
Binary Heaps

A binary heap is a datastructure for the implementation of priority queues.  A priority queue allows 
for efficient implementation of Find Min (or Find Max) and Delete Min (or Delete Max).  In other 
words, priority queues are good for operations where we want to quickly insert data, and find the 
smallest or largest element in the datastructure.

Binary Heaps are technically Binary Trees, but they are NOT Binary Search Trees.  They have a 
somewhat different set of properties.

There are two types of heaps.
Min-Heaps    (designed for Find Min)
Max-Heaps   (designed for Find Max)

The following is an example of a Binary Min-Heap as implemented using an Array 
Representation.

Binary Min-Heap Properties
Binary Tree Property

Every Element in a binary-heap has up to two children
Min Heap Property

Every Element in a Min-Heap is smaller than both of it’s children
Completeness Property

A binary heap is a complete binary tree, every level of the heap is full except
possibly the last level.  And the last level has children all the way to the left.



Binary Max-Heaps are similar except that they have a Max-Heap Property, that each element is 
larger than both it’s children.

The Completeness Property allows binary heaps to be implemented as an array.

In order to implement the min-heap as an array we write down the elements from left to right, layer by 
layer (top to bottom) with the root (minimum) always at index 0 of the array.

We typically do not use pointers to implement a binary heap.  Even though the heap is logically 
hierarchical, it is not constructed by means of pointers.  Rather, we use an Array Representation for the 
physical implementation, even though logically it can be thought of as a Tree Representation.

For programming languages where the array indices start at 0 (rather than 1), any node at index ‘i’ has 
children:

left child at index    2i + 1
right child at index  2i + 2
parent at index         (i-1) / 2 

A Binary Min-Heap has the following asymptotic runtimes for operations
Insert                 O lg N
RemoveMin        O lg N
Build Heap          O N

In order to insert, we place the new node at array index A[N], this places the node all the way to the 
right of the bottom layer, thereby maintaining the “Completeness” property.  However, this may violate
the Min-Heap property, so we need to “bubble up” the node by iteratively compare the newly inserted 
node with it’s parent.  So long as the node has a parent, and the parent is larger than the new node, we 
must iteratively swap the new node with it’s parent until termination.

The following example shows an insertion.



The following is the pseudocode for insert.



RemoveMin is a function works in the other direction.  The min is always the root of the heap.  But the 
only node that we can physically remove is A[N-1] which is the rightmost node in the last layer.

So we replace (or swap!) the root with the last node and then call a function MinHeapify in order to 
recursively propagate the node down a path of the heap until the Min Heap Property is satisfied.

The following is an example of RemoveMin



The following is the pseudocode for RemoveMin



The following is the pseudocode for MinHeapify

   


