Name: _

1. (10 points) Consider the rod-cutting problem for a rod of length six with the profit for each length of rod given in Table 1.

i	1	2	3	4	5	6
p_i	2	5	8	12	12	15

Table 1: Profit p_i for a rod of length i

(a) Complete the following table of values for r[i] and s[i]. Show all work.

i	1	2	3	4	5	6
r_i	2	5	8	12	14	17
s_i	1	2	3	4	1	2

Note: For s_4 , s_5 , and s_6 , the values 4, 4, and 4 are also acceptable.

To compute r_4 :

 $r_4 = \max(p_1 + r_3, p_2 + r_2, p_3 + r_1, p_4 + r_0) = \max(10, 10, 10, 12) = 12$

which occurs with an initial cut of four. To compute r_5 :

 $r_5 = \max(p_1 + r_4, p_2 + r_3, p_3 + r_2, p_4 + r_1, p_5 + r_0) = \max(14, 13, 13, 13, 12) = 14$

which occurs with an initial cut of one. The computation of r_6 is similar.

(b) Use the s table to determine the optimal cuts for a rod of length six. Justify your answer.

The value of s_6 is two, so we should make an initial cut of length two, leaving a rod of length four. s_4 is four, so we leave this piece uncut. Thus the optimal cuts for a rod of length six are (2, 4).

2. (10 points) I own and operate a small delivery truck; every morning I go to a warehouse, load the truck with items awaiting delivery, and deliver them. My truck can carry W pounds of goods. When I arrive at the warehouse, there are n items x_1, x_2, \ldots, x_n waiting to be delivered, each with weight w_i and value v_i , $i = 1, 2, \ldots n$. There are always more items waiting than I can carry in my truck. I want to maximize the total value of my load.

Does this problem have optimal substructure? Explain why or why not. If "yes," then outline a proof.

Yes, the problem does have optimal substructure. Consider a most valuable load that weighs at most W pounds. If we remove item j from the load, the remaining load must be the most valuable load weighing at most $W - w_j$ made from the n - 1 items excluding j.

Suppose this were not the case. Then there would be a load of weight at most $W - w_j$ that is more valuable. Adding item j to this load yields a solution to the original problem with greater total value, contradicting the supposition that it was optimal.