Name: ____

1. (10 points) Consider an RSA key set with p = 13, q = 17, n = 221, and e = 5. Use the extended Euclidean algorithm to determine the decryption exponent d. Show all steps of the computation.

Solution: We need to find d such that $d \cdot e \equiv 1 \mod \phi(n)$. $\phi(n) = (p-1)(q-1) = 192$. Using the extended Euclidean algorithm, we can find x and y such that $x \cdot e + y \cdot \phi(n) = 1$ and so $x \cdot e \equiv 1 \mod \phi(n)$ and d = x:

a	b	r	q	s	t
				1	0
				0	1
192	5	2	38	1	-38
5	2	1	2	-2	77
2	1	0	2		

This gives x = 77 and y = -2; we can check this

$$77 \cdot 5 + (-2) \cdot 192 = 1.$$

Therefore, d = 77.

2. (5 points) Using the same key set as in problem #1, compute the encryption of the message M = 4. Show all work.

Solution: We need to compute $M^e \mod n$ with M = 4, e = 5, and n = 221:

 $4^5 \mod 221 = 1024 \mod 221 = 1024 - 4 \cdot 221 = 140.$

3. (5 points) Using the RSA key set p = 11, q = 29, n = 319, e = 3, and d = 187, verify that S = 10 is a valid signature for the message M = 43. Show all work.

Solution: To verify the signature, we compute $M' = S^e \mod n$ and verify that M' = M:

 $M' = 10^3 \mod 319 = 1000 \mod 319 = 1000 - 3 \cdot 319 = 43 = M.$