Arrays and Lists

Arrays and Linked Lists both implement the List Abstract Data Type (ADT).
A List is any collection of things that have an ordering
(i.e. one item comes after the other).

Lists and arrays can also represent items that do not have an ordering,
this can improve the runtime of insert and delete for Arrays.

Arrays are stored contiguously in memory

int A[?]
int B[5]

314 7)112|14]16|21|23] 8] 3 |12]17]5

Note: A s asorted array B is unsorted

Linked Lists use pointers describing how one element connects to the next.

There are several varieties of Linked Lists:

Singly Linked Lists have a pointer to the next element and a NULL trailing

Doubly Linked Lists have a pointer to the next and previous element and a NULL leading and
trailing pointer

Singly Circular Linked Lists have a pointer to the next element with trailing pointer wrapping
around to the firstelement

Singly Linked Lists have a pointer to the next element and previous elements with leading and
trailing pointers wrapping around to the last and first elements respectively.

S,‘Qj[_/ Linked List
- 7 [G- > 4=¢
D, ubly Liaked [st

M@ﬂ

S"fﬂ{/ Circular Linkek List
P FIE: pd [A S g E

Daubl)f Circular Linked List

Heull\

e

A pointer is actually a memeory address every variable in address in RAM is in a separate address

int x; e Flees
int v 3 0x 0100
int sA = &x; j’;‘ ox0l0Y
int ¥ = &y} &z

x=3; O’x’O_J.OO 0x010§
J =12 B éxolaq(OKOIOa

A and B ['fﬂ-““[{ Famf‘ fo X and y

rés,oeghvtl')/ belausé they coatain the memory

Addrgss oF x anal/v

Linked Lists

Insertion into a linked list requires creating a new pointer and adjusting the pointers for insertion. This
can be done in constant time or O(1) given a pointer to the previous node.

Before curreat tode is circledt
[Te=L] I
ST AT T2
I nsert Affer

ml.

rﬂﬁqgﬁﬂﬂ%ﬁﬂﬁ

New nede

Deletion from a linked list is also done in constant time O(1) given a pointer to the previous node.

head

Deletion of node aFler the current nsde,
pointers are adjusted.

To Find an element in a Linked List requires traversal of all of the elements before that element occurs.
Given K elements before the first element, the number of operations is O(K).

In the best case we’re lucky and it’s the first element so best case K=1

In the worst case it’s the last element so worst case K=N

In the average case it’s in the middle, so average case K = N/2

Find

best case O(1)
worst case O(N)
average case O(N)

- -
-

< Trneed]
“~g\@@%@@ﬂ
Best Case Find (7)
Worst Case Fiad (13) OR Find (6¢¢)
A’veraje— Case Find (5)

We may traverse a linked list using an iterator. In some simple cases, and iterator may be just a simple
pointer, but in some cases it may be more complicated.

Many operations we looked at require a pointer to the previous node, so in the sample code, where the
interator has a physical pointer to the previous node but logically refers to the current node. However,
the details of how to implement the iterator vary from implementation to implementation as well as
whether the linked list is singly or doubly linked, circular or non-circular.

This implementation allows SinglyLinkedList class to delete the current node (by using a pointer to the
previous), or insert values before the current node.

Si’ljlf Linked List class
i S
s ST T
,Logicall
P;PA{“ Lrgicey

Dlorcn/
St T ter

To Access node at index K is also O(K). This could be as fast as O(1) in the best case if we are
extraordinarily lucky and we’re accessing the first element (K=1).
In the worst case it could be as slow a O(N) if we Access the element in the last position (K=N). On
average we must traverse N/2 elements to access an element in the linked list thus the average case is
O(N).
Access

best case O(1)

worst case O(IN)

average case O(N)

Arrays

For Arrays, the time it takes to Access a node in an array is always O(1).
Arrays utilize a pointer to the first element in memory, and access in RAM is performed by
multiplication of the base address with the size of the element.

Arrays often additionally contain additional padding at the end of the array, this can greatly improve
the amount of time it takes to Append an element.

-

b s R R IOORRNRE
p.ﬂalr'zslsfg B+S PB+1S B+35 Bt4ys - -* u‘/_/

E“"{"l"é'?? e xtre memoy

Sor ﬂrapmd/m;&r‘f’.

To Append an element in an array if padding is available can be done in constant time O(1). However,
if no padding is available, Append requires us to create a larger buffer and copy all of the elements to a
larger buffer. This takes O(1) time.

With Fo.dahnj Paaldt'!g
K\

Appesst Q1)

W ithout Ioao(al.'ag

create Lagyer P""”‘

array O(N) here

Given Padding, If the data has an ordering, to Insert and Remove takes O(K) time where K is the
number of elements after the index we are inserting. This is because Insert and Remove must move all
of the elements down one position.

Insert / Remove for ordered arrays
best case O(1)
worst case O(N)
average case O(N)

If the data is unordered then removal is constant time O(1), just overwrite the element to be removed
with the last element and decrease size.

Given padding and unordered data, Insert is also O(1), it is sufficient to append to end because we do
not care of the ordering of unordered data, so we can insert at the end.

K elem

T NN T
HEYEN NR

B |

R

N Move over by ote
""0(k)

M

N 2N 77 I O
4

I.q 53,—} Here

