Running Times and Asymptotic Analysis Part 2

C.S. Marron cmarron@umbc.edu

CMSC 441 — Algorithms

Outline

More Asymptotic Sets O(g(n)) and $\Omega(g(n))$ o(g(n)) and $\omega(g(n))$

The Set Θ

Recall from the previous lecture:

Definition of Θ

Let g(n) be a function. The set $\Theta(g(n))$ consists of all functions f(n) for which there exists positive constants c_1 , c_2 , and n_0 such that, if $n \ge n_0$, then

$$c_1g(n) \leq f(n) \leq c_2g(n).$$

The sets O(g(n)) and $\Omega(g(n))$ are closely related to $\Theta(g(n))$: O is the upper bound from the definition of Θ and Ω is the lower bound.

The Sets O and Ω

Definition of O

The set O(g(n)) consists of all functions f(n) for which there exists positive constants c and n_0 such that if $n \ge n_0$, then

$$0 \leq f(n) \leq cg(n).$$

So $f(n) \in O(g(n))$ if it is bounded from *above* by a constant multiple of g, at least for n sufficiently large.

Definition of Ω

The set $\Omega(g(n))$ consists of all functions f(n) for which there exists positive constants c and n_0 such that if $n \ge n_0$, then

$$0 \leq cg(n) \leq f(n).$$

So $f(n) \in \Omega(g(n))$ if it is bounded from *below* by a constant multiple of g, at least for n sufficiently large.

Example: Linear Search

Input: a numeric array A of length n; a value v to search for in A.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- 1 for i = 1 to n2 if v == A[i]3 return i
- 4 return NIL

Example: Linear Search

Input: a numeric array A of length n; a value v to search for in A.

- 1 for i = 1 to n2 if v == A[i]3 return i
- 4 return NIL

Theorem $f(n) \in \Theta(g(n))$ if and only if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example: Problem 3-4 (a)

Problem

Is it true that f(n) = O(g(n)) implies that g(n) = O(f(n))?

The Set o(g(n))

Definition of o(g(n))

o(g(n)) is the set of all functions f(n) for which given any positive constant c there exists a positive constant n_0 such that if $n \ge n_0$,

 $0 \leq f(n) < cg(n).$

This is almost the same as the definition of O, except that c can be any positive constant. In particular, we can make c very small, and it still has to be the case that f(n) is smaller than cg(n) for n sufficiently large.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example: $n^{\beta} \in o(n^{\alpha})$

Example

Show that if $\alpha > \beta > 0$ are real numbers, then $n^{\beta} \in o(n^{\alpha})$.

Alternative Definition of o(g(n))

Observation The definition of o(g(n)) implies that $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$.

This leads to the following alternative definition.

Alternative Definition of o(g(n))

Let g(n) be asymptotically non-negative; that is, $g(n) \ge 0$ for n sufficiently large. Then o(g(n)) is the set of all functions f(n) for which

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example: $(\lg n)^{\alpha} \in o(n^{\beta})$

Problem

Let α and β be positive constants. Show that $(\lg n)^{\alpha} \in o(n^{\beta})$.

The set $\omega(g(n))$

Definition of $\omega(g(n))$

 $\omega(g(n))$ is the set of all functions f(n) for which given any positive constant c there exists a positive constant n_0 such that if $n \ge n_0$,

$$0 \leq c(g(n)) < f(n).$$

The definition is similar to that of Ω except that inequality must hold for any c. In particular, c can be chosen to be very large, and it still must be the case that f(n) is large than cg(n) for n sufficiently large.

Example: $n \lg n \in \omega(n)$

Problem Show that $n \lg n \in \omega(n)$.

Alternative Definition of $\omega(g(n))$

As with o(g(n)), we have an alternative definition using limits: Alternative Definition of $\omega(g(n))$

Let g(n) be asymptotically non-negative; that is, $g(n) \ge 0$ for n sufficiently large. Then $\omega(g(n))$ is the set of all functions f(n) for which

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty.$$

Example: $n^n \in \omega(n!)$

Problem Show that $n^n \in \omega(n!)$ using *Stirling's Formula*:

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$