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Suppose we are given a set {x1, x2, . . . , xn} of points on the real line, and we wish to determine the smallest
set of unit-length closed intervals that contain all of the given points. Consider the following greedy algorithm.
Sort the numbers so that x1 ≤ x2 ≤ · · · ≤ xn. Place an interval with left endpoint x1, i.e. I1 = [x1, x1 + 1]; find
the first element xi that is not included in I1 and place the interval I2 = [xi, xi + 1]; continue in this fashion
until all the xj ’s are included in an interval. Prove that this algorithm has the Greedy Choice Property and
Optimal Substructure.

Note: This problem is equivalent to the activity selection problem with si = xi and fi = xi + 1. Therefore, the
analysis from the textbook can be applied directly.

Greedy Choice Property. We need to show that making the greedy choice can produce an optimal solution.
One way to do this is to show that for any sub-problem, there exists an optimal solution that includes the greedy
choice. Let Sk = {xi : xi > xk +1} and let xm be the smallest element of Sk. Then there exists a solution to the
sub-problem Sk that includes the interval I = [xm, xm + 1]. To see this, consider any optimal solution A and
let I ′ = [a, a + 1] ∈ A contain xm. If a = xm, then I ′ is already constructed from the greedy choice and there
is nothing to prove; if a 6= xm, then it must be that a < xm ≤ a + 1, so I ′ can be “shifted right” to coincide
with I. I contains at least as many elements xi as I ′, so replacing I ′ with I in the optimal solution yields an
optimal solution. Therefore, there is an optimal solution to the sub-problem that includes the greedy choice.

Optimal Substructure. We must show that an optimal solution to the full problem is built from optimal
solutions to subproblems. Let S = {I1, I2, . . . , Im} be an optimal solution for A = {x1, x2, . . . , xn}. Any xk must
be included in some interval Ij = [aj , aj + 1]. Define the subproblems A′ = {xi < aj} and A′′ = {xi > aj + 1}.
Then S′ = S ∩ A′ must be an optimal solution for A′ and S′′ = S ∩ A′′ must be an optimal solution for A′′.
Suppose not. Then either A′ or A′′ has a smaller solution. Suppose A′ has the smaller solution; then there
exists a solution R′ on A′ such that |R′| < |S′|. But then R′ ∪ S′′ ∪ {Ij} is a solution for A but

|R′ ∪ S′′ ∪ {Ij}| = |R′|+ |S′′|+ 1 < |S′|+ |S′′|+ 1 = |S|,

contradicting the assumption that S is an optimal solution. The proof is similar if A′′ has the smaller solution
(or both A′ and A′′ have smaller solutions). Therefore the problem has optimal substructure.
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