EXAMPLE FLASH CALCULATION

Comments to this spreadsheet are given in red text below

Problem Statement: A subcooled liquid feed composed of n-pentane, n-hexane, n-heptane, benzene, and toluene at 298 K and 5 atm enters a flash chamber whose pressure is 2 atm. The flow rate of the feed is 1 mole/s. A heat exchanger present in the flash chamber provides 20 kJ of heat per mole of feed. Determine the composition of the vapor and liquid product streams, the vapor and liquid product flow rate, and the temperature in the flash chamber. Use the virial equation of state, the Pitzer and Curl correlation, and the Lewis fugacity rule for determining the vapor phase activity coefficients. Assume ideal mixtures when determining the enthalpies of the liquid and vapor phases.

PART 1: INPUT DATA

Components:		n-C5	benzene	n-C6	n-C7	toluene	
Antoine con	ists.						
А		15.833	15.9	15.83	15.873	16	
В		2477.07	2788	2697.55	2911.32	3096.52	
С	These constants give the vapor pressure in mm Hg	-39.94	-52.36	-48.78	-56.5	-53.67	
Critical Con	stants						
Тс (К)		469.6	562.1	507.4	540.2	591	
Vc (cm^3/mol)		304	259	370	432	316	
Zc		0.262	0.271	0.264	0.263	0.264	
Pc		33.3	44.6	29.3	27	40.6	
omega		0.251	0.212	0.296	0.351	0.257	
Liquid mol. vol.		115.26	88.26	130.77	146.49	106.23	
(cm^3/gm	ol)						
Regular Solution Theory		7.05	9.15	7.3	7.45	8.9	
Solubility P	arameters						
(cal/cm^3))^(1/2)				These Cal		
Enthalpy Data (units: J, g-mole, K)			Note units for enthalpy parameters		values for the temperature range that applies to the problem. This avoids the use of temperature dependent heat capacities		
Cpi liquid		150.47	180	180	220.99	200	

heat vaporiz @ Tb	25256	30143.2	28273.6	31061.6	32513		
Tb (Normal boiling pt.)	309.2	353	342	371	383		
PART 2: PROBLEM SP	ECIFICATION						
In this problem the feed parameters as well as the flash cl							
Based on 1 mole of feed:		рі	ressure and the val	ue of Q/F are specif	ied.		
	z1	z2	z3	z4	z5		
zi:	0.2	0.2	0.2	0.2	0.2		
P:	2						
Flash chamber pressure	/	Feed is all liquid a the feed pressure	t 298 K, so by defin does not matter (s	ition the enthalpy is ince feed is all liqui	s zero. Note d)		
Feed enthalpy/mole:	0	the recu pressure	uoes not matter (s		uj.		
(Liq. enth. @ 298K = 0)	En	thalpy is defined to	be zero for each c	omponent at 298 K	in liquid sate		
Heat input/mole feed	20000		This is Q/F (entha per mole of feed)	lpy input			
PART 3: INITIAL GUES	S AND FINAL S	OLUTION:	These are the changing cells in the solver. The values shown here are the final solution.			cells in nown here	
			*				
	y1	y2	уЗ	у4	у5	Т	
	0.378440903	0.192811904	0.220987144	0.116634164	0.091125884	368.7014896	
	x1	x2	x3	x4	x5	V/F	
	0.137029864	0.202536639	0.192593859	0.229419063	0.238420576	0.260842105	
PART 4: UPPER AND LO	OWER LIMITS C	OF VARIABLES	DURING SOL	UTION SEARCI	<u>4:</u>		
Upper limit of y&x	1		These can be used	d for inequality cons	straints to		
Lower limit of y&x	/	 helo Solver find a solution 					
Upper limit of T	500						
Lower limit of T	200	-					
			These	e pressures are in at	m (not mm Hg)		
PART 5: GAS PHASE C	<u>.</u>	Note that R = 82.06 cm^3 atm / (mol K) in the relations given in this section					
Pi_sat (atm)	5.286366803	1.573686447	2.148498203	0.918098945	0.629670849		
B_i (cm^3/mol)	-720.7037032	-962.257141	-1099.753064	-1553.19729	-1313.682923		
phi_i	0.953476078	0.938372358	0.929882187	0.902423305	0.916824815		
phi_i_sat	0.881682074	0.951181989	0.924876469	0.953962104	0.973030402		
phi_i is given by the Lew rule here so it does not c composition	is fugacity lepend on						

PART 6: LIQUID PHASE CALCULATIONS

Assume ideal gas (y/n)? n Collect all the previous calculations for parameters here, but with an "if" statement so if the questions on lines 113-4 are answered with "y", unity appears in appropriate cell PART 9: FINAL CALCULATIONS (SOLVE EQUATIONS IN RESIDUAL FORM) comp 3 comp 1 comp 2 comp 4 comp 5 phi_i 0.953476078 0.938372358 0.929882187 0.902423305 0.916824815 phi_i_sat 0.881682074 0.951181989 0.924876469 0.953962104 0.973030402 gamma_i 1.12993505 1.19358603 1.073900071 1.047649431 1.143862295

The residuals below use the parameters in the table immediately above, which will be unity if ideal conditions are assumed. Equations to be solved (in residual form): Note that f_i = gamma_i * x_i * phi_i_sat * P_i_sat / (ph_i * P) Phase equilibrium residuals: y1 - f1 y2 - f2 y3 - f3 y4 - f4 y5 - f5 Σ y_i - 1 0 Residuals: -1.25878E-07 -4.52083E-08 -4.93147E-08 -3.63089E-09 1.3264E-07

Material and Enthalpy Balances (in residual form):

The above 12 residual are entered as contraints to be equal to zero in the Excel solver. The 12 residuals are set equal to zero by chaning the 12 changing cells shown earlier. .

find the solution.