Graphs
A graph is a collection of vertices and edges
G =(V,E)

We may assume that a graph has |V| vertices and |E| edges, although sometimes we (lazily) refer to the
number of vertices as V and the number of edges as E.

There are two main representations of graphs:
1. Adjacency List
2. Adjacency Matrix

The following shows an example of a graph, it’s adjacency matrix as well as it’s adjacency list
representation.

G'l’“a-f)h- ﬂ‘d{,ccc.moy Mateix ,A;dujncw?r List
ol 2[3[4]S |6

0 - I ' o1 2¢

) 6 YRR MDA |2
2lo0 1 35

N V\(@ FIRELIE R L 3|ase
@ x | ! 113
S 5 1l 5|34

andire cted g{‘;;g, — 6! | & |03

ohirected e'i{jng g

The storage requirements for the representations are the following
adjacency matrix O V? storage
adjacency list O V+E storage

Graphs can be used to represent data that has some relationship, examples include

a) roads (edges) and intersections (vertices) in a mapping service
b) friends of friends on social media
) genetic relations between species

The “shortest path” can be determined by using a breadth first search. Breadth first search will
determine the distance from a source vertex to all other vertices connected by a simple path, and as
such

In order to traverse a graph, there are two primary kinds of traversals
BreadthFirstSearch BFS
DepthFirstSearch ~ DFS

BFS is usually implemented iteratively using a Queue, whereas DFS is usually implemented
recursively. Of course any recursive function can also be implemented iteratively using a stack.

The pseudocode for BFS and DFS is as follows,

Colecs
{) white
?wm Fist Seucch (V5 & ohe O ot st
QMM g ‘9‘-7 itin
Q_Fus't (5+ﬂ.r’|') cu”zﬂ/
Gtart. Color = Grur m o
while (Q net enpty) ?lﬁif;ﬁ y
A
f curr=Q. .pop pl)
Jor (1 ad jecedt to :urr)
{ i5 (. coler= White)
Q ush (J)
J-dlﬂ"—- curce Aist + |
J» color = _G,-a/
j
5

curr, color= Black

}

Deloﬂ. First Search (\6 E, X, depf"’t)

{ = depth

. Corf(' = @Fa.y
f"r’é “dJRcM‘f +o)()

: i (J color = Wlm‘c)

De,ofk First Search (V;E;J, dephﬂ)
3

i(.coff:r = Black

Topological Sort for directed acyclic graphs involves printing all ancestors before any children are
printed. This is useful for planning workflows, where the order of operations matters.

Reverse Topological Sort can be accomplished using DFS. We modify DFS to add an additional Print
statement at the end of the function as follows. We then show an example for a workflow plan of
getting dressed in the morning.

Pr,t'rp‘f‘ Reverse I‘-ofm’égfm{ (\'5 E/ x dé}‘"m’)
4
X. deg M = ofeff%,
X. Cd(s’f‘ = G:-,r-y,)/
for (: i ads it
/ J @hjncent 1o ;-:)
i€ (5. color = white)
7
Print Revesse Tepolegrcal (\’fr £, x, "‘&f’m)

3
T
X, color = Black
Pr‘r'ﬁ,'!' (X) //Wg P,nf}g{ i rentse ﬁ(ﬁ&@r&g{ gevlar

To olegtel Jeckel Order—
aﬁd?:- underpats of Pr:'q,zts_

Prist o reverse to Pofogica.f Sort OF o fafiomfj

s FrfJI!L Shint
6 5 'orfrl T root

Gs‘vm the faffaw:‘nq @rafvf—
ool e
R—G

©

g}"eﬁ.ﬂilbﬁ, First Search. (Y"Ej 0)
Q

LUywp
0N - o

Ww—p—o_

R LN SR

