
Running Times and Asymptotic Analysis

C.S. Marron
cmarron@umbc.edu

CMSC 441 — Algorithms



Outline

Running Times
Random Access Machines
The Set Θ(g(n))
Example: b + a lgdne ∈ Θ(lg n)

Properties of Θ
Reflexivity, Symmetry, Transitivity
Polynomials
Logarithms



Random Access Machines

An important goal of analyzing an algorithm is to determine it’s
running time in a manner that is not tied to any specific computer
architecture. To this end, we use an abstract computational model,
the Random Access Machine (RAM).

I RAM can perform operations commonly found in real
computers.

I Memory is flat: we do not concern ourselves with levels of
cache or other details of real memory architectures.

I Data types are integers and floating point numbers.

I The model does not entail a fixed word size; however, for a
particular algorithm, we typically assume some upper bound
on word size to avoid unrealistic results.



Example: Binary Search

Input: a numeric array A of length n.

1 first = 1
2 last = n
3 while first < last
4 middle = b(first + last)/2c
5 if v ≤ A[middle]
6 last = middle
7 else
8 first = middle + 1
9 if v == A[first]

10 return first
11 else
12 return Nil



Running Time of Binary Search

Simplified Running Time

We have that the running time of Binary-Search as a function
of the length n of the input array is

T (n) = b + a lgdne

where a and b are positive constants.

Further Simplification?

Intuitively, it seems that the important part of T (n) is the
logarithmic term, which determines the “shape” of the curve,
whereas the constant term just shifts the curve up by a constant
amount. We need to justify this further simplification.



The Set Θ

Definition of Θ
Let g(n) be a function. The set Θ(g(n)) consists of all funcitons
f (n) for which there exists positive constants c1, c2, and n0 such
that, if n ≥ n0, then

c1g(n) ≤ f (n) ≤ c2g(n).

If f (n) is in Θ(g(n)), we may write

I “f (n) is Θ(g(n))”

I “f (n) ∈ Θ(g(n))”

I “f (n) = Θ(g(n))”



The Set Θ

Interpretation of Θ

For n sufficiently large, f (n) is sandwiched between c1g(n) and
c2g(n). As n becomes large, f (n) has a similar “shape” as g(n).



Example: b + a lgdne ∈ Θ(lg n)

Proof of Upper Bound.

We will suppose that some c2 > 0 exists such that

b + a lgdne ≤ c2 lgdne

and try to derive a lower bound on n that makes this true.
Rearranging the inequality gives the equivalent expression

b

c2 − a
≤ lgdne,

assuming that c2 − a > 0. Exponentiating each side results in

2b/(c2−a) ≤ dne.

This last inequality certainly holds if n ≥ 2b/(c2−a).



Example: b + a lgdne ∈ Θ(lg n)

Proof of Lower Bound.
Similarly, suppose c1 exists such that

b + a lgdne ≥ c1 lgdne

and, assuming that c1 − a < 0, derive the equivalent expression

dne ≥ 2b/(c1−a).

This last inequality is certainly true if n ≥ 2b/(c1−a).



Example: b + a lgdne ∈ Θ(lg n)

Completing the Proof.

Let n0 be the larger of 2b/(c2−a) and 2b/(c1−a). Then if n ≥ n0, we
may follow our previous arguments “backwards” to conclude that

c1 lgdne ≤ b + a lgdne ≤ c2 lgdne.

and so b + a lgdne ∈ Θ(lgdne). The last step is to deal with the
ceiling functions. We can show that, for n ≥ 2,

lg n ≤ lgdne < lg(n + 1) ≤ 2 lg n,

so lgdne ∈ Θ(lg n). It follows that

b + a lgdne ∈ Θ(lg n).



Some Properties of Θ

We will prove a few basic properties about Θ:

I Reflexivity. f (n) ∈ Θ(f (n))

I Symmetry. f (n) ∈ Θ(g(n)) if and only if g(n) ∈ Θ(f (n))

I Transitivity. If f (n) ∈ Θ(g(n)) and g(n) ∈ Θ(h(n)), then
f (n) ∈ Θ(h(n))

Proof of Reflexivity.

The first property is really easy to prove. Since for all n,

1 · f (n) ≤ f (n) ≤ 1 · f (n),

f (n) ∈ Θ(f (n)) (with c1 = c2 = 1 and n0 any value).



Some Properties of Θ

Proof of Symmetry.

Suppose f (n) ∈ Θ(g(n)). Then there exists positive constants c1,
c2, and n0 such that if n ≥ n0, then

c1g(n) ≤ f (n) ≤ c2g(n).

It follows that
1

c2
f (n) ≤ g(n) ≤ 1

c1
f (n),

so g(n) ∈ Θ(f (n)). The converse is similar.



Some Properties of Θ

Proof of Transitivity.

Suppose f (n) ∈ Θ(g(n)) and g(n) ∈ Θ(h(n)). Then there exists
positive constants c1, c2,n0 and c ′1, c ′2, n′0 such that if n ≥ n0, then

c1g(n) ≤ f (n) ≤ c2g(n).

and if n ≥ n′0, then

c ′1h(n) ≤ g(n) ≤ c ′2h(n).

So, if n ≥ max(n0, n
′
0) we have that

c ′1c1h(n) ≤ f (n) ≤ c ′2c2h(n)

and so f (n) ∈ Θ(h(n)).



Polynomials and Θ

Theorem
Let p(n) be a degree k polynomial with positive leading coefficient;
that is,

p(n) = akn
k + ak−1n

k−1 + · · ·+ a1n + a0

where a0, a1, . . . , ak are real coefficients with ak > 0. Then
p(n) ∈ Θ(nk).

Examples

The theorem makes it much easier to determine the Θ class of
polynomial functions.

1. n2 + n + 1 ∈ Θ(n2).

2. n
2 + 1 = 1

2n + 1 ∈ Θ(n).



Logarithms and Θ

The principle behind the previous Theorem is that when we have a
sum of terms, the asymptotically largest (fastest growing)
dominates and determines the Θ class.

Theorem
Any positive power of lg n is asymptotically smaller than any
positive power of n; that is, for any positive constants α and β,
(lg n)β is asymptotically smaller than nα.

Example

This tells us that lg n is much smaller asymptotically than n.

1. (lg n)700 is asymptotically smaller than n0.00001.

2. n2 + lg n ∈ Θ(n2). Apply the principle that the larger term
determines the Θ class.

3. n2 + n lg n ∈ Θ(n2).



Logarithms and Θ

Sketch of Proof.
Consider the limit

lim
n→∞

(lg n)β

nα
.

Applying L’Hospital’s rule some finite number of times, we show
that the limit is zero. Therefore, for any ε > 0 and n sufficiently
large,

(lg n)β < εnα,

so (lg n)β is dominated by nα.
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