
CMSC 341: Homework 4 Solutions

May 7, 2019

Problem 1

Base Case: For n = 1, we have a1 = 1 < 7
4 . For n = 2, we have a2 = 2 and(

7
4

)2
= 49

16 > 2, so a2 <
(
7
4

)2
.

Inductive Hypothesis: Let n > 2 and suppose that for all k, 1 ≤ k < n,

ak <
(
7
4

)k
.

Inductive Step: By the inductive hypothesis,

an = an−1 + an−2 <

(
7

4

)n−1

+

(
7

4

)n−2

.

Now (
7

4

)n−1

+

(
7

4

)n−2

=

(
7

4

)n−2(
7

4
+ 1

)
and

7

4
+ 1 =

11

4
=

44

16
<

(
7

4

)2

,

so (
7

4

)n−1

+

(
7

4

)n−2

<

(
7

4

)n−2(
7

4

)2

=

(
7

4

)n

.

Therefore, an <
(
7
4

)n
.

Problem 2

Base Case: For n = 0, x20 − 1 = x− 1 which is clearly divisible by x− 1.

Inductive Hypothesis: Let n > 0 and suppose that for all k, 0 ≤ k < n,
x2n − 1 is divisible by x− 1.

Inductive Step:

x2n − 1 = (x2n−1

− 1)(x2n−1

+ 1),
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which can be verified by multiplying-out the right-hand side. By the inductive
hypothesis, x− 1 divides (x2n−1 − 1), so x− 1 divides x2n − 1.

Problem 3

Base Case: For n = 1, the sum is just 12 = 1. The right-hand side is 1 · (1 +
1) · (2 · 1 + 1)/6 = 1.

Inductive Hypothesis: Suppose n > 1 and for all k, 1 ≤ k < n,
∑k

i=1 i
2 =

k(k + 1)(2k + 1)/6.

Inductive Step: Splitting the sum gives

n∑
i=1

i2 =

n−1∑
i=1

+n2.

By the inductive hypothesis, this is

(n− 1)(n− 1 + 1)(2(n− 1) + 1)/6 + n2 = (n− 1)n(2n− 1)/6 + n2.

Multiplying out the last expression and combining terms with a common de-
nominator gives:

(2n2 + 3n2 + n)/6 = n(2n2 + 3n + 1)/6 = n(n + 1)(2n + 1)/6.

Therefore,
∑n

i=1 i
2 = n(n + 1)(2n + 1)/6.

Problem 4

Base Case: For n = 2, the king can make it to the eight squares adjacent to the
starting square, as well as the 16 squares that are two steps away. In addition,
it can make it back to the starting square. This is a total of 8 + 16 + 1 = 25
squares that can be reached in two moves, which is equal to (2 · 2 + 1)2.

Inductive Hypothesis: Suppose n > 2 and for all k, 2 ≤ k < n, S(k) =
(2k + 1)2.

Inductive Step: It helps to draw a picture:

#######

#+++++#

#+++++#

#++X++#

#+++++#

#+++++#

#######
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When n = 2, the king can reach all the “+” squares plus it’s starting square.
For n = 3, it can also reach the “#” squares. Note that the number of “#”
squares (the new squares it can reach) is 24. In terms of the number of steps (3)
this is just twice the size of the left and right side pieces 2 · (2 · 3 + 1) plus twice
the size of the top and bottom pieces 2 · (2 · 3− 1). It’s not hard to see that the
general pattern is: with k moves, the number of additional squares that can be
reached is:

2 · (2 · k + 1) + 2 · (2 · k − 1) = 8k.

Therefore, the number of squares reachable in n moves is:

S(n) = S(n− 1) + 8n = (2(n− 1) + 1)2 + 8n = 4n2 + 4n + 1 = (2n + 1)2.

Problem 5

First, derive the recurrence:

n = 0, [1,1] (one male, one female)

n = 1, [1,1] (pair can reproduce)

n = 2, [2,2] (only one pair can reproduce)

n = 3, [3,3] (only two pairs can reproduce)

n = 4, [5,5] (only three pairs can reproduce)

n = 5, [8,8] (only five pairs can reproduce)

The numbers in square brackets are the number of male and female rabbits at
each time step. You can probably guess at this point that the number of pairs
is a Fibonacci sequence: a0 = a1 = 1 and an = an−1 + an−2 for n ≥ 2.

Base Case: We have a0 = a1 = 0. Some arithmetic shows that the given
expression R(n) is 1 for n = 0 and n = 1.

Inductive Hypothesis: Let n > 1 and suppose that the formula is true for
all k, 0 ≤ k < n.

Inductive Step: an = an−1 + an−2 and by the inductive hypothesis, we can
replace an−1 with the given expression (with powers (n−1)+1 = n) and replace
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an−2 with the expression (with powers of (n− 2) + 1 = n− 1), giving

an =
1√
5

{(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n}
+

1√
5


(

1 +
√

5

2

)n−1

−

(
1−
√

5

2

)n−1


=
1√
5


(

1 +
√

5

2

)n

−

(
1−
√

5

2

)n

+

(
1 +
√

5

2

)n−1

−

(
1−
√

5

2

)n−1


=
1√
5


(

1 +
√

5

2

)n−1(
1 +
√

5

2
+ 1

)
−

(
1−
√

5

2

)n−1(
1−
√

5

2
+ 1

) .

Looking at this last epression, we can see what we need to be true:

1 +
√

5

2
+ 1 =

(
1 +
√

5

2

)2

, and

1−
√

5

2
+ 1 =

(
1−
√

5

2

)2

.

It is easy to verify that both these equalities are in fact true, which leaves us
with

an =
1√
5


(

1 +
√

5

2

)n−1(
1 +
√

5

2

)2

−

(
1−
√

5

2

)n−1(
1−
√

5

2

)2


=
1√
5


(

1 +
√

5

2

)n+1

−

(
1−
√

5

2

)n+1
 ,

which is what we wished to prove.
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