
© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 1

Bucket-Sort and Radix-Sort

0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

      

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 2

Bucket-Sort
Let be S be a sequence of n
(key, element) entries with
keys in the range [0, N - 1]

Bucket-sort uses the keys as
indices into an auxiliary array B
of sequences (buckets)
Phase 1: Empty sequence S by

moving each entry (k, o) into
its bucket B[k]

Phase 2: For i = 0, …, N - 1, move
the entries of bucket B[i] to the
end of sequence S

Analysis:
 Phase 1 takes O(n) time

 Phase 2 takes O(n + N) time

Bucket-sort takes O(n + N) time

Algorithm bucketSort(S, N)

Input sequence S of (key, element)
items with keys in the range
[0, N - 1]

Output sequence S sorted by
increasing keys

B  array of N empty sequences

while S.empty()

(k, o)  S.front()

S.eraseFront()

B[k].insertBack((k, o))

for i  0 to N - 1

while B[i].empty()

(k, o)  B[i].front()

B[i].eraseFront()

S.insertBack((k, o))

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 3

Example
Key range [0, 9]

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2

0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

      

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 4

Properties and Extensions

Key-type Property

 The keys are used as
indices into an array
and cannot be arbitrary
objects

 No external comparator

Stable Sort Property

 The relative order of
any two items with the
same key is preserved
after the execution of
the algorithm

Extensions
 Integer keys in the range [a, b]

 Put entry (k, o) into bucket
B[k - a]

 String keys from a set D of
possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)
 Sort D and compute the rank

r(k) of each string k of D in
the sorted sequence

 Put entry (k, o) into bucket
B[r(k)]

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 5

Lexicographic Order

A d-tuple is a sequence of d keys (k1, k2, …, kd), where
key ki is said to be the i-th dimension of the tuple

Example:

 The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively

defined as follows

(x1, x2, …, xd) < (y1, y2, …, yd)



x1 < y1  x1 = y1  (x2, …, xd) < (y2, …, yd)

I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 6

Lexicographic-Sort
Let Ci be the comparator
that compares two tuples by
their i-th dimension

Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C

Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension

Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

Algorithm lexicographicSort(S)

Input sequence S of d-tuples
Output sequence S sorted in

lexicographic order

for i  d downto 1

stableSort(S, Ci)

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)

(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 7

Radix-Sort
Radix-sort is a
specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm
in each dimension

Radix-sort is applicable
to tuples where the
keys in each dimension i

are integers in the
range [0, N - 1]

Radix-sort runs in time
O(d(n + N))

Algorithm radixSort(S, N)

Input sequence S of d-tuples such

that (0, …, 0)  (x1, …, xd) and
(x1, …, xd)  (N - 1, …, N - 1)
for each tuple (x1, …, xd) in S

Output sequence S sorted in
lexicographic order

for i  d downto 1

bucketSort(S, N)

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 8

Radix-Sort for
Binary Numbers

Consider a sequence of n
b-bit integers

x = xb - 1 … x1x0

We represent each element
as a b-tuple of integers in
the range [0, 1] and apply
radix-sort with N = 2

This application of the
radix-sort algorithm runs in
O(bn) time

For example, we can sort a
sequence of 32-bit integers
in linear time

Algorithm binaryRadixSort(S)

Input sequence S of b-bit
integers

Output sequence S sorted

replace each element x
of S with the item (0, x)

for i  0 to b - 1

replace the key k of
each item (k, x) of S
with bit xi of x

bucketSort(S, 2)

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 9

Example

Sorting a sequence of 4-bit integers

1001

0010

1101

0001

1110

0010

1110

1001

1101

0001

1001

1101

0001

0010

1110

1001

0001

0010

1101

1110

0001

0010

1001

1101

1110

