
Stacks and Queues

C.S. Marron
cmarron@umbc.edu

CMSC 341 — Data Structures



Abstract Data Types

ADT Definition

1. Abstract model for a data type

2. Defined by behavior (semantics)

3. From the user point-of-view

This is in contrast to Data Structures which are representations of
data from the implementer point-of-view.



Sparse Vector ADT

Example

A sparse vector is an ADT. We have expectations of how we can
interact with a sparse vector as a user, but we don’t need to know
how it is implemented. We saw that it could be implemented with
either an array or linked list data structure.



The Stack ADT

Definition
A Stack is a last-in, first-out (LIFO) ADT that supports the
following operations:

1. push(e): place the element e on the stack

2. pop(): return the element most recently placed on the stack
and remove it from the stack

3. top(): return the element most recently placed on the stack,
but do not remove it from the stack

Stacks may provide additional operations such as size() and
empty().



The Stack ADT

Definition
A Stack is a last-in, first-out (LIFO) ADT that supports the
following operations:

1. push(e): place the element e on the stack

2. pop(): return the element most recently placed on the stack
and remove it from the stack

3. top(): return the element most recently placed on the stack,
but do not remove it from the stack

Stacks may provide additional operations such as size() and
empty().



The Stack ADT

Definition
A Stack is a last-in, first-out (LIFO) ADT that supports the
following operations:

1. push(e): place the element e on the stack

2. pop(): return the element most recently placed on the stack
and remove it from the stack

3. top(): return the element most recently placed on the stack,
but do not remove it from the stack

Stacks may provide additional operations such as size() and
empty().



The Stack ADT

Definition
A Stack is a last-in, first-out (LIFO) ADT that supports the
following operations:

1. push(e): place the element e on the stack

2. pop(): return the element most recently placed on the stack
and remove it from the stack

3. top(): return the element most recently placed on the stack,
but do not remove it from the stack

Stacks may provide additional operations such as size() and
empty().



The Stack ADT

Definition
A Stack is a last-in, first-out (LIFO) ADT that supports the
following operations:

1. push(e): place the element e on the stack

2. pop(): return the element most recently placed on the stack
and remove it from the stack

3. top(): return the element most recently placed on the stack,
but do not remove it from the stack

Stacks may provide additional operations such as size() and
empty().



The Stack ADT

Definition
A Stack is a last-in, first-out (LIFO) ADT that supports the
following operations:

1. push(e): place the element e on the stack

2. pop(): return the element most recently placed on the stack
and remove it from the stack

3. top(): return the element most recently placed on the stack,
but do not remove it from the stack

Stacks may provide additional operations such as size() and
empty().



Stack Implementation

Array or List?

1. How can we implement the Stack ADT with an array?

2. How can we implement it with a linked list?

3. What is the running time of the CRUD operations?

4. Are the implementations memory-efficient?

5. Which do you prefer and why?



The Queue ADT

Definition
A Queue is a first-in, first-out (FIFO) ADT that supports the
following operations:

1. enque(e): place the element e in the queue

2. dequeue(): return the element that has been in the queue
the longest and remove it from the queue

3. front(): return the element that has been in the queue the
longest, but do not remove it from the queue

Stacks may provide additional operations such as size() and
empty().



The Queue ADT

Definition
A Queue is a first-in, first-out (FIFO) ADT that supports the
following operations:

1. enque(e): place the element e in the queue

2. dequeue(): return the element that has been in the queue
the longest and remove it from the queue

3. front(): return the element that has been in the queue the
longest, but do not remove it from the queue

Stacks may provide additional operations such as size() and
empty().



The Queue ADT

Definition
A Queue is a first-in, first-out (FIFO) ADT that supports the
following operations:

1. enque(e): place the element e in the queue

2. dequeue(): return the element that has been in the queue
the longest and remove it from the queue

3. front(): return the element that has been in the queue the
longest, but do not remove it from the queue

Stacks may provide additional operations such as size() and
empty().



The Queue ADT

Definition
A Queue is a first-in, first-out (FIFO) ADT that supports the
following operations:

1. enque(e): place the element e in the queue

2. dequeue(): return the element that has been in the queue
the longest and remove it from the queue

3. front(): return the element that has been in the queue the
longest, but do not remove it from the queue

Stacks may provide additional operations such as size() and
empty().



The Queue ADT

Definition
A Queue is a first-in, first-out (FIFO) ADT that supports the
following operations:

1. enque(e): place the element e in the queue

2. dequeue(): return the element that has been in the queue
the longest and remove it from the queue

3. front(): return the element that has been in the queue the
longest, but do not remove it from the queue

Stacks may provide additional operations such as size() and
empty().



Queue Implementation

Array or List?

1. How can we implement the Queue ADT with an array?

2. How can we implement it with a linked list?

3. What is the running time of the CRUD operations?

4. Are the implementations memory-efficient?

5. Which do you prefer and why?



Variation: Double-Ended Queue ADT

Definition
A Dequeue is a combination of a queue and a stack. It supports
the following operations:

1. insertFront(e): place the element e at the front of the
dequeue

2. insertBack(e): place the element e at the back of the
dequeue

3. eraseFront(): remove the item at the front of the dequeue

4. eraseBack(): remove the item at the back of the dequeue

5. front(): return the element at the front of the dequeue

6. back(): return the element at the back of the dequeue

Dequeues may also provide size() and empty().



Variation: Double-Ended Queue ADT

Definition
A Dequeue is a combination of a queue and a stack. It supports
the following operations:

1. insertFront(e): place the element e at the front of the
dequeue

2. insertBack(e): place the element e at the back of the
dequeue

3. eraseFront(): remove the item at the front of the dequeue

4. eraseBack(): remove the item at the back of the dequeue

5. front(): return the element at the front of the dequeue

6. back(): return the element at the back of the dequeue

Dequeues may also provide size() and empty().



Variation: Double-Ended Queue ADT

Definition
A Dequeue is a combination of a queue and a stack. It supports
the following operations:

1. insertFront(e): place the element e at the front of the
dequeue

2. insertBack(e): place the element e at the back of the
dequeue

3. eraseFront(): remove the item at the front of the dequeue

4. eraseBack(): remove the item at the back of the dequeue

5. front(): return the element at the front of the dequeue

6. back(): return the element at the back of the dequeue

Dequeues may also provide size() and empty().



Variation: Double-Ended Queue ADT

Definition
A Dequeue is a combination of a queue and a stack. It supports
the following operations:

1. insertFront(e): place the element e at the front of the
dequeue

2. insertBack(e): place the element e at the back of the
dequeue

3. eraseFront(): remove the item at the front of the dequeue

4. eraseBack(): remove the item at the back of the dequeue

5. front(): return the element at the front of the dequeue

6. back(): return the element at the back of the dequeue

Dequeues may also provide size() and empty().



Variation: Double-Ended Queue ADT

Definition
A Dequeue is a combination of a queue and a stack. It supports
the following operations:

1. insertFront(e): place the element e at the front of the
dequeue

2. insertBack(e): place the element e at the back of the
dequeue

3. eraseFront(): remove the item at the front of the dequeue

4. eraseBack(): remove the item at the back of the dequeue

5. front(): return the element at the front of the dequeue

6. back(): return the element at the back of the dequeue

Dequeues may also provide size() and empty().



Variation: Double-Ended Queue ADT

Definition
A Dequeue is a combination of a queue and a stack. It supports
the following operations:

1. insertFront(e): place the element e at the front of the
dequeue

2. insertBack(e): place the element e at the back of the
dequeue

3. eraseFront(): remove the item at the front of the dequeue

4. eraseBack(): remove the item at the back of the dequeue

5. front(): return the element at the front of the dequeue

6. back(): return the element at the back of the dequeue

Dequeues may also provide size() and empty().



Variation: Double-Ended Queue ADT

Definition
A Dequeue is a combination of a queue and a stack. It supports
the following operations:

1. insertFront(e): place the element e at the front of the
dequeue

2. insertBack(e): place the element e at the back of the
dequeue

3. eraseFront(): remove the item at the front of the dequeue

4. eraseBack(): remove the item at the back of the dequeue

5. front(): return the element at the front of the dequeue

6. back(): return the element at the back of the dequeue

Dequeues may also provide size() and empty().



Variation: Double-Ended Queue ADT

Definition
A Dequeue is a combination of a queue and a stack. It supports
the following operations:

1. insertFront(e): place the element e at the front of the
dequeue

2. insertBack(e): place the element e at the back of the
dequeue

3. eraseFront(): remove the item at the front of the dequeue

4. eraseBack(): remove the item at the back of the dequeue

5. front(): return the element at the front of the dequeue

6. back(): return the element at the back of the dequeue

Dequeues may also provide size() and empty().



Variation: Double-Ended Queue ADT

Definition
A Dequeue is a combination of a queue and a stack. It supports
the following operations:

1. insertFront(e): place the element e at the front of the
dequeue

2. insertBack(e): place the element e at the back of the
dequeue

3. eraseFront(): remove the item at the front of the dequeue

4. eraseBack(): remove the item at the back of the dequeue

5. front(): return the element at the front of the dequeue

6. back(): return the element at the back of the dequeue

Dequeues may also provide size() and empty().



How to pronounce “dequeue”?

Your book says this is pronounced like “deck” to avoid confusion
with the dequeue() operator for queues. I’ve never liked that.
How about...

I Since it’s two-ended, we could just as well call it a bi-queue
and pronounce it “bike”

I Since it’s a combination of a queue and a stack, how about
“quest?”

I don’t think either will catch on, so it’s safer to stick with “deck.”



How to pronounce “dequeue”?

Your book says this is pronounced like “deck” to avoid confusion
with the dequeue() operator for queues. I’ve never liked that.
How about...

I Since it’s two-ended, we could just as well call it a bi-queue
and pronounce it “bike”

I Since it’s a combination of a queue and a stack, how about
“quest?”

I don’t think either will catch on, so it’s safer to stick with “deck.”



How to pronounce “dequeue”?

Your book says this is pronounced like “deck” to avoid confusion
with the dequeue() operator for queues. I’ve never liked that.
How about...

I Since it’s two-ended, we could just as well call it a bi-queue
and pronounce it “bike”

I Since it’s a combination of a queue and a stack, how about
“quest?”

I don’t think either will catch on, so it’s safer to stick with “deck.”



Reading Assignment

Read the following sections in the textbook

1. Section 5.1: Stacks; including the applications in 5.1.6 and
5.1.7

2. Section 5.2: Queues

3. Section 5.3: Double-Ended Queues; omit Adapters (5.3.4)


	In-Class Exercise
	Stacks and Queues
	Abstract Data Types
	The Stack ADT
	The Queue ADT

	Reading Assignment

