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Random Access Machines

An important goal of analyzing an algorithm is to determine it’s
running time in a manner that is not tied to any specific computer
architecture. To this end, we use an abstract computational model,
the Random Access Machine (RAM).

» RAM can perform operations commonly found in real
computers.

» Memory is flat: we do not concern ourselves with levels of
cache or other details of real memory architectures.

» Data types are integers and floating point numbers.

» The model does not entail a fixed word size; however, for a
particular algorithm, we typically assume some upper bound
on word size to avoid unrealistic results.



Example: Binary Search

Input: a numeric array A of length n.

first =1
last = n
while first < last
middle = | (first + last)/2]
if v < A[middle]
last = middle
else
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first = middle + 1
9 if v == Alfirst]

10 return first

11 else

12 return NIL



Running Time of Binary Search

Simplified Running Time
We have that the running time of BINARY-SEARCH as a function
of the length n of the input array is

T(n)=b+ alg[n]
where a and b are positive constants.

Further Simplification?

Intuitively, it seems that the important part of T(n) is the
logarithmic term, which determines the “shape” of the curve,
whereas the constant term just shifts the curve up by a constant
amount. We need to justify this further simplification.



The Set ©

Definition of ©

Let g(n) be a function. The set ©(g(n)) consists of all funcitons
f(n) for which there exists positive constants ci, ¢, and ng such
that, if n > ng, then

c1g(n) < f(n) < c2g(n).

If f(n) isin ©(g(n)), we may write
> “f(n) is ©(g(n))"
> “f(n) € ©(g(n))"
> “f(n) = ©(g(n))"



The Set ©

Interpretation of ©

For n sufficiently large, f(n) is sandwiched between c¢;g(n) and
c2g(n). As n becomes large, f(n) has a similar “shape” as g(n).
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Example: b+ alg[n| € ©(lgn)
Proof of Upper Bound.
We will suppose that some ¢, > 0 exists such that
b+alg[n] < c2lg[n]

and try to derive a lower bound on n that makes this true.
Rearranging the inequality gives the equivalent expression

<lgln
Q_a_g(L

assuming that ¢; — a > 0. Exponentiating each side results in
2b/(cQ—a) < [n‘l

This last inequality certainly holds if n > 2b/(22—2a),



Example: b+ alg[n| € ©(lgn)

Proof of Lower Bound.
Similarly, suppose c; exists such that

b+alg[n] = cilg[n]
and, assuming that ¢; — a < 0, derive the equivalent expression
[n] > 2b/(a=a),

This last inequality is certainly true if n > 2b0/(c1=2),



Example: b+ alg[n| € ©(lgn)

Completing the Proof.
Let ng be the larger of 2b/(c2=a) 3nd 2b/(c1=a) Then if n > ng, we
may follow our previous arguments “backwards” to conclude that

algln] < b+ alg[n] < clgln].

and so b+ alg[n] € ©(lg[n]). The last step is to deal with the
ceiling functions. We can show that, for n > 2,

lgn <lg[n] <lg(n+1) <2lgn,
so Ig[n] € ©(lgn). It follows that

b+ alg[n] € ©(lgn).



Some Properties of ©

We will prove a few basic properties about ©:
» Reflexivity. f(n) € ©(f(n))
» Symmetry. f(n) € ©(g(n)) if and only if g(n) € ©(f(n))
» Transitivity. If f(n) € ©(g(n)) and g(n) € ©(h(n)), then
f(n) € ©(h(n))
Proof of Reflexivity.

The first property is really easy to prove. Since for all n,
1-f(n) < f(n)<1-f(n),

f(n) € ©(f(n)) (with ¢ = ¢ =1 and ng any value).



Some Properties of ©

Proof of Symmetry.
Suppose f(n) € ©(g(n)). Then there exists positive constants ¢,
¢, and ng such that if n > ng, then

c1g(n) < f(n) < cpg(n).

It follows that

- F(n) < g(n) < F(n)

so g(n) € ©(f(n)). The converse is similar. O



Some Properties of ©

Proof of Transitivity.

Suppose f(n) € ©(g(n)) and g(n) € ©(h(n)). Then there exists
positive constants ¢1, ¢2,np and ¢, ¢, ng such that if n > ng, then

c1g(n) < f(n) < cog(n).
and if n > np, then
cih(n) < g(n) < chh(n).
So, if n > max(ng, ny) we have that
cich(n) < f(n) < cheah(n)

and so f(n) € ©(h(n)). O



Polynomials and ©

Theorem
Let p(n) be a degree k polynomial with positive leading coefficient;
that is,

p(n) = aknk + ak,lnk_l +---+an—+ ag
where ag, a1, . .., ay are real coefficients with a, > 0. Then
p(n) € ©(nk).

Examples

The theorem makes it much easier to determine the © class of
polynomial functions.

1. n®+n+1€0(n).
2. 2+1=21n+1€0(n).



Logarithms and ©

The principle behind the previous Theorem is that when we have a
sum of terms, the asymptotically largest (fastest growing)
dominates and determines the © class.

Theorem

Any positive power of Ig n is asymptotically smaller than any
positive power of n; that is, for any positive constants « and [3,
(Ig n)? is asymptotically smaller than n®.

Example
This tells us that Ig n is much smaller asymptotically than n.
1. (Ign)™° is asymptotically smaller than n0-00001,
2. n? +1gn € O(n?). Apply the principle that the larger term
determines the © class.

3. n> 4 nlgnec ©(n?).



Logarithms and ©

Sketch of Proof.

Consider the limit
. (Ign)f
lim .

n—oo  n%

Applying L'Hospital’s rule some finite number of times, we show
that the limit is zero. Therefore, for any ¢ > 0 and n sufficiently
large,

(Ign)? < en®,

so (Ign)? is dominated by n®.
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