
Homework 3 Solutions
Question 1
Upper bound: O(n^2)

The outer loop has n iterations, but the inner loop has a variable

number of iterations, so we canʼt just multiply the loop lengths; instead,

we need to count the total number of times swap()  is called:

i=1, inner loop has 1 iteration

i=2, inner loop has 2 iterations

i=3, inner loop has 3 iterations

...

i=n-1, inner loop has n-1 iterations

Therefore, the total number of iterations of the inner loop is 1 + 2 + 3 +

… + n–1 = n(n–1)/2 = O(n^2). Since swap()  is O(1), the total running

time is O(n^2).

Lower bound: Omega(n^2)

The justification is the same. The algorithm always does n(n–1)/2 total

iterations of the inner loop.

Question 2



Note: This is linear search on an array of length n.

Upper bound: O(n)

The code searches an n-long array for the value v. Whatʼs the longest

this can take? Suppose v is not in the array, then the loop will have n

iterations. Since the loop body is O(1), the upper bound on the running

time is O(n).

Lower bound: Omega(1)

Suppose v is the first entry in A. The code will do a single iteration and

finish in O(1) time.

Question 3
Note: This is binary search on an n-long sorted array.

Upper bound: O(log n)

The code starts with r - p + 1 = n. It then finds the midpoint, q, between

r and p and restricts the search to the half of the array that could

contain v. It then repeats this procedure with an updated r or q value.

That is, it divides the search region in half with each iteration, stopping

when r = p. How many times can we divide an n-long array in half

before we are down to a single element? Approximately log2(n) times,



where log2() is the logarithm base 2. Therefore, the loop has

approximately log(n) iterations and the loop body is O(1), so the upper

bound on the running time is O(log(n)).

Lower bound: Omega(log n)

Unlike the linear search in Question #2, this search does not exit early;

it always iterates until p = r. Therefore, the number of iterations is

determined by n alone, and the lower bound is Omega(log(n)).

Question 4
Upper bound: O(n)

The first loop always does n constant time iterations, so it is O(n). The

second loop does O(log(n)) iterations [same reason as for binary

search, above]. Since these computations are done sequentially and n

is “bigger” than log(n), the O(n) term dominates.

Lower bound: Omega(n)

The first loop is Omega(n), so the code is at least Omega(n). Since we

know it is O(n), and the lower bound canʼt be larger than the upper

bound, the code is Omega(n).

Question 5



Upper bound: O(n^(1/2)) (i.e. square root of n)

Suppose the inner loop performs k iterations. Then the value of total

is

1 + 2 + 3 + ... + k = k(k+1) / 2

So, to determine the number of iterations, we need to find the largest

value of k such that

k(k+1) / 2 <= n

Well, that means we want k(k+1) approximately equal to 2n or k about

the square root of 2n. Therefore, the total number of iterations is

approximately (2n)^(1/2), and each iterations is constant time, so the

upper bound is O(n^(1/2)).

Lower bound: O(n^(1/2))

The number of iterations depends on n alone. Since it always peforms

approximately n^(1/2) iterations, the lower bound is the same as the

upper bound.


