
Asymptotic Analysis

C.S. Marron
cmarron@umbc.edu

CMSC 341 — Data Structures

Foundations of Computing

Alan Turing and Alonzo Church

...and me at Turing Labs in Sherborne

Computability

What is computable?

I Turing devised “Turing machines” to address this question.

I Church devised the λ-calculus.

I Both showed that there are logical statements that cannot be
evaluated.

I Turing machines, λ-calculus, Random Access Machines, and
several other computational models are all equivalanet. They
can compute the same things.

I Church-Turing Thesis. The functions that can be computed
with a “paper-and-pencil method” are exactly those which can
be computed by a Turing machine (or λ-calculus, RAM, etc.).

Complexity

Do the models compute with the same speed?

I No!

I To determine the complexity of an algorithm — space and
time requirements — we need to pick a model.

I We use Random Access Machines. Similar to “real”
computers.

I We can count operations to estimate running times, but we
need a concise way to describe it.

Big-Oh

Definition

I Let T (n) and f (n) be non-negative functions of the positive
integers.

I We say that T (n) is O(f (n)) if there exists a positive
constant c and a positive integer n0 such that

T (n) ≤ cf (n)

whenever n ≥ n0.

I f (n) is an asymptotic upper bound on T (n).

I T (n) is any old function, but we think of it as representing
the running time of an algorithm with input size n.

Example:Linear Search

Operation Counting

I We will count the basic operations.

I The result will be a polynomial in n.

i n t s e a r c h (i n t t a r g e t , i n t ∗data , i n t n) {
f o r (i n t i = 0 ; i < n ; i++) {

i f (data [i] == t a r g e t) {
return i ;

}
}
return −1;

}

A Useful Theorem

Theorem

I Suppose T (n) is a polynomial.

I Ex: 3n2 + 7n + 2 or 5n + 12.

I . . .and the highest power in T (n) is na for some non-negative
integer a.

I Then T (n) is O(na).

Therefore, search() is O(n).

Big-Omega

Definition

I Let T (n) and f (n) be non-negative functions of the positive
integers.

I We say that T (n) is Ω(f (n)) if there exists a positive constant
c and a positive integer n0 such that

T (n) ≥ cf (n)

whenever n ≥ n0.

I These are different constants c and n0 than for Big-Oh.

I f (n) is an asymptotic lower bound on T (n).

Example: Back to Linear Search

Counting for Big-Omega

I We need a lower bound on the running time of search().

I Under what conditions does it finish most quickly?

I ...when it finds target at the first index of data!

I Count the operations in this case.

I We should get a constant.

For search(), the Big-Oh and Big-Omega bounds are different.

Example:Linear Search II, The Searchening

Determine Big-Oh and Big-Omega Bounds

i n t s e a r c h 2 (i n t t a r g e t , i n t ∗data , i n t n) {
i n t i n d x = −1;
f o r (i n t i = 0 ; i < n ; i++) {

i f (data [i] == t a r g e t) {
i n d x = i ;

}
}
return i n d x ;

}

I search2() is O(n) and Ω(n).

Big-Theta

Definition

I Let T (n) and f (n) be non-negative functions of the positive
integers.

I We say that T (n) is Θ(f (n)) if there exists positive constants
c, d and a positive integer n0 such that

cf (n) ≤ T (n) ≤ df (n)

whenever n ≥ n0.

I Theorem: T (n) is Θ(f (n)) iff T (n) is O(f (n)) and T (n) is
Ω(f (n)).

Example: Linear Search (cont.)

Big-Theta Bounds

I search2() is Θ(n) since it is O(n) and Ω(n).

I search() is not Θ(n).

Reading Assignment

Read the following sections in the textbook

1. Section 4.2.1: Experimental Studies

2. Section 4.2.2: Primitive Operations

3. Section 4.2.3: Asymptotic Notation

4. Section 4.2.4: Asymptotic Analysis

	Computability and Complexity
	Asymptotic Analysis

	Reading Assignment

