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Sequences and Subsequences

Definitions

» A sequence is an ordered multiset in which the elements are
taken from an underlying set. The usual sequence notation
uses subscripts, e.g.,

X = (x1,X2,...,Xn)

where x; are elements of the underlying set.

» A subsequence of a sequence is an ordered multi-subset.
Using subscript notation, if X = (x1,x2,...,X,) is a sequence,
then a subsequence is
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where 1 < <ibb <--- <, <n.
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Common Subsequences

Definitions
» |f X and Y are sequences, Z is a common subsequence if it is
a subsequence of both X and Y.

» A common subsequence of X and Y with maximum length is
a longest common subsequences (LCS).

An LCS is not necessarily unique, although it




An Example
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» X =(D,A,B,D,D,C,D,A)
» Y =(C,B,A B,D,C,A, D)



An Example

» X=(D,AB,D,D,C,D,A)
> Y =(C,B,A B,D,C,A D)
» (D, A, B) is a subsequence of X, but not of Y.



An Example

» X=(D,A,B,D,D.C,D,A)
> Y =(C,B,AB,D,C,A D)
» (D, A, B) is a subsequence of X, but not of Y.

» (D, A, D) is a subsequence of both X and Y. It is a common
subsequence, but it is not a longest common subsequence.



An Example

, D,
Y = (C, B, A B,D, C A, D>
(D, A, B) is a subsequence of X, but not of Y.

(D, A, D) is a subsequence of both X and Y. It is a common
subsequence, but it is not a longest common subsequence.
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» 7 =(A,B,D,C,D) is a longest common subsequence of X
and Y.



An Example

X =(D,A B,D,D,C,D,A)
Y =(C,B,A.B,D,C,A,D)
(D, A, B) is a subsequence of X, but not of Y.

(D, A, D) is a subsequence of both X and Y. It is a common
subsequence, but it is not a longest common subsequence.
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Z=(A,B,D,C,D) is a longest common subsequence of X
and Y. thﬂ-“—\

» 7/ =(A,B,D,C,A) is also an LCS of X and Y. The
sequence is not unique, but the length (5) IS.
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Using the Example

X=<DA,B,D,D,C,D,A>. Y=<(C,B,ABD,CAD> Z=<AB,D,C,D>
Look at what happens cofisidering the last characters of €ach sequence. -

What can we say when the last character of X and the last character of Y are different?
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Optimal Substructure Theorem

Notation

If X = (x1,x2,...Xm) is a sequence, then we definef,?r(] 1<i<m,
as X;j = (x1,x2,...x;). The same notation is used for other
sequences, e.g. Y. 21 = <z..2,, . ,2_27.

Theorem

Let X = (x1,%0,...Xm) and Y = {(y1,y», ..., yn) be sequences.
Suppose that Z = (z1,2,...,2) isan LCS of X and Y.

1. If Xpy = yn, then zx = Xy = vy, and Zi_1 is an LCS for X,,_1
and Yn—l-



Optimal Substructure Theorem

Notation
If X = (x1,x0,...Xm) is a sequence, then we define X;, 1 </ < m,

as X;j = (x1,x2,...x;). The same notation is used for other
sequences, e.g. Y.

Theorem )
Let X = (x1,x0, .. @ and Y = (y1,y2,...,Yn) be sequences.
Suppose that Z = (z1,z5,...,2) isan LCS of X and Y.
1. If Xpy = yn, then zx = Xy = vy, and Zi_1 is an LCS for X,,_1
and Yn—l-

2. Iif Xm #£ yp and zx # Xm, then@is an LCS for@nd@



Optimal Substructure Theorem

Notation
If X = (x1,x0,...Xm) is a sequence, then we define X;, 1 </ < m,

as X;j = (x1,x2,...x;). The same notation is used for other
sequences, e.g. Y.

Theorem
Let X = (x1,x2,...Xm) and Y = (y1,¥2,...,Yn) be sequences.
Suppose that Z = (z1,2p,...,2zx) isan LCS of X and Y.

1. If Xpy = yn, then zx = Xy = vy, and Zi_1 is an LCS for X,,_1
and Yn—l-
2. if Xm #£ yp and zx # Xm, then Z is an LCS for X,,—1 and Y.

3. If Xm # yn and z 7&@ then Z is an LCS for X and@



Proof of the Theorem
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Turn this into a solution...

« If x_m =y_n, solve the subproblem
o LCS of X_(m-1), Y_(n-1) and append x_m to get LCS of X, Y.

« If x_m!=y_n, solve the subproblems and use the larger solution
o LCS of X_(m-1), Y
o LCS of X, Y_(n-1)

Let CJi,j] be an m-by-n array. CJi,j] will hold the LCS length for X_i, Y_j, where
O<=i<=mand0<=j<=n.
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CMSC 441 LCS Example Spring 2020

J.
Complete the c-table for the slequences ACGAAACGGC and GCGTCATC.
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