
www.umbc.edu

CMSC 341
Lecture 20 Disjointed Sets

Prof. John Park

Based on slides from previous iterations of this course

www.umbc.edu

Introduction to Disjointed Sets

www.umbc.edu

Disjoint Sets

• A data structure that keeps track of a set of
elements partitioned into a number of disjoint
(non-overlapping) subsets

From: https://en.wikipedia.org/wiki/Disjoint-set_data_structure

www.umbc.edu

Universe of Items

• Universal set is made up of all of the items
that can be a member of a set

A B

C

DE

Universe of Items

From: https://www.youtube.com/watch?v=UBY4sF86KEY

www.umbc.edu

Disjoint Sets

A B

C

DE

Universe of Items

S1

S2

S3

S4

From: https://www.youtube.com/watch?v=UBY4sF86KEY

• A group of sets where no item can be in more
than one set

www.umbc.edu

Disjoint Sets
• A group of sets where no item can be in more

than one set

A B

C

DE

S1

S2

S3

S4
Supported Operations:
Find()

Union()

MakeSet()

www.umbc.edu

Uses for Disjointed Sets

• Maze generation

• Kruskal's algorithm for computing the
minimum spanning tree of a graph

– Given a set of cities, C, and a set of roads, R, that
connect two cities (x, y) determine if it’s possible
to travel from any given city to another given city

• Determining if there are cycles in a graph

www.umbc.edu

Disjoint Set Example

www.umbc.edu

Disjoint Set with No Unions

0 1 2 3 4 5 6 7 8 9 10 11 12

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

• A negative number means we are at the root

• A positive number means we need to move or “walk” to that index to find our root

• The LONGER the path, the longer it takes to find, and moves farther away from

our goal of a constant timed function

www.umbc.edu

Disjoint Set with Some Unions

0 1 2 3

4

5 6 7

8

9

10 11 12

-1 -1 4 -1 -1 -1 -1 8 9 -1 -1 -1 -1 -1

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Notice:

• Value of index is where the index is linked to

www.umbc.edu

Operations of a Disjoint Set

www.umbc.edu

Find()

• Determine which subset an element is in

• Returns the name of the subset

• Find() typically returns an item from this
set that serves as its "representative“

– By comparing the result of two Find()
operations, one can determine whether two
elements are in the same subset

www.umbc.edu

Find()

• Asks the question, what set does item E
belong to currently?

A B

C

DE

S1

S2

S3

S4What does
Find(E) return?

Returns S2

From: https://www.youtube.com/watch?v=UBY4sF86KEY

www.umbc.edu

Union()

• Union()

– Merge two sets (w/ one or more items) together

– Order can be important

– One of the roots from the 2 sets will become the
root of the merged set

www.umbc.edu

Union()

• Join two subsets into a single subset.

A B

C

DE

S1

S2

S3

S4
Before Union(S2, S1)

After Union(S2, S1)

From: https://www.youtube.com/watch?v=UBY4sF86KEY

www.umbc.edu

MakeSet()

• Makes a set containing only a given element
(a singleton)

• Implementation is generally trivial

www.umbc.edu

Types of Disjoint Sets

www.umbc.edu

Types of Disjoint Sets

• There are two types of disjoint sets

1. Array Based Disjoint Sets

2. Tree Based Disjoint Sets

– (We can also implement with a linked list)

www.umbc.edu

Array Based Disjoint Sets

• We will assume that elements are 0 to n - 1

• Maintain an array A: for each element i,
A[i] is the name of the set containing i

www.umbc.edu

Array Based Disjoint Sets

• Find(i) returns A[i]

– Runs in O(1)

• Union(i,j) requires scanning entire array

– Runs in O(n)

for (k = 0;k < n; k++) {

if (A[k] == A[j]) {

A[k] = A[i]; } }

www.umbc.edu

Tree Based Disjoint Sets

• Disjoint-set forests are data structures

– Each set is represented by a tree data structure

– Each node holds a reference to its parent node

• In a disjoint-set forest, the representative of
each set is the root of that set's tree

www.umbc.edu

Tree Based Disjoint Sets

• Find() follows parent nodes until it reaches
the root

• Union() combines two trees into one by
attaching the root of one to the root of the
other

www.umbc.edu

Animation

• Disjoint Sets

• https://www.cs.usfca.edu/~galles/visualizatio
n/DisjointSets.html

https://www.cs.usfca.edu/~galles/visualization/DisjointSets.html

www.umbc.edu

Optimization of Disjointed Sets

www.umbc.edu

Optimization

• Three main optimization operations:

1. Union-by-rank (size)

2. Union-by-rank (height)

3. Path Compression

www.umbc.edu

• Be very clear about how the array
representations change for different things
(union by size, union by height, etc.)

www.umbc.edu

Union-by-Rank (size)

• Size = number of nodes (including root) in
given set

• A strategy to keep items in a tree from getting
too deep (large paths) by uniting sets
intelligently

• At each root, we record the size of its sub-tree

– The number of nodes in the collective tree

www.umbc.edu

Union-by-Rank (size)

0 1 2 3

4

5 6 7

8

910

11

12

-1 -1 4 -1 -2 -1 -1 8 9 -5 9 9 -1 -1

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Notice two things:

1. Value of index is where the index is linked to

2. As the size of the set increases, the negative number size

of the root increases (see 4 and 9)

www.umbc.edu

Union-by-Rank (height)

• A strategy to keep items in a tree from getting too
deep (large paths) by uniting sets intelligently

• At each root, we record the height of its sub-tree

• When uniting two trees, make the smaller tree a sub-
tree of the larger one

– So that the tree that is larger does not add
another level!!

www.umbc.edu

Union-by-Rank (height)

0 1 2 3

4

5 6 7

8

9

10 11 12

-1 -1 4 -1 -2 -1 -1 8 9 -3 -1 -1 -1 -1

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Notice two things:

1. Value of index is where the index is linked to

2. As the size of the set increases, the negative number height

of the root increases (see 4 and 9)

www.umbc.edu

Union-by-Rank (height)

0 1 2 3

4

5 6 7

8

9

10 11 12

-1 -1 4 -1 -2 -1 -1 8 9 -3 -1 -1 -1 -1

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

What if we merge {2,4} with {7, 8, 9}?

Because 9 has a greater height than 4, 4 would be absorbed into 9.

www.umbc.edu

Union-by-Rank (height)

0 1

2

3

4

5 6 7

8

9

10 11 12

-1 -1 4 -1 -2 -1 -1 8 9 -3 -1 -1 -1 -1

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

When uniting two trees, make the smaller tree a sub-tree of the larger

one so that the one tree that is larger does not add another level!!

Update 4 to point to 9

9

www.umbc.edu

Example of Unions

• If we union 5 and 9, how will they be joined?

www.umbc.edu

Example of Unions
• By rank (size)?

– 9 becomes a child of 5

• By rank (height)?

– 5 becomes a child of 9

www.umbc.edu

Path Compression

• If our path gets longer, operations take longer

• We can shorten this (literally and figuratively)
by updating the element values of each child
directly to the root node value

– No more walking through to get to the root

• Done as part of Find()

– So the speed up will be eventual

www.umbc.edu

Path Compression

• Theoretically flattens out a tree

• Uses recursion

• Base case

– Until you find the root

– Return the root value

• Reassign as the call stack collapses

www.umbc.edu

Path Compression

7

8

910

11

12

6

-1 -1 4 -1 -1 -1 10 8 9 -1 9 9 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3

4

5

13

During a Find(), we update the index to point to the root

Before Path

Compression

www.umbc.edu

Path Compression

7

8

910

11

12
6

-1 -1 4 -1 -1 -1 9 9 9 -1 9 9 9 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3

4

5

13

After Path

Compression

After we run Find(6)we update it to point to 9

After we run Find(13)we update it to point to 9

Along with all other nodes between 13 and 9!

www.umbc.edu

Code for Disjoint Sets

www.umbc.edu

Generic Code
function MakeSet(x)

x.parent := x

function Find(x)

if x.parent == x

return x

else

return Find(x.parent)

function Union(x, y)

xRoot := Find(x)

yRoot := Find(y)

xRoot.parent := yRoot

www.umbc.edu

C++ Implementation
class UnionFind {

int[] u;

UnionFind(int n) {

u = new int[n];

for (int i = 0; i < n; i++)

u[i] = -1;

}

int find(int i) {

int j,root;

for (j = i; u[j] >= 0; j = u[j]) ;

root = j;

while (u[i] >= 0) { j = u[i]; u[i] = root; i = j; }

return root;

}

void union(int i,int j) {

i = find(i);

j = find(j);

if (i !=j) {

if (u[i] < u[j])

{ u[i] += u[j]; u[j] = i; }

else

{ u[j] += u[i]; u[i] = j; }

}

}

}

www.umbc.edu

The UnionFind class

class UnionFind {
int[] u;

UnionFind(int n) {
u = new int[n];
for (int i = 0; i < n; i++)
u[i] = -1;

}

int find(int i) { ... }

void union(int i,int j) { ... }
}

www.umbc.edu

Trick 1: Iterative find
int find(int i) {

int j, root;

for (j = i; u[j] >= 0; j = u[j]) ;

root = j;

while (u[i] >= 0)

{ j = u[i]; u[i] = root; i = j; }

return root;

}

www.umbc.edu

Trick 2: Union by size

void union(int i,int j) {

i = find(i);

j = find(j);

if (i != j) {

if (u[i] < u[j])

{ u[i] += u[j]; u[j] = i; }

else

{ u[j] += u[i]; u[i] = j; }

}

}

www.umbc.edu

Disjointed Sets Performance

www.umbc.edu

Performance
• In a nutshell

– Running time complexity: O(1) for union

• Using ONE pointer to connect from one root to another

– Running time of find depends on implementation

• Union by size: Find is O(log(n))

• Union by height: Find is O(log(n))

• Union operations obviously take Θ(1) time

– Code has no loops or recursion

• Θ(f(n)) is when the worst case and best case are identical

www.umbc.edu

Performance

• The average running time of any find and
union operations in the quick-union data
structure is so close to a constant that it's
hardly worth mentioning that, in an asymptotic
sense, it's slightly slower in real life

www.umbc.edu

Performance

– A sequence of f find and u union operations (in any order
and possibly interleaved) takes Theta(u + f α(f + u, u)) time
in the worst case

– α is an extremely slowly-growing function

– Known as the inverse Ackermann function.
• This function is never larger than 4 for any values of f and u you

could ever use (though it can get arbitrarily large—for
unimaginably large values of f and u).

• Hence, for all practical purposes think of quick-union as having
find operations that run, on average, in constant time.

