CMSC 441 Final Exam Spring 2016

Name:

The exam consists of seven problems; you only need to solve five. You must do problems 1, 2, and 3; the
remaining two may be chosen from problems 4 — 7. Please indicate the problems you want to have graded by
circling the problem numbers — otherwise, I will just grade the first four problems you worked on.

The following reference materials are provided on the last page of the exam: the statement of the Master
Theorem and some summation formulas.

e You have 120 minutes.
e You may use only a calculator, pencil, or pen; you may not use a phone as a calculator.
e You must show all calculations. If you fail to show your work, you will receive no credit.

e You must put away all notes and papers and close all bags.
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1. (REQUIRED) Consider the following algorithm to multiply two n-bit numbers x and y:

RECURSIVE-MULTIPLY(z, ¥)

1 n = x.size

2 ifn==

3 return zy

4 else

5 Write = @1 - 27/2 4+ 2o and y = y1 - 2/2 4+
6 p = RECURSIVE-MULTIPLY (21 + Zo, Y1 + Yo )
7 g = RECURSIVE-MULTIPLY (21, Y1)

8 r = RECURSIVE-MULTIPLY (g, o)

9 return ¢-2" + (p—q—7) -2V 47

(a) Derive a recursion for the running-time of RECURSIVE-MULTIPLY.
(b) Solve the recursion to find an asymptotic bound for the running-time.

(¢) Show that RECURSIVE-MULTIPLY is equivalent to the ‘schoolbook’ method of multiplication.
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2. (REQUIRED) Consider the following recursive function which computes the minimum value in an array z
of length x.length:

RECURSIVE-MIN(z)
1 n = x.length

2 ifn==

3 return z[1]

4 else

5 p = RECURSIVE-MIN(z[2..n])

6 return MIN(z[1], p) / two-argument MIN() function

(a) Derive a recursion for the running-time of RECURSIVE-MIN.
(b) Use a recursion tree to ‘guess’ an asymptotic bound for the recursion.

(¢) Use the substitution method to prove your guess is correct.
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3. (REQUIRED) Consider the following variant of the subset-sum problem. There are n items, each having
non-negative, integer weight w;,7 = 1,2,...,n. We wish to select a set .S of items such that

€S

where W is a non-negative, integer bound. Moreover, we want S to maximize the sum, subject to the constraint.

(a) Show that this problem has optimal substructure.

(b) Consider the following greedy approach: at each step, add to S the item of largest weight that maintains the
bound (> ;cgw; < W). Construct an example that shows that this greedy approach does not necessarily
produce an optimal solution.
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4. The algorithm P-SuM computes the sum of the elements of an array L of length n:

P-Sum(L)

1 n = L.length

2 ifn==

3 return L[1]

4 c¢=|n/2]

5 =z = spawn P-SuMm(L[1..c])
6 y=P-Sum(L[c+1..n])

7 sync

8 return z + vy

(a) Draw the computation DAG of P-SumM(L) for L of length 4.

(b) Identify the critical path on the DAG; determine the span.

(¢) Determine the work and parallelism of P-Sum(L) with L of length 4.
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5. Consider an RSA key set with p =17, ¢ = 19, n = 323, and e = 5.

(a) Use the Extended Euclidean Algorithm to find the decryption exponent d.

(b) Show that a = 2 is not a witness to the compositeness of q.

(¢) Verify that S =4 is a valid signature for the message M = 55.
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6. Consider the following flow graph G:

U1
5 2 7
S U3 1 t
6 2 4
V2

(a) Show the execution of the Edmonds-Karp algorithm on G. For each iteration, show the flow f on the
graph G, the residual graph G¢, and the augmenting path. Include all backwards flows in the residual
graph.

(b) What is the minimum cut corresponding to the maximum flow on this network?
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7. Let G be an undirected graph, v and v vertices of G, and k a non-negative integer.

Define LONGEST-PATH-LENGTH(G, u, v) to be the optimization problem of determining the length of the longest
simple path from u to v in G, and LONGEST-PATH(G, u, v, k) the decision problem “is there a simple path from
u to v in G of length at least k7?7 Show that LONGEST-PATH € P if and only if LONGEST-PATH-LENGTH is
solvable in polynomial time.
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Theorem (Summation Formulas).

- o nn+1)2n+1
> (0 D2+ 1)

n
1—1r

=0

Theorem (Master Theorem). Let a > 1 and b > 1 be constants, let f(n) be a function, and let T'(n) be defined
on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n)
where we interpret n/b to mean either |n/b] or [n/b]. Then T(n) has the following asymptotic bounds:
(a) If f(n) = O(n'°82=<) for some constant € > 0, then T(n) = O(n'°2 ).
(b) If f(n) = O(n'°& 2), then T(n) = O(n'°& 2 1gn).

(c) If f(n) = Q(n'°® 7€) for some constant € > 0, and if af(n/b) < cf(n) for some constant ¢ < 1 and all
sufficiently large n, then T(n) = O(f(n)).



