

CMSC 341 (Section 01) Spring 2020

Exam 1 Study Guide
This study guide covers the material you are responsible for on the first exam. This guide
describes skills you must be able to demonstrate on the exam. You are expected to be able to
implement C++ flavored pseudocode demonstrating skills covered in this guide. The order,
length or depth of a section in this guide is no indication of the relative importance of that topic
or its likelihood to appear on the exam.

General
● Define an abstract data type (ADT), and contrast it with a data structure.
● Compare and contrast static and dynamic data structures
● Identify whether a data structure implementation is static or dynamic

Pointers and memory management
● Explain what pointers are in C++ and in general, what information they store and how it

is represented.
● Compare pointers and references.
● Coding pointers

○ Instantiate pointers to various data types
○ Delete the object to which a pointer points
○ Null a pointer, and explain why it is good practice to do so after deleting the

object to which it points
○ Dereference a pointer and explain the difference between a dereferenced pointer

and the pointer itself.
● Access member fields and methods of objects referenced via pointer.
● Arrays

○ Define the relationship of pointers to arrays
○ Compute the memory address of an array element given:

■ the address of the array
■ the size of the objects stored in the array
■ the index of the desired array element

● Memory management
○ Implement copy constructors, assignment operators, and destructors for classes

using dynamic memory
○ Define a memory leak in terms of pointers and the heap
○ Find potential memory leaks in supplied C++ code
○ Explain potential causes of memory errors
○ Define a segmentation fault
○ Identify scenarios in which dereferencing a pointer may result in a segmentation

fault

1

CMSC 341 (Section 01) Spring 2020

Linked Lists and Arrays
● Compare and contrast lists with arrays
● Linked lists

○ Implement
■ Element addition
■ Element removal
■ Forward traversal
■ Element retrieval
■ Iterators

○ Nodes
■ Enumerate what information nodes contain
■ Explain how nodes “know” about each other

● Dynamic arrays (vectors)
○ Implement

■ Element addition
■ Element removal
■ A forward traversal
■ Element retrieval
■ Iterators

○ Describe
■ Dynamic resizing

● Compare and contrast dynamic arrays and linked lists with respect to performance of
CRUD (Create, Read, Update, Delete) operations.

● Create procedures or algorithms using linked list data structures and justify the selection
of the data structure.

Stacks, Queues, and Dequeues (SQ+Ds)
● Identify all operations in the SQ+D abstract data types
● Implement all the operations using either a linked list or dynamic array
● Explain the performance benefits of using SQ+Ds
● Describe applications using SQ+Ds and justify the selection of the ADT.

2

CMSC 341 (Section 01) Spring 2020

Trees
● Define and identify

○ Tree types: Binary tree, Binary search tree
○ Tree features: Depth, Height.
○ Subtrees

● Tree nodes
○ Describe what information is stored in nodes (for binary trees with a linked

representation).
○ Compare tree nodes with list nodes.
○ Describe the relationships of nodes based on family relations.
○ Identify the root, internal, and external (leaf) nodes of trees.
○ Determine the height and depth of a node; determine the height of a tree.

● Tree traversals
○ Perform preorder, inorder, and postorder traversals of trees.
○ Identify what types of traversals are useful in a given situation.

● Identify characteristics of trees that will give best- and worst-case performance of tree
operations.

● Apply mathematical induction to prove properties of trees.

Binary Search Trees
● Define a binary search tree
● Draw a binary search tree given a set of input keys and keys to delete
● Implement

○ Insertion
○ Traversal
○ Deletion
○ Retrieval

AVL Trees
● Define AVL trees and the height-balance property.
● Apply trinode restructuring to maintain the height-balance property.
● Perform search, insertion, and deletion in an AVL tree.
● Evaluate asymptotic performance of find, insert, and erase in an AVL tree.

3

CMSC 341 (Section 01) Spring 2020

Balanced Binary Search Trees and Maps
● Define the Map abstract data type, and define keys and values in the context of maps.
● Explain the purpose of a Map; give examples of applications.
● Define, compare and contrast ordered and unordered maps, paying particular attention

to what requirements these maps put on the types of keys used.
● Explain the advantages of balancing a binary search tree in terms of asymptotic

performance (upper and lower bounds) of Map operations.

Asymptotic Analysis (A.K.A Big-Oh, Big-Omega)
● Compare and contrast experimental (also called empirical) algorithm analysis with

theoretical algorithm analysis.
● Analyze algorithms asymptotically and give the tightest upper and lower bounds.
● Implement algorithms that have a performance described as O(f(n)).
● Order functions by their asymptotic growth rate, particularly:

○ O(1)
○ O(lg n)
○ O(n)
○ O(n lg n)
○ O(n2)
○ O(nk) for some constant k
○ O(2n)

● Given an algorithm, identify the best and worst cases for its runtime and what inputs
would create those cases. E.g. What are the best, average and worst cases for
sequential search, and identify inputs for those cases given a list with values.

● Prove simple theorems using the definitions of Big-Oh, Big-Omega, and Big-Theta.

4

