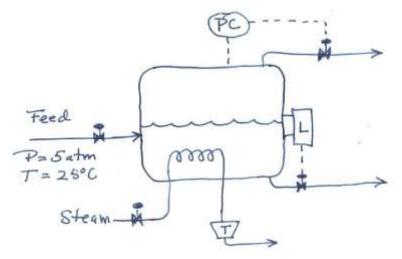
ENCH 445 -- Problem Set #3


Problem 1

A liquid mixture contains 15% (mole/mole) n-hexane, 35 % n-octane, 25 % toluene, and 25% o-xylene. Determine the boiling point of this mixture at 1 atm total pressure using either Aspen, ChemSep, or similar software. Also determine the corresponding vapor composition.

Note that a tutorial on how to perform a single-stage flash calculation using ChemSep is given in Chapter 5 (Part 3) of the ENCH 445 course WebBook.

Problem 2

According to EPA regulations, summer gasoline blends must have a total vapor pressure that is less than 7.8 psi at a temperature of 100 °F in order to reduce air pollution from gasoline used in automobiles. A waste hydrocarbon stream at a particular refinery contains 10% (mole/mole) n-butane together with 18 % n-octane, 25 % toluene, and 47% o-xylene and is available at 25 °C and 5 atm. In order for this stream to be used as a blend ingredient for summer gasoline, the n-butane content must be reduced as much as possible. Since hydrocarbons having vapor pressures between n-butane and n-octane are fortuitously absent from this waste stream, it is proposed to remove n-butane in a single-stage process as illustrated below:

The flash chamber in the process shown is equipped with a vacuum pump such that the allowable operating pressure can range from 0.5 to 5 atm. Furthermore, since the vapor product is to be used as a low-grade burner fuel having a value much less than the liquid product, the overall goal of the process is to recover as much liquid-phase product as possible. Using either ChemSep, Aspen, or similar software, select the optimal operating conditions for the proposed process, and comment on whether the process shown is a viable option for removing the n-butane from the feed stream. In your calculations assume that V/F = 0.15, *i.e.*, 15% of the hydrocarbons are lost in the vapor product. Also determine the heating requirement in the heat exchanger.