. In equilibrium this 
constant must be zero:  

0, 
d

u D
dx

   (4.36) 

which can be integrated to yield: 

 0( ) exp /x ux D     (4.37) 

This equilibrium profile must be the same profile as in eq. (4.32), which requires 
that the diffusion coefficient D equals: 

D kT   (4.38) 

Here the mobility coefficient  is defined as the stationary velocity per unit of applied force: 

u K   (4.39) 

This mobility links two at first sight quite distinct transport processes, namely the 
drift velocity u of particles due to an external force and, secondly, the random 
spreading of particles or diffusion due to the thermal energy kT. For both processes 
the response of particles to the driving force is determined by the same mobility 
coefficient . Einstein’s result eq. (4.38) is very general: the external force K 
remains unspecified and may be arbitrary small, just as the concentration gradient 
d/dx. Further, no assumption has been made about the shape or size of the 
Brownian particles or the nature of the medium in which diffusion takes place: eq. 
(4.38) applies to the diffusion of DNA molecules in a porous gel, as well as to 
colloidal silica spheres in water. For each case, of course, the mobility coefficient 
has to be specified.  

Colloids with a stationary velocity u in a viscous fluid experience a frictional force 
fu, where f is the Stokes friction factor. Thus K = fu and, consequently, the mobility 
equals  = 1/f. Therefore the translational diffusion coefficient in (4.38) for colloid 
diffusion in a viscous fluid becomes: 

kT
D

f
   (4.40) 

For spheres of radius R in a liquid of viscosity  we will derive in chapter 6 that 

6f R   (4.41) 

From eqs. (4.29), (4.40) and(4.41), incidently, we find the relation between the 
displacement of a colloidal sphere and Avogadro's number: 

2 22

6 6
g

Av

R TkT
x t t

R RN 
    , (4.42) 
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in which Rg is the gasconstant. This is the relation which Perrin used in 1908 to 

determine AvN  by tracking the trajectories of diffusing colloids with an optical 

microscope, as mentioned in Chapter 2. 

Quadratic angular displacement 
The time dependence of angular Brownian displacements we employ here a 
derivation that is similar to that of (4.29). Consider a label diffusing on the surface 
of a unit sphere with radius   R = 1 (see Fig. 4.3). The unit vector ˆ( )u t  denotes the 

position of the label or, equivalently, the orientation of an axis through the label 
and the sphere centre. The angular displacement of the label at time t is defined by 

the vector 0ˆ ˆ( )u t u , where 0û  marks the label position at t = 0. For a large number 

of independently diffusing labels the average of the squared modulus of the 
displacement vector is: 

2

0ˆ ˆ( ) 2 2 cos ,  for         aru t u t  (4.43) 

Here is the angle between the unit vectors ˆ( )u t and 0û . Note that (4.43) is only 

valid on the diffusional timescale, i.e. time t is much larger than the time  ar  for 

the angular momentum to relax, see. Eq. (4.15).  At t = 0 all labels have the same 

orientation 0û  such that cos 1  . By rotational diffusion the orientations 

gradually randomize until cos 0  , signifying that all orientations occur with 

equal probability. This ‘relaxation’ of the initially non-uniform distribution of 
orientations is described by the distribution function P(,t). Analogous to the case of 
translational diffusion, the time dependence of the quadratic displacement in (4.43) 
can be found without solving the diffusion equation 

2( , ) ( , )rP t D P t
t

 
 


  (4.44) 

Here Dr is the rotational diffusion coefficient, actually a frequency with dimension 
1/sec. Note that P(,t), a probability density with dimension m-2, does not depend 
on the angle  (see also Fig. 4.4) so for a unit sphere with radius R = 1 the 
normalization condition is: 

0

2 ( , )sin 1P t d




   


   (4.45) 

The average of the cosine in eq. (4.43) follows from: 

0

cos 2 sin cos ; ( , )P d P P t




     


    (4.46) 

For the time-derivative we can write, making use of the diffusion equation (4.44) 

0

0

cos 2 sin cos

1
2 sin sin cos

sinr

d P
d

dt t

P
D d









    

    
  






 



         




 (4.47) 
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Note that we only need the -dependent part of the Laplace operator in spherical 
coordinates (see Appendix A). Partial integration of the integral in (4.47) yields: 

0 0

cos sin sin (cos )
P P

d
 

 

   
  

         (4.48) 

The bracket term equals zero and the remaining integral, after a second partial 
integration, turns out to equal: 

0

1
2 sin cos cosP d





   


      (4.49) 

The time-derivative in (4.47) therefore becomes 

cos 2 cosr

d
D

dt
        (4.50) 

with the solution 

  1
cos exp / ;

2RR RR
r

t
D

       (4.51) 

Thus the orientation of initially aligned, non-interacting anisometric particles decays 
exponentially in time. The rotational relaxation time RR is determined by the 
rotational diffusion coefficient of the particles in question (spheres, rods, platelets, 
magnetic dipoles etc.). The angular displacement (4.43) can be rewritten as: 

  2

0ˆ ˆ( ) 2 1 exp 2 ,  for      r aru t u D t t  (4.52) 

This expression has time limits that reveal an interesting resemblance, and a 
characteristic difference, to the case of translational Brownian motion. At short 
times such that Drt << 1 and, consequently, small angular displacement such that 
cos ~ 1 - 2/2, eq. (4.52) simplifies to: 

2 4 , for 1r rD t D t     (4.53) 

This is equivalent to translational diffusion on a two dimensional plane for which 
<z2> = 4Dt, where z is a two-dimensional displacement. Indeed, at short times the 
diffusive label has not probed the curvature of the sphere surface yet. Gradually, 
however, the label discovers it is diffusing on a sphere instead of on a flat plane. In 
the flat plane the quadratic displacement keeps on growing in time, whereas the 
angular displacement on a sphere surface is bounded by a maximum achieved 
when cos 0  : 

2

0 0ˆ ˆ ˆ ˆ( ) ~ 2; ( ). 0, for 1ru t u u t u D t       (4.54) 

This upper bound signifies that for a label the displacement  and +2 represent 
the same physical situation. 

Rotational diffusion coefficient  

The coefficient D = kT/f for translational Brownian motion was found from the 
distribution of particle positions resulting from the equilibrium between diffusion 
and an external force. The rotational diffusion coefficient Dr can be derived in a very 
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similar manner from the distribution of particle orientations in response to an 
external torque. To this end we consider a collection of independent direction 
vectors as in fig. 4.4, each representing an orientation angle   with respect to the 
axis at  = 0. The vectors rotate with the same angular velocity 

1[rad sec ],
d

dt

     (4.55) 

towards  = 0. This rotation is caused by a torque T0, the physical nature of which 
we do not have to specify. One can chose a rotating external magnetic field acting 
on magnetic dipoles, or a shear flow aligning rods but for the argumentation here 
this choice is irrelevant. All we ask from the torque is to sustain a constant angular 
velocity, which is given by: 

0rT    (4.56) 

Here r is the rotational mobility defined as the steady angular velocity per unit of 
applied torque; note the analogy between r and the translational mobility  in eq. 
(4.39). The convective angular flux, that is, the number of vectors rotating by per 
second is: 

0( ) ( ) ( )rj T          ,  (4.57) 

in which () represents an orientation density, i.e. the number of direction vectors 
per unit angle. Due to this angular flux, vectors accumulate near  = 0 so a 
gradient d()/d is formed which attempts to relax by rotational diffusion. The 
corresponding diffusive flux  

( )
( ) ,r

d
j D

d

 


    (4.58) 

defines the rotational diffusion coefficient Dr of the independent, freely moving 
vectors. At equilibrium j+j = 0, and after integration we find the orientational 
equilibrium profile: 

0( ) ( 0)exp[ / ],r rT D         (4.59) 

which is the equivalent of (4.37) for the distribution of particle positions. The work 
done by the torque to achieve an angular displacement   starting from equals 

0 0 0

0

( ) ' ; constantw T d T T


      (4.60) 

The Boltzmann distribution of the orientations is therefore: 

  0( ) ( 0)exp ( ) / ( 0)exp[ / ]            w kT T kT  (4.61) 

The distributions (4.59) and (4.61) are identical only if the rotational diffusion 
coefficient satisfies: 

r rD kT   (4.62) 

This result is still independent of the medium in which a particle is rotating. When 
the medium is a viscous fluid the mobility is the inverse of the Stokes friction factor 
fr: 
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r
r

kT
D

f
   (4.63) 

The analogy between the translational and the rotational diffusion coefficient is 
complete: they manifest a random spreading of, respectively, positions and 
orientations, driven by the thermal energy kT which is resisted by the same Stokes 
friction that also opposes, respectively, linear and angular drift in an external field. 

 

Colloidal gases 

Exercises 
1. Calculate how far a marble with radius r = 1 cm diffuses in water in a century. 

(T = 298 K). 

2. a) Calculate using equipartition the rms velocity of a colloidal sphere with 

radius 100 nm and mass density  = 1 g cm-3 at T = 298 K. [5.4 cm/sec] 

 b) How large is the distance the sphere would traverse in one second with this 

velocity in  uninterrupted linear motion? 

 c) How large is the rms displacement in one second in case of Brownian motion 

of the sphere? (Explain any difference with b). [2.1x10-6 m] 

3. Use the solution of the diffusion equation from exercise 2 in chapter 3, to verify 

that the law for quadratic displacement in eq. (4.29) is indeed correct. 

4. Evaluate the integral in eq.(4.27). Which assumptions do you have to make for 

P(x,t)? Why are they physically plausible? 

5. Where in the derivation of the diffusion coefficient eq. (4.40) it is assumed that 

the particles do not interact? 

6. Estimate the time it would take oxygen molecules to diffuse in water (D = 

18x10-6cm2/sec) at room temperature a distance equal to 1) the typical 

thickness of a bacteria; 2) the typical thickness of a human being. Verify that 

diffusive transport of oxygen from the environment to the lungs is not an 

alternative to oxygen transport by red blood cells. Do you expect that an 

oxygen molecule in air diffuses much slower or much faster than in water? See 

for example S. Vogel “Life’s Devices; the physical world of animals and plants” 

(Princeton University Press, 1988). 

7. Discuss the validity of the rotational diffusion coefficient in eq. (4.63) for non-

spherical particles.  

8. Surprisingly often one finds in the literature the incorrect assertion that Brown 

observed ‘Brownian motion’ of pollen grains themselves. What is a typical pollen 
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grain size, and how far would such a grain diffuse in an observation time of , 

say , 10 sec? Conclusion? 

9. Calculate I for a homogeneous sphere with radius R and mass density  (see eq. 

(4.15).  
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Fig. 4.3 Due to Brownian motion the direction of the z-axis (fixed to the spheres) fluctuates 
in time, which may be represented by a label that diffuses on the sphere surface from its 
initial position on the z-axis to a position (r, , ) at time t. 

 





Fig. 4.4 Diffusing labels on a sphere surface (A) accumulate at the north pole (B) since all 
labels represents an axis subjected to the same constant torque T0 as indicated in (C). 
Rotational diffusion tends to randomize axis orientations and counteracts the angular 
convection due to T0. In equilibrium the distribution of labels is given by eq. (4.59) or (4.61) 


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5 Stokes flow  

Brownian motion of colloids usually takes place in a liquid medium, though there 
are notable exceptions such as colloids in a gas (aerosol), or the inorganic colloids 
which in vast numbers inhabit interstellar dust clouds. Thus we have to specify the 
mobility  in the diffusion coefficient D = kT (in eq. 4.62) as a hydrodynamic 
mobility or its inverse, a hydrodynamic friction factor. This factor depends on the 
shape and size of the colloidal particle. The simplest case is a smooth, 
undeformable solid sphere. In this chapter we will introduce hydrodynamics to the 
level required to eventually calculate in chapter 6 the friction factor for such a solid 
sphere. We begin with a general description of fluid flow. 

Fluid flow 
The flow velocity u


 in a fluid at position vector r


= [x,y,z] and time t  

 u u r ,t
  

  (5.1) 

has three Cartesian components u, v and w. Thus eq. (5.1) is a shorthand for the 
vector function: 

     u u x, y,z,t ,v x, y,z,t ,w x, y,z,t   


 (5.2) 

Finding eq. (5.1) is the main task in a flow problem, because the velocity field u

 

tells us what all elements of the fluid are doing at any time. A simplification is a 

steady flow in which both magnitude and direction of u

 are constant at any fixed 

point in space. Thus 

0
u

,
t







  (5.3) 

defines steady flow. Further, in many flow problems of interest (such as flow in a 

tube or past a sphere) u

 is independent of one or two spatial coordinates. For 

example, two-dimensional steady flow has the form:  

    0u u x,y ,v x, y ,   


  (5.4) 

A streamline is a curve which at any point has the same direction as u

. For a 

steady flow the streamline pattern is the same at all times. Nevertheless, even 

though u

 is constant at a fixed point in space, the flow velocity may change for a 

particular fluid element traveling along its streamline.  

It is important to clearly distinguish the fate of a blob of fluid which 'follows the 
flow' from what happens in a volume element fixed in space. This distinction also 
appears in the notation for derivatives of fluid properties. Let f =  f (x,y,z,t) denote 

some property of the moving fluid such as its mass density or a component of u

. 

According to the chain rule: 

   
   
   
f f f f

df dt dx dy dz
t x y z

 (5.5) 
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The total rate of change in f  is therefore: 

df f f dx f dy f dz

dt t x dt y dt z dt

   
   
   

  (5.6) 

Suppose we measure f in a volume element rigidly attached to our boat, which is 
located at a position x,y,z. If this position is fixed then, according to eq. (5.6), 
f/t is the change of f in time. However, if we tour around in the fluid the rate of 
change in f also depends on the components dx/dt etc. of the boat velocity. Only if 
the boat (engine switched off) passively follows a streamline these components 

equal the components of the flow velocity u

: 

dx / dt u, dy / dt v, dz / dt w    (5.7) 

For this particular case of ‘following the fluid’ the notation D/Dt is used instead of 
d/dt:  

( )
Df f f f f f

u v w u f
Dt t x y z t

    
      
    


 (5.8) 

The derivative 

D
u

Dt t


  



  (5.9) 

is known as the material or substantial derivative. Note that in eq. (5.8) the term 

( )u 


f is the contribution to the change in f in a blob of fluid due to its convection 

along a streamline. Consequently whenever 

( ) 0u f , 


  (5.10) 

f is constant along a streamline; then f is a called stream function, because its 
value generates a streamline. (Note that f might be a different constant on different 
streamlines, just as isobars in the weather forecast represent different but constant 
pressures). Stream functions will be needed later to analyse viscous flow past a 
translating sphere. By applying eq. (5.8) to the components u, v  and w of the fluid 
velocity the acceleration of a fluid element at position r


 is found to be: 

( )
Du u

u u
Dt t


  


   
  (5.11) 

Here ( )u u
 

 is a vector (see Appendix A) describing changes in u

 for a fluid blob 

traveling along a streamline. The acceleration in eq. (5.11) is due to forces on the 
blob which will be identified below. 

The Navier­Stokes equation 
Consider a surface S enclosing a region V in the fluid, with a normal unit vector n


 

pointing outwards. The flow velocity component along the normal is .u n
 

 so the net 
fluid volume leaving V in unit time is 

.
S

u n dS
 

  (5.12) 
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For an incompressible fluid this integral must be zero because there can be no net 
gain or loss of fluid volume. Using the divergence theorem we find 

. 0,
V

u dV 
 

  (5.13) 

which implies that 

. 0u 
 

  (5.14) 

anywhere in the fluid: the divergence of the flow is zero for any volume element in 
V. Note that (5.14) is the continuity equation for an incompressible fluid which we 
already encountered in eq. (3.9). Next we consider the effect of the pressure 

p=p(x,y,z,t) in the fluid. This pressure is a scalar function, independent of n

, so 

the force on a surface element S is:  

pn S ,


  (5.15) 

with a minus sign because n

 points out of the region V. The net pressure force on 

the region is, using the divergence theorem: 

S V

pn dS p dV    


  (5.16) 

If p


 is continuous it will be almost constant over a sufficiently small blob of 

volume V. The net pressure force on the blob due to the surrounding fluid is 

therefore p V .


 The gravitational force on the blob with mass density  is g V .   

The sum of forces must equal the product of the blob's mass V and its 
acceleration, so we obtain: 

0
Du

p g ; u
Dt

      
   

  (5.17) 

This is the so-called Euler equation for the motion of a non-viscous, incompressible 
fluid. It turns out, however, that viscous forces in a colloidal suspension are 
important, if not dominating, so eq. (5.17) must be extended with the viscous 
stress on the blob. This stress is related to viscous transport of momentum as can 
be explained with reference to the sliding fluid layers in Fig. (5.1). 

 

 

Fig. 5.1. Momentum transport from a fast fluid layer to a slower fluid layer.  
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We illustrate the origin of viscous forces in a sheared fluid for the simple case of a 
steady flow of an incompressible fluid described by: 

( )
[ ( ),0,0] ; 0

u y
u u y u

x


    



 
  (5.18) 

Thus the velocity component in the x-direction depends only on y. The momentum 
p  (not to be confused with pressure p) carried by this flow field is  

[ , , ] [ ( ),0,0]x y zp p p p mu y 


  (5.19) 

For the change in momentum we can write, in general (see eq. (5.5)) 

p p p p
dp dt dx dy dz

t x y z

   
   
   

   
  (5.20) 

In the present case all partial derivatives are zero, except the one with respect to y, 
and (5.20) simplifies to: 

( )x xdp p dy dy mu y

dt y dt dt y

 
 
 

  (5.21) 

This equation describes a shear force in the x-direction acting on a fluid area at 
position y. In other words: x-directed momentum is transported in the y-direction: 
a slowly moving fluid layer at y receives momentum from a faster layer at  
y+dy.The shear stress  is defined as the shear force divided by the area A on 
which it is working: 

( ) ( )dy mu y dy u y
L

Adt y dt y

  
 

 
   (5.22) 

Here  is the mass density of the fluid, and L a length over which x-momentum 
diffuses in the y-direction. The kinematic viscosity   is the ratio of the stress  and 
the gradient in the moment density: 

( )
;

u y

y

   



 


,  (5.23) 

where  is the shear viscosity of fluid. Before proceeding to Newton’s law in (5.27) 
we look at the analogy between (5.23) and Fick’s law for the diffusion flux of 
particles.  

The flux of momentum, is proportional to the gradient in momentum 
concentration, just as the flux of particles is proportional to the gradient in particle 
concentration. The coefficient in (5.23) is indeed a diffusion coefficient with 
dimension m2/sec – consistent also with (5.22). Furthermore, for the case the 
momentum diffuses a distance L we find from (5.22) and (5.23) 

0 0
,

L t
L dy dt    (5.24) 

which leads to an instance of Einstein’s law for quadratic displacement (see also eq. 
(4.30): 

2 ,L t   (5.25) 
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where   is a ‘momentum diffusion coefficient’. Thus the time h (not to be confused 

with the stress  in (5.23)) needed for momentum to propagate a sphere radius R is 
of the order: 

2 2

h

R R 
 

   (5.26) 

This is the hydrodynamic timescale already anticipated in Chapter 4, see eq. (4.18). 
The analogy between diffusion of momentum and diffusion of particles is somewhat 
veiled when for a liquid of constant mass density , eq.(5.22) is rewritten to its 
usual form: 

( )
yx

u y

y
  

 


  (5.27) 

which is known as Newton’s viscosity law. Though we obtained this law from the 
simple flow of eq. (5.18), it  is valid for the general flow pattern described by eq. 
(5.1). Note the convention of indices; yx is the x-directed shear stress on a fluid 
layer at y. Alternatively one can say that yx is the flux of x-momentum in the y-
direction. The latter interpretation makes the minus sign in eq. (5.27) easier to 
visualise: it is needed to give the flux in fig. 5.1 the right direction.  

In rectangular coordinates nine stress components as in eq. (5.27) may be written 
down: yx, yy, yz etc. Consider a volume element in a flow field (fig. 5.2). The 
stress component yx works on the surface elements xz so the corresponding 
viscous force component on the volume element is: 

 y y yyx yxx z


   


   (5.28) 

Per unit volume this force equals 

2

2

yx u

y y




 
 

 
  (5.29) 

 

Fig. 5.2. Flow field exerts viscous forces on a volume element.  
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Fig. 5.3. Examples of turbulent flow of liquid water (top) and purely viscous flow of frozen 
water (bottom). Note the well-defined stream lines of the glacier, in contrast to the chaotic 
patterns in the breakers. 
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Considering all nine stress components the total viscous force per volume is 

 
2 2 2

2
2 2 2

u,v,w u
x y z

 
   

       


  (5.30) 

The Laplacian 2 is here expressed in rectangular co-ordinates x, y, z. The more 
general form of the Laplacian in Appendix A also applies to curvilinear co-ordinates. 
Adding eq. (5.30) to Eulers equations (5.17) we find: 

2 0
Du

p g u ; u
Dt

         
    

 (5.31) 

This is the Navier-Stokes equation for an incompressible fluid with constant 
viscosity  and constant mass density .  

The number of solutions of the complete Navier-Stokes equation are few. A serious 
difficulty arises at high velocities when chaotic turbulent flow occurs, in which the 
velocity and pressure are no longer unique functions of space and time coordinates. 
Turbulent flow can be observed everywhere (fig. 5.3) and common as it may be, its 
theoretical description is extremely complicated.  

A sufficiently slow, steady flow is stable against the occurrence of turbulence. For a 

steady flow / 0u t   in the material derivative D/Dt of eq. (5.9) so the equation of 
motion becomes: 

2( )u u p g u       
    

  (5.32) 

A further simplification involves the omission of the inertial terms ( )u u 
 

resulting in the so-called Stokes equation. This simplification is fortunately justified 
for the small-scale flow patterns involving colloidal particles for reasons explained in 
the next section. 

Stokes flow 
The example of flow in a curved tube (fig. 5.4) illustrates the physical meaning of 
the various terms in eq. (5.32). The hydrostatic pressure gz  , which has a 

gradient in the vertical z-direction, induces liquid flow u

 and the concomitant 

pressure distribution p. If the flow is steady nothing changes in time in any fixed 
volume element. Following a streamline we notice that the flow velocity changes 

direction which is 'resisted' by inertia: the ( )u u 
 

 term in eq. (5.32). In a cross 

section of the tube a velocity gradient is present leading to the viscous term 2u 
. 

The relative contributions from inertia and viscosity are estimated from the 
Reynolds number Re: 
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Fig. 5.4. Flow from a large reservoir into a curved tube. 

UL
Re ,


   (5.33) 

in which U is a typical flow speed and L a characteristic length scale of the flow; in 
fig. 5.4 U may be the average flow velocity and L the diameter or length of the 
tube. The viscous term will dominate inertia if Re << 1. To understand the origin of 

this inequality we note that derivatives of velocity components such as u / x   are 
of order U/L, whereas second derivatives are of order U/L2. This gives the order of 
magnitude estimates: 

2

2 2

( )u u U / L

u U / L





  
 

  (5.34) 

The ratio of the two terms in eq. (5.32) is therefore: 

2

2

inertia term

viscous term

 
 

 U / L UL

U / L
 ; (5.35) 

which equals the Reynolds number in eq. (5.33). For colloidal particles typical 
values of UL are small enough to ensure that Re << 1 (Exercise 1). Then we may 
neglect the inertia term in eq. (5.32) to obtain (for 0g 


): 

20 0p u ; u      
  

  (5.36) 

This is the creeping flow equation for purely viscous flow of an incompressible, 
Newtonian fluid, also known as Stokes flow. The term 'creeping' may be 
misleading; it denotes a flow rate U which is small enough such that Re << 1. On 
the colloidal scale (L in the submicron range) this rate may be actually quite high: 
rapidly sedimenting colloids and swimming microbes experience low-Reynolds 
number flow. Humans will only have this experience in a bath of very viscous 
syrup. 

This is not the place to further elaborate on hydrodynamics, for which we refer to 
references at the end of Chapters 5 and 6. One final point here is the assessment 
that hydrodynamics for a diffusing colloid is quite different from what we observe 
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on a macroscopic scale when shaking or stirring a liquid. One surprising feature of 
creeping flow is its reversibility which can be demonstrated (in a famous 
experiment by G.I. Taylor) as follows. Fill the gap of a Couette geometry (two 
concentric cylinders) with viscous oil and insert a dyed blob of oil with a syringe. 
The blob is greatly sheared by slowly rotating one cylinder a few revolutions. 
However, if the cylinder is rotated back to its original position, the blob will return 
almost exactly to its original shape.  

The reversibility of purely viscous flow has an interesting biological consequence: a 
microbe which tries to swim by flapping its tail to and fro makes no progress, 
because the effect of one flap is undone by the opposite flap. We are all living 
evidence of the fact that spermatozoa use their tail in a more efficient manner to 
swim in viscous biofluids. 

Exercises 

1. Estimate the Reynolds number for the sedimentation (due to gravity) of a 
colloidal sphere with a mass density of 2 g cm-3, for a sphere radius R = 100 nm 
and R = 1 m. 

2. a) A force F moves a very large flat plate with constant speed u(D), at a distance 
y = D from a parallel wall in water. Derive the velocity profile u(y) from the 
Stokes equations (5.36), and give an expression for the average flow velocity 
<u>. 

 b) Show that u(y) is a stream function, and that it satisfies the continuity 
equation. 

 c) Suppose u(D) = 1mm sec-1; D = 1 mm and = 10-3 Pa sec. How large is F 
(per unit area)? [10-3 Pa] 

References 

 For a more extensive treatment of the Navier-Stokes equation and Stokes flow 
see R. Bird, W. Stewart and E. Lightfoot, Transport Phenomena (New York, 
Wiley, 2002), and D.J. Acheson, Elementary Fluid Dynamics, (Oxford, 
Clarendon Press, 1992). 

 More discussion on the viscosity dominated world of micro organisms and 
colloids is given in: E.M. Purcell, Life at low Reynolds number, Am. J. Physics 
45 (1977) 3-11. 



 

 

  



 

48 
 

 

6 Stokes friction factor 
 
Flow problems in colloidal systems either concern flow in channels or flow around 
submerged particles. Channel flow, also known as Poiseuille flow, occurs for 
example for colloidal dispersions in the Couette geometry of a viscosimeter and in 
the capillary for electrophoresis or electro-osmosis. Flow around particles occurs for 
colloids undergoing sedimentation or Brownian motion. Though our primary goal is 
the hydrodynamic friction factor for flow past a sphere, we will first, as a warming-
up, solve the Stokes equations for viscous flow in channels with a simple geometry. 

Viscous flow in simple geometries 

Flow between flat plates 

Consider two flat parallel plates as in fig. 6.1 at a distance d, and a flow of the 
form: 

 ( ) 0 0u u y , ,


  (6.1) 

This plane parallel flow satisfies u
 

 = 0, because u(y) is independent of x. For 
this flow eq. (5.36) becomes: 

2

2
0

p u p p
,

x y y z
   

  
      (6.2) 

Since p/x is constant in the y-direction, 2u/y2 = constant so u must be a 
quadratic function of y. Integrating twice indeed yields the parabola: 

1
( )

2

dp
u y y d ,

dx
    (6.3) 

a solution which satisfies the stick boundary or no-slip condition 

   0 0u y u y d ,      (6.4) 

stating that at the surface of the plates the fluid is in rest relative to the plates. The 
flow velocity averaged over the volume in the gap between the two plates is: 

2
0 0

0 0

12

d L

d L

u dx dy
d P

u
L

dx dy




  
 

 
  (6.5) 

Here P is the total pressure drop going from x=0 to x=L. The form of eq. (6.5) 
could have been guessed from a dimensionless form of the Stokes equation as 
follows.  

Suppose u   is the velocity averaged in the y-direction over a length d, and P is 
the pressure drop over a characteristic length L. Introducing dimensionless 
parameters   p,x,u  and y  defined as:  

        p p P, x xL, u u u , y yd ,  (6.6) 
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the Stokes equation becomes: 

2

2 2

  
  

 
 
 

P p u
u

L x d y
  (6.7) 

Since the two derivatives only contain dimension-less quantities we can write: 

2

numerical factor
d P

u
L




     (6.8) 

So we can expect that Stokes flow in another geometry will have an average fluid 
velocity with the same functional forms as the result for flat-plates in eq. (6.5). We 
will verify this expectation for flow in a capillary with a circular cross-section. 

 

 

Fig. 6.1.  Viscous flow between two parallel plates, with the parabolic liquid flow velocity 
profile given by eq. (6.3). 

 

Flow in a circular tube 

The flow velocity u

 for axial flow in a tube of radius R, parallel to the z-axis (see 

fig. 6.2) has the components: 

   0 0 ( )r z zu u ,u ,u , ,u r 


  (6.9) 

Here we use cylindrical coordinates (r, z); note that velocity components in the 
and r direction are zero. The Stokes equation for this type of flow is: 

2

2

1 1

0

z z

z

p
r u u

z r r r z

u
u

z


          


   



 
  (6.10) 

The zero-divergence of u

 implies that uz is constant in the z-direction, as expected 

for an incompressible liquid. Clearly then also 2uz/z2 is zero: 

1 1
z

dp d d
r u

dz r dr dr
   
 

  (6.11) 

Integrating once yields the velocity gradient: 

1
0

2
zdu dp C

r ; C
dr dz r

     (6.12) 
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The constant C must be zero, because otherwise this gradient is infinite at r = 0, 
which would imply an infinite stress. From this velocity gradient we obtain the 
viscous stress 

,z
rz

du

dr
     (6.13) 

which can be used to calculate the total viscous force on the inner wall of the tube 
(exercise 2). The second boundary condition, in addition to the absence of an 
infinite stress at r = 0, is the no-slip boundary at the wall of the tube: 

( ) 0zu r R    (6.14) 

The solution for eq. (6.12) which also satisfies this second condition is: 

 2 21

4z

dp
u r R ,

dz
    (6.15) 

The average velocity in the tube is: 

2
0 0

0 0

8

L R

z

L R

u r dr dz
R P

u
L

r dr dz




  
 

 
  (6.16) 

The similarity to the flat plate result in eq. (6.5) is clear; the different geometry 
only changes the numerical factor in eq. (6.8). Note that the volume rate of flow Q 

4
2

8
  

R P
Q u R

L

 


  (6.17) 

strongly depends on the tube radius R. This result, called the Hagen-Poiseuille law, 
is the basis of viscosity measurements on (Newtonian) dispersions from flow rates 
in a tube.  

Darcy’s law 
We note here in passing Darcy’s law for viscous flow in a porous medium which 
states that the average flow velocity <u> is proportional to the average pressure 
gradient that drives the flow: 

     
k

u p


  (6.18) 

Here k is the so-called liquid permeability of the porous medium. For one-
dimensional flow in a medium of length L Darcy’s law becomes: 

,


  
k P

u
L

  (6.19) 

where P is the total pressure drop over the length L. The permeability depends on 
the geometry of the medium and can only be calculated for simple cases. We have, 
in fact, already made this calculation for flow in tubes and between parallel plates. 
So Darcy’s law in its integrated form (6.19) is just an instance of eq. (6.8), with all 
geometrical details ‘hidden’ in the numerical factor. The liquid permeability k is 
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proportional to the square of a typical ‘pore diameter’ d, a proportionality which 
also holds for more complicated pore geometries, as further discussed in 
Scheidegger’s book quoted at the end of this chapter.

 

Fig. 6.2. Axial flow in a straight tube; the velocity profile is given by eq. (6.15). 

 

Viscous flow past a sphere 
In the previous examples of flow through a channel the total viscous force on the 
inner wall of the channel equals the external force (i.e. the pressure drop P) which 
drives the flow (exercise 2). The analogous force balance for viscous flow past a 
colloidal particle defines the Stokes friction factor f: 

K fu   (6.20) 

Here u is the constant liquid velocity relative to the particle and fu is the total 
viscous force which balances the external force on the colloid. For a rotating particle 
we have to read K as a torque and u as an angular velocity, see eq. (6.21). We will 
first calculate the rotational friction factor which involves a simpler flow field than 
for translational friction. 

Rotational friction factor 
Consider a solid sphere of radius R that slowly rotates at a constant angular velocity 
 around the z–axis in a large volume of quiescent fluid (see Fig. 6.3). We ask for 
the torque Tz required to maintain the sphere rotation, which defines the rotational 
friction factor fr via 

z rT f    (6.21) 

In terms of spherical coordinates (r, , ), the flow field near the sphere will be of 
the form: 

 , , 0,0, , ,ru u u u u r          


  (6.22) 
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This field is symmetric about the z-axis of rotation so there is no dependence on 
the angle . The pressure P will be of the form P = P(r,), again without any -
dependence. The Stokes equation (5.36) therefore adopts the form: 

2 0u p
 

         


  (6.23) 

From the -component of 2u


, the Laplacian for spherical co-ordinates (see 

Appendix), we only need the derivatives that depend on   and r. Thus the Stokes 
equation becomes: 

 2
2 2

1 1 1
0 sin

sin

u
r u

r r r r


 
  

             
 (6.24) 

Since there is no distinction between ‘up’ and ‘down’ in the flow field, the 

substitution      should not change the flow velocity, which suggests that u    

is proportional to sin sin( )    . As a trial solution for the flow field we therefore 

choose: u   = f(r) sin . Insertion of this trial solution in eq. (6.24) leads to the 

following differential equation for f(r): 

2 2 0
d df

r f
dr dr

    
 

  (6.25) 

Here the trial solution is f = rn, which on substitution in eq. (6.25) gives n =1 and n 
= -2. Thus the flow field becomes: 

2
1 2

( , ) sin
C

u r C r
r     

 
  (6.26) 

To determine the constants C1 and C2 we note that at infinity all velocity 
components are zero, and that on the sphere surface the liquid rotates with the 
same velocity as the sphere (stick boundary): 

0 as

sin as

u r

u R r R



 

 

  
  (6.27) 

Here R sin  is the shortest distance of a point on the sphere surface to the rotation 

axis z. The point traverses a circle with circumference 2R sin  with velocity R
sin . Application of these boundary conditions shows that C1 = 0 and C2 = R3.  

Therefore the final expression for the flow field induced by the rotating sphere is: 

2 2

sin ( )
R R

u R u r R
r r          

   
 (6.28) 

The relevant component of the stress is (see Appendix A): 

r

u
r

r r


 
 

     
  (6.29) 

To find the total torque we need to integrate the tangential force r(r=R)dS exerted 
on the fluid by a solid surface element dS, multiplying each element by its lever 
arm R sin with respect to the rotation axis: 
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2
2 3 3

0
0 0

3

( ) sin

(3 sin )( sin ) sin 6 sin

8

z rT r R R dS

R R d d R d

R



 


 

        



 

   

 



    (6.30) 

By comparison with eq. (6.21) we conclude that the rotational friction factor for a 
sphere in a pure viscous fluid is given by: 

38rf R    ,  (6.31) 

so the rotational diffusion coefficient of the sphere in eq. (4.63) equals: 

38r

kT
D

R
   (6.32) 

Perhaps we expected the friction factor to be proportional to R2, namely the surface 
area between the rotating sphere and the surrounding fluid. However, fr is 
proportional to the sphere volume because instead of the total viscous force (R2) 
we need to in (6.30) evaluate the viscous torque, which entails an additional R-
term in the lever arm. 

Sphere in a cavity 
The rotational friction factor in (6.31) has been derived for a sphere in an 
unbounded fluid, far away from a confining wall or other spheres. For one particular 
confinement the friction factor can be easily corrected. Suppose the sphere is 
rotating in a spherical cavity with radius (1 )R , with If the cavity represents 

a stick boundary which is at rest with respect to the rotation axis, we have instead 
of (6.27) the boundary conditions: 

0 as (1 )

sin as =

  

 

u r R

u R r R








  (6.33) 

Evaluating the constants C1 and C2 in eq. (6.26), we find the flow field: 

3 2

3

(1 ) ( / ) ( / )

sin (1 ) 1

u R r r R

R
 
 

 


  
  (6.34) 

Substitution of this flow field in the stress component r  from eq. (6.29) we again 

obtain the torque Tz, to find eventually for the rotational friction factor: 

3
3

3

(1 )
8

(1 ) 1rf R






 

  (6.35) 

Note that this result reduces to 38 R  in the limit   , as it should. The 

rotational diffusion coefficient of the sphere in the cavity is accordingly: 

3
3

1 (1 )
8r

kT
D

R



       (6.36) 
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This simple extension of the rotational diffusion coefficient is also relevant for a 
sphere rotating in a complex fluid (such as a polymer solution) instead of a 
continuous solvent.2 

  

Fig.6.3. A solid sphere rotates at constant angular velocity. The sphere exerts a stress - r in the 
-direction on the fluid. 

                                           
2 See for example: G.H. Koenderink, S. Sacanna, D.G.A.L. Aarts and A.P. Philipse, Rotational and translational 
diffusion of fluorocarbon tracer spheres in semidilute xanthan solutions, Phys. Rev. E (2004) 69 021804-1-12 
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Fig. 6.4. Creeping flow past a fixed sphere.  

 

Translational friction factor 
We now determine the solution of the Stokes equations for creeping flow past a 
translating sphere. The non-rotating sphere in fig. 6.4 is fixed in a fluid which has a 
uniform speed u far away from the sphere. Using spherical coordinates (r,, ), the 
flow near the sphere is of the form: 

    0ru u r, ,u r, ,    


  (6.37) 

This is a two-dimensional 'axisymmetric' flow: the fluid approaches from the z-
direction so if we observe the flow in a plane perpendicular to the z-axis at a fixed 
distance r the pattern is the same for every angle  ; the velocity component u

  in 
eq. (6.37) is zero. In contrast to Poiseuille flow in a straight tube streamlines are 
now curved, which makes the creeping flow equation more difficult to solve directly 

for the components of u

. One option is to simplify the Stokes equation by rewriting 

them in terms of a stream function  instead of u

. 

Stokes stream function 

A stream function has a constant value along a streamline. According to eq. (5.10) 
is a stream function if  
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( ) 0u  


  (6.38) 

In the case of plane parallel flow in eq. (6.1), the velocity component u(y) is itself a 
stream function: 

( )
( ) ( ) 0

u y
u u y u

x


  




  (6.39) 

Along the curved streamlines past a sphere, however, velocity components are not 
constant. The components are actually derivatives of a stream function: 

2

1 1

sin sinru , u
r r r

 
  
 

  
 

 (6.40) 

These equations define the Stokes stream function , which is indeed a stream 
function because 

( ) 0r

u
u u

r r
 


 

   
 


  (6.41) 

For the velocity components in eq.(6.40) it is also the case that 

0.u 
 

  (6.42) 

This is the trick of Stokes' stream function: if we find , the velocity u

 in eq. (6.37) 

immediately follows while we automatically satisfy 0.u 
 

. So from the creeping 

flow eq. (5.32) we only need: (see Appendix A, eq. (A.12)): 

 2p u u ,       
   

  (6.43) 

where we have substituted the Laplacian from eq. A12 in Appendix A. The curl of u

 

in terms of the stream function in eq. (6.40) is the vector: 

21
0 0

sin
u , , E ,

r



     

 
  (6.44) 

where E2 is the differential operator 

2
2

2 2

sin 1

sin
E

r r


  

         
  (6.45) 

Substitution of (6.44) in eq. (6.43) yields: 

2 2
2

1

sin sin

p p
E ; E

r r r r r

  
   

    
 

   
 (6.46) 

Next we note that the pressure p=p(r,) is a state function (dp is an exact 
differential). Then by definition the order of differentiation may be reversed: 

p p

r r 
   


   

  (6.47) 

The pressure can now be eliminated by combining (6.46) and (6.47) to obtain 

 2 2 0E E ,    (6.48) 
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which on substitution of (6.45) can be rewritten to: 

22

2 2

sin 1
0

sinr r

 
  

           
 (6.49) 

This is the simplified version of the differential equation (6.43) for u

. We now have 

to guess a form of  which satisfies (6.49). A suitable form suggests itself by the 
'infinity condition': at r   the flow becomes uniform with speed u (see fig. 6.4) 
in the z-direction: 

cos sin asru u , u u , r      (6.50) 

For the stream function in eq. (6.40) this implies: 

2 21
sin as

2
u r , r ,      (6.51) 

which suggests a solution to eq. (6.49) of the form  

  2sinf r    (6.52) 

Substitution of this trial solution in eq. (6.49) shows that f(r) follows from the 
differential equation: 

 
22

2 2

2
0

d
f r

dr r

 
  

 
  (6.53) 

We now try solutions of the form f = r, which indeed satisfy eq. (6.53) provided 
that: 

      2 3 2 1 2 0         , (6.54) 

which is the case for  = -1, 1, 2, 4. Therefore: 

  2 4A
f r Br Cr Dr ,

r
      (6.55) 

where A, B, C and D are arbitrary constants. The condition of uniform flow at 
infinity in eq. (6.51) can only be fulfilled if C = ½ u  and D = 0. The stick-boundary 
condition that u and ur in eq. (6.40) are both zero on the sphere surface implies 

1
0

 
  
 r r

 


  on r = R,  (6.56) 

which reduces to (1/R)f (R) = f  (R) = 0. This determines the constants A = u R3/4 

and B = -3uR/4. The Stokes stream function finally turns out to be: 

3
2 21

2 3 sin
4

R
u r Rr

r
 

 
   

 
  (6.57) 

Streamlines as sketched in fig. 6.4 correspond to certain values of  . For example 

  = 0 generates the streamline which satisfies either r = R or  = 0, Note in fig. 

6.4 that the flow pattern has 'for-aft' symmetry: the streamlines will remain the 
same if the flow u is reversed. This is another example of the reversibility of 
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creeping flow referred to at the end of section 5.3. By substituting   we can 

compute the velocity components in eq. (6.40): 
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     

           
     

 (6.58) 

One striking feature of this velocity profile of a translating sphere is its long range 
due to the R/r term (cf the flow field around a rotating sphere in (6.28)). So a 
diffusing or sedimenting colloidal sphere causes a disturbance of a uniform flow 
which extends over many sphere diameters. Therefore these solutions to the 
Stokes equation for a single sphere are only valid if the sphere is far away from 
other spheres or a wall.  

The radial pressure gradient in eq. (6.46) turns out to be: 

33 cos
p

u Rr
r

 






  (6.59) 

At infinity the pressure in the uniform flow is p  : 

2

3
cos

2

R
p p u

r
      (6.60) 

As expected the pressure is larger then the bulk pressure p at the sphere side 
which receives the flow. For a colloidal sphere sedimenting or diffusing in a liquid 
we are interested in the net force which is exerted on the sphere in fig. 6.4. The 
relevant viscous stress component is 

r

u
r

r r


         
  (6.61) 

namely the stress tangential to the sphere surface due to the velocity gradient 
perpendicular to the surface. For the velocity component u in eq. (6.58) we obtain 
for the stress on the sphere surface: 

3
sin

2r

u
,

R    at r = R  (6.62) 

Further, the pressure on the surface is: 

3
cos

2

u
p p ,

R
 

    at r = R  (6.63) 

By symmetry the net force on the sphere will be in the z-direction, parallel to the 
uniform flow (fig. 6.4). The relevant components of p and r on the sphere surface 
are 

3
sin cos cos

2r

u
t p p

R
   

     (6.64) 

The total force F on the sphere is the integral of t over the whole sphere surface: 
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

    (6.65) 

Note that the term p cos in eq. (6.64) does not contribute to this total force, 
because the isotropic bulk pressure p can have no net effect on the sphere. Thus 
the stress in eq. (6.64) on the sphere surface is everywhere the same, a surprising 
result in view of the velocity profile in Fig. 6.4.  The proportionality factor between 
the uniform flow velocity u far away from the sphere and the drag force is: 

6f R ,  (6.66) 

the well-known Stokes friction factor for the translational motion of a spherical 
particle in a viscous fluid.  

One application of the Stokes friction factor in (6.66) concerns a sedimenting 
sphere which accelerates downwards in a fluid until a constant velocity U0 is 
achieved. Then the drag force exactly balances the weight of the sphere, corrected 
for buoyancy: 

 3
0

4
6

3 sphere fluidU R R g     , (6.67) 

where   is a mass density. The stationary sedimentation velocity 

 
2

0

2

9 sphere fluid

R
U g 


  ,  (6.68) 

also called the Stokes velocity, of course only applies if all assumptions underlying 
the Stokes friction factor (Re << 1, no-slip boundaries etc.) are justified. The same 
applies of course for the Stokes-Einstein diffusion coefficient for the sphere (see 
also eq. (4.40)): 

6

kT
D

R
   (6.69) 

One assumption has not been addressed explicitly, namely that the fluid 
surrounding the sphere is a continuum. For a colloidal micron-sphere diffusing or 
sedimenting in a low-molecular solvent this is certainly the case: on its diffusive 
time scale the sphere experiences macroscopic hydrodynamics (see the discussion 
on time scales in Chapter 4). For an ion, however, one would expect that the 
continuum hypothesis fails. Nevertheless, the Stokes friction factor eq. (6.66) is 
widely used in the Stokes-Einstein diffusion coefficient of small solute molecules, 
and in many cases appears to work well. 

Stick versus slip  

The Stokes-Einstein diffusion coefficients for sphere translation and rotation are 
widely applied, often without attention being paid to the crucial assumption of a 
stick boundary condition. The derivation of the Stokes friction factors relies on fluid 
mechanics of a sphere suspended in a continuum whereas the occurrence of ‘stick’ 
or ‘slip’ at the solid-liquid interface involves molecular details. In the derivation of 
(6.66) the stick boundary is primarily a mathematical convenience and it is not at 
all certain that it holds for a particular particle in a particular liquid.  
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Indeed, an important advantage of the stick boundary condition is that only the 
sphere radius R and the solvent viscosity  enter into the Stokes friction factors. 
Slip, however, leads to an additional parameter whose value is not a priori known, 
because when the solid surface and the adjacent fluid move at different speeds the 
resulting frictional force may differ from one solid-liquid combination to another. 
The parameter  can be defined as the constant of proportionality between the 
tangential stress  and the relative solid-liquid speed u, at the sphere surface:

, atu r R     (6.70) 

Note the analogy with eq. (6.20):  has the dimension of a friction factor per unit 
area. For the tangential velocity component u on a rotating sphere this boundary 
condition adopts the form

 sin , atr

u
R u r r R

r r


      
        

 (6.71) 

bearing in mind that u is the velocity relative to the z-axis of rotation (see fig. 
6.3). The flow field is (cf eq. (6.26))

2
sin ,

C
u

r    (6.72) 

which on substitution in eq. (6.71) determines the constant C with the result: 
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1 3



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R

u R S
r S R

 (6.73) 

Where S is a dimensionless parameter, which measures the ‘amount’ of slip at the 
sphere surface. The term 1/1+3S multiplies the flow field from eq. (6.28) and 
obviously also the total torque Tz on the sphere in eq. (6.30), so the rotational 
friction factor modifies to

38

1 3


r

R
f

S


  (6.74) 

The stick boundary condition is the limit S  0, where we recover our earlier result 
fr = 8R3. The pure slip boundary condition S   (i.e. zero tangential stress on 
the sphere surface) reduces the Stokes factor to fr = 0. In this limit the rotating 
sphere does not displace any liquid; no steady state rotation can occur because 
there is no friction to balance the external torque. For the translational friction 
factor one can show (exercise 4) that the boundary condition (6.70) leads to: 

1 2
6

1 3





S

f R
S

   (6.75) 

In this case the pure slip limit yields 

4 , for   f R S   (6.76) 

So we may conclude that for spheres in a continuous fluid the incorporation of slip 
effects in friction factors is possible on the basis of the plausible boundary condition 
of eq. (6.70) . Nevertheless, the issue of ‘slip versus stick’ is far from resolved. For 
further discussion we refer to the literature cited below. 
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Exercises 
1. Give the equation for the volume rate of flow Q for the flat plates in fig. 6.1. 

2. Sketch the profile of the viscous stress rz  and show that the total viscous force 

on the inner wall of the tube in fig. 6.2 equals R2P. 

3. Derive the Stokes friction factor (per unit length) for the rotation of a very long 

cylinder with radius R around its long axis (cf. fig. 6.3). Answer: fr = 4R2. 

4. Eq. (6.74) seems not to have been reported earlier. Formula (6.75), however, 

can be found in a somewhat different notation in J. Happel and H. Brenner, Low 

Reynolds Number Hydrodynamics” (Englewood Cliffs, NJ: Prentice-Hall, 1965). 

Verify that the formula is correct. 

5. Re-examine the Poiseuille flow in simple geometries with a “pure-slip” boundary 

condition. Conclusion? 
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7. Brownian encounters 

In a quiescent solution, in absence of any external fields, Brownian motion is the 
only transport mechanism for (non-living) colloidal particles to encounter each 
other. To get an idea of the time scale involved we compute the time  taken by a 
sphere of radius R to diffuse a mean-square-displacement equal to R2. This is the 

configurational relaxation time cr  from eq. (4.11). For spheres in water at room 

temperature: 

R = 10 nm cr  = 2.4 10-7  sec 

 100 nm  2.4 10-4 sec 
 1000 nm  2.4 10-1 sec 
 10 m  2.4 102 sec 

Clearly for small colloidal particles, Brownian motion on their own colloidal length 
scale is fairly rapid, whereas for radii much larger than one micron, diffusion is a 
hopelessly inefficient transport vehicle. This inefficiency also applies to small 
colloids that have to cross over distances of micron’s or more. In these cases 
convective transport must take over: we stir to homogenize a solution rather than 
waiting for diffusion to do the mixing.  

On the other hand, convection becomes an inadequate transport vehicle close to a 
surface, or in sufficiently narrow geometries, where the viscous drag is very large. 
(It is left as an exercise to the reader to calculate the diameter of a capillary below 
which diffusion is faster than Poiseuille flow). So for small particles or molecules 
that have to react with a surface – or penetrate a biological cell – the combination 
of convection to cross large distances, plus Brownian motion for the final ‘sub-
micron step’ is a profitable strategy. Of the many examples in nature we mention 
viruses  that are convected on a (literary) global scale by their hosts in aero planes 
but that eventually have to locate suitable receptors on a new target cell via 
Brownian motion on a sub-micron scale. 

Diffusion to a spherical target 

Brownian collisions on a spherical target will be analysed in more detail below 
because it captures the essential kinetics of many processes including coagulation 
of colloids, diffusional growth and diffusion-controlled chemical reactions. 
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Fig. 7.1. Spheres j diffuse from a bulk (with number concentration cj,) at a distance Ri +  towards a diffusing tracer 
sphere with radius Ri which acts as an infinite sink. 

 

We consider a collection of Brownian spheres with radius Rj, diffusing in the vicinity 
of a target sphere with radius Ri centered at the origin (fig. 7.1). The frequency of 
collisions of j-spheres on the target sphere can be found (following Smoluchovski) 
via a stationary diffusion model as follows.  

Imagine that every j-sphere that hits the target sphere is removed from the 
solution while simultaneously a new j-sphere is added to the bulk far away from the 
target. In this way a steady diffusion of j-spheres from the bulk to the target will be 
established. Alternatively one can also remove j-spheres by incorporating them in 
the target i-sphere which, consequently, will grow in time (see the later text on 
diffusional growth). In the latter case the bulk should be large enough to ensure a 
constant bulk concentration of j-spheres. The continuity equation for the number 
concentration cj  of j-spheres is (see chapter 3): 

. ,j
d

c
j

t


 



 
  (7.1) 

which together with Fick’s first law 

d ij jj D c  


  (7.2) 

leads to the diffusion equation which we already encountered in slightly different 
notation in eq. (3.13): 

2j
ij j

c
D c

t


 


  (7.3) 

Here Dij is the diffusion coefficient of the j-spheres relative to the centre of the 
target sphere which itself also exhibits Brownian motion. The concentration profile 

of j-spheres reached a steady state when / 0.jc t     Then (7.3) reduces to the 

Laplace equation: 
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  (7.4) 

with the solution: 

( ) ,j

A
c r B

r
    (7.5) 

in which A and B are constants. The boundary conditions are a constant bulk 
concentration cj, beyond some distance Ri +  from the origin, and zero-
concentration of (free) j-spheres at the target surface: 

,( ) ; ( ) 0j i j j ijc r R c c r R       (7.6) 

Note that the zero-concentration actually occurs at the ‘collision distance’ Rij, i.e. 
the center-to-center distance at which the i- and j-sphere touch. After evaluating A 
and B from the boundary conditions in (7.6), the steady-state profile turns out to 
be: 
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c r R R

c r R R


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  (7.7) 

The question now is which value we have to take for the ‘diffusion-zone thickness’ 
, in other words, where in Fig. 7.1 does the bulk begin? Fortunately, for a single 
target sphere in a sufficiently large container of j-particles, we do not have to 
specify  any further than that it is  much larger than Rij. Thus for the steady-state 
profile we can take the limit: 

,

( )
lim 1j ij

j

c r R

c r


    (7.8) 

In what follows we will only employ this concentration profile. We note here that 
the simple, asymptotic result in (7.8) is a fortunate consequence of Brownian 
motion in three dimensions: diffusion in a two-dimensional plane involves an 
undetermined  (exercise 1).  

The steady diffusion flux of j-spheres in radial direction (unit vector r


) towards the 

target follows from substitution of (7.8) in Fick’s first law (7.2): 

,2

j r
d ij r ij ij j

dc
j D D R c

dr r

    


 (7.9) 

This is a flux of particles (per unit area per second) which decreases with increasing 
r. However, because of mass conservation the total flux J through a spherical 
envelope of with surface area 4r2 must be independent of r. This also follows from 

the steady-state condition . 0dj 
 

. Thus the collision-frequency of j-particles on 

the target sphere can be equated to this total flux, evaluated at r = Rij: 

2
,( ) 4 ( ) 4ij d ij ij ij jJ j i R j r R D R c     


 (7.10) 

Next we note that for solid spheres the collision radius equals Rij = Ri + Rj, and that 
for independently diffusing spheres their relative diffusion coefficient equals 
(exercise 2): 
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1 1

6ij i j
i j

kT
D D D

R R
 

     
 

  (7.11) 

Consequently eq. (7.10) becomes: 

,

2
( ) (2 )

3
ji

j
j i

RkT R
J j i c

R R      (7.12) 

It is instructive to rewrite this expression in terms of the volume fraction 

  34 / 3j j jrR c   of j-spheres: 

( ) (2 )
2

j ji

j i cr

RR
J j i

R R




    ; 3 /cr jR kT   (7.13) 

This form shows that, for a give volume fraction, it is the configuration relaxation 
time cr from eq. (4.11) that largely determines the collision frequency of j-spheres 
on the target.  

An at first sight curious feature of the diffusion flux J(ji) is its minimum for 
spheres of identical size (exercise 3): 

2
( ) ;j

i j
cr

J j i R R



      (7.14) 

In other words, for a given volume fraction, polydispersity always accelerates 
encounters due to Brownian motion in comparison to monodisperse spheres. The 
minimal value of (7.14) can be qualitatively understood by noting that if, in a 
monodisperse system, we shrink all spheres except the target sphere, the collision 
frequency increases due to the enhanced diffusion of the shrunk spheres. If, on the 
other hand, only the target sphere is reduced to a point-like particle, it will rattle 
around rapidly in a collection of static j-spheres which also increases the diffusion 
flux J(ji). 

To get an idea of the collision frequencies involved, imagine the fate of a target 
sphere with radius Ri = 1 m immersed in an aqueous host dispersion with a 
particle volume fraction j = 0.01. According to eq. (7.13) the collision frequency on 
this target is in order of magnitude: 

 

Rj = 10 nm J(ji) = 68 x 102 sec-1 

 100 nm   80 x 10-2 sec-1 

 1000 nm   26 x 10-3 sec-1 
 

Thus the micron-size target is bombarded quite frantically by the Brownian motion 
when the hosts are nano-particles, whereas for an equal volume fraction of micron-
size hosts the target has to wait for more than half a minute for the next Brownian 
encounter. 
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Diffusional growth 

Eq. (7.10) is also useful to estimate the growth rate of a colloidal sphere in a 
supersaturated solution of reactive molecules or of monomers (j-particles). In this 
case Dj >> Di and Rij  Ri so the collision frequency on the sphere is approximately: 

,( ) 4 j i jJ j i D R c     (7.15) 

Suppose each j-particle contributes a volume vj to the volume Vi of the growing 
target: 

3( ) ; (4 / 3)i
j i i

dV
J j i v V R

dt
    (7.16) 

Substitution of (7.15) and integration yields for the radius Ri at time t: 

2 2
0 0 j ,( ) ( ) 2 ( );  i i j j j jR t R t D t t c       (7.17) 

The volume fraction j  is actually larger than the true volume fraction of j-particles 
because the volume contribution vj to the the growing sphere volume is larger than 
the volume of sphere j itself. Note in (7.17) the scaling R ~ t1/2 which is 
characteristic for diffusion-controlled growth. The growth equation (7.17) is indeed 
an instance of Einstein’s law for quadratic displacement (see eq. 4.29) due to an 
‘effective’ diffusion coefficient Djj.  

Diffusion coefficients of small molecules or ions in water are typically Dj ~ 10-5 
cm2sec-1 so for a volume fraction j = 0.01, the growth rate of the sphere from 
(7.17) is about dRj

2/dt  20 m2/sec. This is quite fast; growth of colloidal spheres 
by precipitation in a supersaturated solution is often much slower. Retarding factors 
include exhaustion of the bulk (decrease of j in time) or a slow chemical process 
that generates the particles j.  

Flocculation kinetics 

By flocculation or aggregation we refer to the sticking together of colloids which 
keep their ‘identity’, in contrast to droplets which merge together in a coalescence 
process. When the colloids strongly attract each other such that each Brownian 
encounter leads to a permanent aggregate, we speak of fast flocculation. Its 
kinetics can be treated as  an irreversible ‘bi-molecular reaction’ between species i 
and j: 

ji
ij i j

dcdc
k c c

dt dt
     (7.18) 

Here ci and cj are bulk number concentrations of species i and j (the subscript  
denoting bulk values has been dropped). The rate constant kij of this second order 
reaction directly follows from the flux in eq. (7.10), because the total collision 

frequency between particles i and j equals ( ) iJ j i c . Since every collision 

removes a free i and j particle we have: 

( )ji
i

dcdc
J j i c

dt dt
    ,  (7.19) 

which implies for the rate constant: 
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( ) / 4ij j ij ijk J j i c D R    ,  (7.20) 

where we have substituted the diffusive flux J(ji) from eq. (7.10).  This rate 
constant (first derived by Smoluchowski) has the remarkable feature that for 
monodisperse particles it is independent of particle size, for if we substitute Rij = 
2R1 and Dij = 2D1 it turns out that: 

11 8 / 3k kT    (7.21) 

This size independence suggests that k11 should also give a reasonable estimate for 
diffusion-controlled reactions between small molecules or ions. For example, for 

4 3 2 ,rkOH NH NH H O     

the rate constant is 175.6 10rk   m3/sec. From (7.21) we obtain for water ( = 

0.84 m Pa sec) at 298 K: 17
11 1.2 10k    m3/sec, which is indeed correct in order of 

magnitude. Eventhough the rate constant is independent of particle size, the 
particle number density due to flocculation decreases in time at a rate that strongly 
depends on the sphere radius R, as can be seen as follows.  

Consider the initial stage of flocculation in which only doublets of spheres are 
formed. Integration of eq. (7.18) for identical spheres shows that in this initial 
stage the concentration c(t) of free singlet spheres decreases as 

0 1/ 2( ) /1 ( / )c t c t t    (7.22) 

Here t1/2 is the half-life of the singlet spheres and c0 the singlet number density at 
t=0. For a starting volume fraction 0 = c0(4/3)R3 the half-life equals: 

3
1/ 2

11 0 0

1
; /

2
cr

crt R kT
k c


 


     (7.23) 

Here cr is the configurational relaxation time  from eq. (4.11), note that t1/2 
approximately equals the Brownian collision time ߬bc in (4.17). The half-life also 
turns out to be the reciprocal of the flux in (7.14). It is evident that for a given 
volume fraction, colloids in the micron size range flocculate relatively slowly. For 
nano-particles at a volume fraction of say  = 0.01, rapid    flocculation occurs 
within a split of a second. 

Flocculation in a later stage involves the formation of triplets, quadruplets etc. 
which also collide by Brownian motion to form large clusters. Smoluchowski showed 
that this – at first sight hopelessly complicated – kinetic problem can be 
approximately solved as follows.  

Consider the concentration cߙ of aggregates containing  spheres. Such -mers are 
formed by the encounters of smaller aggregates, and disappear by the uptake of 
any other particle or aggregate. The change of -mer  concentration in time is 
therefore: 

1

2

1

i , i i i i i
i 1 i 1

dc
k c c k c c

dt




   

 

 
 

    (7.24) 

This equation can be solved easily if we neglect any difference between reaction 
rate constants kij and consequently substitute kij = k11 : 
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1

2

1

11 i i 11 i
i 1 i 1

dc
k c c k c c

dt




 

 


 

     (7.25) 

In terms of the total number density  

  i
i 1

c t c




  ,  (7.26) 

eq. (7.25) can be written as: 

1

2
2tot

11 tot

dc
k c

dt
  ,  (7.27) 

with the solution 

 
1

0

1 / 2

c
c t

t / t



  (7.28) 

Here the half – life equals 

cr
1/2

0

t  = 



,  (7.29) 

which is twice the half-life of singlet spheres in eq.(7.23). Apart from the total  
particle number density, we can also evaluate the concentration all the various 
particle species (-mers) in time. From eq. (7.24): 

1

2

1
11 i 1

i 1

22
11 1 11 i 2

i 1

dc
k c c

dt

dc
k c k c c

dt

etc.









 

 



   (7.30) 

Again all rate constants are equal: kij = k11. This leads to the concentrations of the 
various species in fig. 7.2. The assumption that all rate constants equal k11 seems 
drastic. It implies, for example, that the rate constant for irregular aggregates of, 
say, 10 particles equals that of one single sphere. Note, however, that the diffusion 
coefficient D of a cluster is inversely proportional to the typical cluster size Rc. This 
implies that the rate constant k ~ DRc is indeed fairly insensitive to the shape and 
size of the aggregates that form in the flocculation process.  
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Fig. 7.2. Change in species concentration in time according to eqs. (7.30). 

 

Effect of shear flow 
Shear forces (flow, stirring) increase the flocculation rate, because the velocity 
gradient in the suspension increases the collision frequency of the colloids. Suppose 
a constant velocity gradient γ  = dv/dz is present in the z-direction (see fig. 7.3). 

Then the flux of particles j at height z in the direction of sphere i  centered at z = 0 
is: 

( )2 ( )2 2
j ijc v z R -z dz ;  v z =γ z   (7.31) 

Integration of this expression (see also fig. 7.4) gives the total flux of j-particles to 
the i-sphere: 

4
( ) 4

3

ijR 2 2 3
j ij ij j0

J= j i = c γ z R -z dz = γR c    (7.32) 

The corresponding rate constant is: 

4

3
3

ij ijk = γ R   (7.33) 

We compare this ‘shear-induced’ rate constant to the purely diffusional rate 
constant in eq. (7.20): 

( ) 4

( ) 3

2 3
ij shear ij

cr
ij diff ij

k R R
4

k D kT

   


  
    (7.34) 
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Fig. 7.3. Centra of particles j move in a shear flow towards particle i. 
 

 
 
Fig.7.4. Sketch accompanying eq. (7.32) 
 



Fig. 7.5: Colloids diffuse across a potential barrier of width L into a sink with zero-
concentration. The sink may be a strong Van der Waals attraction, in which case Vmax is the 
repulsive barrier in the DLVO-potential. 
 
Clearly for large particles (R >1 m) shear-induced flocculation becomes important. 
In practice, this type of flocculation appears to have an autocatalytic character; 
once flocculation has started (either by diffusion or stirring) further stirring strongly 
accelerates the process. This is because of the R3 -dependence in eq.(7.34); the 
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larger the aggregate or floc the more rapid it will catch other aggregates in the 
stirred suspension. 

Brownian motion in an external field 

In our treatment of Brownian kinetics we have ignored colloidal interactions, apart 
from a strong attraction at particle contact responsible for ‘fast flocculation’. 
Additional long-range Van der Waals attractions will accelerate particle aggregation 
whereas a repulsive barrier (as in the DLVO-potential between charged colloids) 
decreases the frequency at which colloids collide by Brownian motion.  

To analyse the effect of a potential (either due to the colloids themselves or an 
external field) on colloidal kinetics, we consider the Brownian motion of particles 
from a source with concentration 0 at x = a to a sink with concentration  = 0 at x 
= a + L (see fig. 7.5). In absence of a potential, the diffusion flux and the 
concentration gradient in the steady state are:  

0
0; ( ) (1 )d

x
j D x

L L

       (7.35) 

A potential V(x) produces a convective flux due to the force K = -dV(x)/dx on each 
particle: 

( ) ( )
( )c

x dV x
j x u

f dx

      (7.36) 

Thus the total steady-state flux j = jd + jc  is given by 

( ) ( ) ( )
-  constant

d x x dV x
j D

dx kT dx

      
  (7.37) 

In thermodynamic equilibrium (j = 0) the solution of (7.37) is 

0( ) exp[ ( ) / ] ,ev x V x kT     (7.38) 

which is the same Boltzmann distribution as in (4.23). To find the concentration 
profile in the non-equilibrium steady-state (j  0), Debye proposed to substitute in 
eq. (7.37) the trial solution 

( ) ( )exp [ ( ) / ] ,ev x x V x kT     (7.39) 

to find that  (x) is given by the differential equation: 

( )
exp[ ( ) / ]

d x j
V x kT

dx D

 
    (7.40) 

In view of the boundary condition  (x = a) = 0 , eq. (7.40) yields: 

' '
0( ) exp[ ( ) / ]

x

a

j
x V x kT dx

D
      (7.41) 

The magnitude of the steady-state flux follows from the second boundary condition, 
namely that (x = a + L) = 0: 

0

exp[ ( ) / ]



a L

a

Dc
j

V x kT dx
  (7.42) 
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The steady-state concentration profile is obtained by substitution of (7.41) and 
(7.42) in (7.39): 

' 'exp[ ( ) / ]( )
1

( ) exp[ ( ) / ]

x

a
a L

ev
a

V x kT dxx

x V x kT dx


   


  (7.43) 

Here ev(x) is the equilibrium distribution from (7.38). Note that for V(x) = 0 we 
recover the flux and the linear concentration profile from (7.35). With respect to 
kinetics, the essential point is that the effect of a potential is equivalent to a 
rescaling of the diffusion coefficient. We can rewrite (7.42) as: 

0
effj D

L


   (7.44) 

in which 

1
exp[ ( ) / ]

eff a L

a

D
D

V x kT dx
L





 ,  (7.45) 

is an effective diffusion coefficient that accounts for the retardation or acceleration 
of particle transport due to the external potential. So, in principle, all foregoing 
results for the kinetics of Brownian encounters remain valid, provided the 
appropriate effective diffusion coefficient is substituted. Eq. (7.45) applies to one-
dimensional diffusion problems; for the case of three-dimensional spheres, see 
exercise 5. 

To make an estimate of Deff we note that for a high repulsive barrier Vmax (see fig. 
7.5), the integral in (7.42) approximately equals (L/2) exp [Vmax/kT]. Thus: 

max max2 exp[ / ] , for ,effD D V kT V kT     (7.46) 

This result reminds of the Arrhenius equation in chemical reaction kinetics, where 
reaction rates are exponentially retarded by an activation energy barrier. Eqs. 
(7.46) informs us that, independent of the detailed shape of the potential V(x), a 
repulsive barrier in the range 5-10 kT suffices to practically eliminate Brownian 
encounters. This is the principal idea underlying the DLVO-theory of colloidal 
stability: a barrier due to an electrical double-layer repulsion strongly reduces the 
frequency at which particles ‘fall’ into each others deeply attractive Van der Waals 
well. Addition of salt lowers Vmax which accelerates flocculation in a exponential 
fashion. 

Flocs and particle clusters, of course, may also fall apart due to thermal motion 
provided the attractive well is not too deep. We can estimate the life time of a 
doublet from the time it takes for a particle to diffuse out of a well with depth Vmax 
and a width comparable to its own radius:  

 
2 3

max maxexp[ / ] exp / ,  cr
eff

R R
V kT V kT

D kT

   (7.47) 

where cr  is the configurational relaxation time for the colloids in absence of any 
force field. This scaling relation also gives an indication for the temporal stability of 
larger clusters or aggregates or particle gels. Such non-equilibrium structures are 
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practically permanent if  exceeds the characteristic observation time obs , which is 

about 2 310 10obs   sec. for dynamic light scattering and seconds to minutes for 

visual microscopy. 

 

Exercises 

 Derive the equivalent of (7.10) for Brownian motion on a flat plane, for discs 
with radius Rj towards a target disc with radius Ri. Consider the limit . 
Conclusion(s)?

 Show that (7.11) is indeed correct for spheres that diffuse independently 
from each other.

 Show that (7.14) is the minimum of (7.13).

 Calculate the half-life for the flocculation of identical spheres in the initial 
stage, for  = 0.01 and R = 10 nm, respectively, R = 10 m.[3.8x10-5, 
3.8x103 sec]

 Derive the effective diffusion coefficient Deff for colloids diffusing in a radial 
potential V(r). Start with formulating the total steady-state flux.
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Appendix A 

Summary vector notation 

The following summary only relates to results needed in these notes. A vector v


 
may be represented as 

 1 2 3, , ,v v v v


  (A.1) 

where v1 is the component of the vector along axis 1. An alternative, convenient notation is: 

1 2 3i i
i

v v ; i , , 


  (A.2) 

Here 1 2 3and,  
  

 are unit vectors in the direction of, respectively, axes 1, 2 and 3. The scalar 

(or dot) product of two vectors is: 

i i
i

v .w v w , 
  (A.3) 

 

as follows from the dot product of the unit vectors 

i j ij.  
 

,  (A.4) 

in which ij is the Kronecker delta; ij = 0 for i  j and ij = 1 for i = j. The vector (or 
cross) product of andv w

 
is also a vector, with components given by the 

determinant: 

1 2 3

1 2 3

1 2 3

v w v v v

w w w

  
 

  

 
  (A.5) 

 

The vector differential operator 


 (‘del’) is defined in Cartesian coordinates as: 

i
i ix
 





  (A.6) 

 

If s is a scalar function of x1, x2 and x3 then its gradient (‘grad’) is: 

i
i i

s
s

x
 

 



  (A.7) 

 

If v


 is a function of the coordinates xi then its divergence (‘div’) is the dot product: 

i

i i

v
. v

x


 


 

  (A.8) 

The curl of the vector is the cross product 
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1 2 3

1 2 3

1 2 3

v
x x x

v v v

  
  

 
  

  

 
  (A.9) 

For example, the component of curl v


 in the direction of 1


 is: 

3 2

1
2 3

v v
v

x x

       

 
 

The Laplacian of a scalar s is the divergence of its gradient: 

2
2

2
i i

. s s s ,
x


    


 

  (A.10) 

 

where 

2 2 2
2

2 2 2
1 2 3x x x

  
   

  
  (A.11) 

 

is the Laplacian (read: ‘del squared’) in Cartesian coordinates. The Laplacian of a 
vector field v


 is defined as: 

 2 v .v v         
     

  (A.12) 

 

The definition is valid for curvilinear as well as rectangular coordinates. 

The divergence theorem 

Let S be a surface (with unit outward normaln

), which encloses a region with 

volume V. Then 

S V

F .n dS .F dV  
 

  (A.13) 

 

A similar identity is: 

S V

pn dS p dV  


  (A.14) 

 

where p is a scalar function. 
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Spherical coordinates (r,) 

  

 

1 1

sinr

p p p
p

r r r   
  

  
   

  

  
  (A.15) 

 

1 1

sinr r r r   
  

  
   

  

  
  (A.16) 

 

   2
2

1 1 1
sin

sin sinru r u u
r r r r







   
 

    
  

 
 (A.17) 

 

2
2 2

2 2 2 2 2

1 1 1
sin

sin sin

p p p
p r

r r r r r


    
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Cylindrical coordinates (r,z) 
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