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Abstract Data Types

ADT Definition

1. Abstract model for a data type

2. Defined by behavior (semantics)

3. From the user point-of-view

This is in contrast to Data Structures which are representations of
data from the implementer point-of-view.



Sparse Vector ADT

Example

A sparse vector is an ADT. We have expectations of how we can
interact with a sparse vector as a user, but we don’t need to know
how it is implemented. We saw that it could be implemented with
either an array or linked list data structure.



The Stack ADT

Definition
A Stack is a last-in, first-out (LIFO) ADT that supports the
following operations:

1. push(e): place the element e on the stack

2. pop(): return the element most recently placed on the stack
and remove it from the stack

3. top(): return the element most recently placed on the stack,
but do not remove it from the stack

Stacks may provide additional operations such as size() and
empty().
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Stack Implementation

Array or List?

1. How can we implement the Stack ADT with an array?

2. How can we implement it with a linked list?

3. What is the running time of the CRUD operations?

4. Are the implementations memory-efficient?

5. Which do you prefer and why?



The Queue ADT

Definition
A Queue is a first-in, first-out (FIFO) ADT that supports the
following operations:

1. enque(e): place the element e in the queue

2. dequeue(): return the element that has been in the queue
the longest and remove it from the queue

3. front(): return the element that has been in the queue the
longest, but do not remove it from the queue

Stacks may provide additional operations such as size() and
empty().
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Queue Implementation

Array or List?

1. How can we implement the Queue ADT with an array?

2. How can we implement it with a linked list?

3. What is the running time of the CRUD operations?

4. Are the implementations memory-efficient?

5. Which do you prefer and why?



Variation: Double-Ended Queue ADT

Definition
A Dequeue is a combination of a queue and a stack. It supports
the following operations:

1. insertFront(e): place the element e at the front of the
dequeue

2. insertBack(e): place the element e at the back of the
dequeue

3. eraseFront(): remove the item at the front of the dequeue

4. eraseBack(): remove the item at the back of the dequeue

5. front(): return the element at the front of the dequeue

6. back(): return the element at the back of the dequeue

Dequeues may also provide size() and empty().
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How to pronounce “dequeue”?

Your book says this is pronounced like “deck” to avoid confusion
with the dequeue() operator for queues. I’ve never liked that.
How about...

I Since it’s two-ended, we could just as well call it a bi-queue
and pronounce it “bike”

I Since it’s a combination of a queue and a stack, how about
“quest?”

I don’t think either will catch on, so it’s safer to stick with “deck.”
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Reading Assignment

Read the following sections in the textbook

1. Section 5.1: Stacks; including the applications in 5.1.6 and
5.1.7

2. Section 5.2: Queues

3. Section 5.3: Double-Ended Queues; omit Adapters (5.3.4)
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