Bucket-Sort and Radix-Sort

@ 3,aH3,b] 7,dH7,9H7.¢]
5 |9]* |2 \»([@ 2| 1@{

012 3 456 7 8 9

AN

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort

«

Bucket-Sort

p
4
@ Letbe Sbea sequence (_)f n Algorithm bucketSort(S, N)
(key, element) entries with Input sequence S of (key, element)
keys in the range [0, N — 1] items with keys in the range
Bucket-sort uses the keys as [0,N-1]
indices into an auxiliary array B Output sequence S sorted by
of sequences (buckets) Increasing keys
Phase 1: Empty sequence S by B <« array of N empty sequences
moving each entry (k, o) into while —S.empty()
its bucket B[K] (k, 0) « S.front()
Phase 2: Fori=0,...,N-1, move S.eraseFront()
the entries of bucket BJi] to the B[K].insertBack((k, 0))
enc! of sequence S fori e 0to N=1
@ Analysis: while —B[i].empty()
s Phase 1 takes O(n) time (k, O) <« B[i].front()
= Phase 2 takes O(n + N) time B[i].eraseFront()
Bucket-sort takes O(n + N) time S.insertBack((k, 0))

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 2

Example
Key range [0, 9]

N
\J

3, a 7,90

7e)

© 2004 Goodrich, Tamassia

Bucket-Sort and Radix-Sort

Properties and Extensions

Key-type Property Extensions

N

I

= The keys are used as m Integer keys in the range [a, b]
indices into an array + Put entry (k, o) into bucket
and cannot be arbitrary Blk-a]
objects = String keys from a set D of
\ A | b possible st_rings, where D has

=-NQ-€XLernal.comparator constant size (e.g., names of

Stable Sort Property the 50 U.S. states)
: + Sort D and compute the rank
= The reIat_lve orde_r of r(k) of each string k of D in
any two items with the the sorted sequence
same key is preserved + Put entry (k, 0) into bucket
after the execution of B[r(K)]

the algorithm

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 4

Lexicographic Order

A d-tuple is a sequence of d keys (ky, k,, ..., k;), where
key ki is said to be the i-th dimension of the tuple

Example:
= The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively
defined as follows

(X145 Xpy ey Xg) < (Y1 Vs oees Yg)
=

Xp <Y1V X =YiA (Xg, eee Xg) < (Yor o005 Vo)
I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

N

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 5

N

Let C, be the comparator
that compares two tuples by
their i-th dimension

Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C

Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension

Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

Lexicographic-Sort

Algorithm lexicographicSort(S)

Input sequence S of d-tuples
Output sequence S sorted in
lexicographic order

for i « d downto 1
stableSort(S, C))

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)
(2,1, 4)(3,2,4) (5,1,5) (7,4,6) (2,4,6)
(2,1, 4) (51,5) (3,2, 4) (7,4,6) (2,4,6)
(2,1,4)(2,4,6) (3,2,4) (51,5) (7,4,6)

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 6

Radix-Sort

Radix-sort is a
specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm

N

in each dimension Algorithm radixSort(S, N)

Radix-sort is applicable Input sequence S of d-tuples such
to tuples where the that (O, ..., 0) < (X4, ..., x4) and
keys in each dimension i (Xpp ey xg) S(N=1, .y N—1)
are integers in the for each tuple (x,, ..., x4) IN S
range [0, N — 1] Ouitpu_t sequence S sorted in

_ o exicographic order

Radix-sort runs in time for i < d downto 1

Old(n+N)) bucketSort(S, N)

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 7

Radix-Sort for
Binary Numbers

Consider a sequence of n
b-bit integers
X =Xy _ 1 o0 X1Xg
We represent each element
as a b-tuple of integers in
the range [0, 1] and apply
radix-sort with N = 2

This application of the
radix-sort algorithm runs in
O(bn) time

For example, we can sort a
sequence of 32-bit integers
in linear time

N

e Ch

Algorithm binaryRadixSort(S)

Input sequence S of b-bit
Integers
Output sequence S sorted

replace each element x
of S with the item (0, x)

fori<0tob—-1

replace the key k of
each item (k, x) of S
with bit x; of x

bucketSort(S, 2)

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 8

Example

N

Sorting a sequence of 4-bit integers

)

© 2004 Goodrich, Tamassia

)

)

Bucket-Sort and Radix-Sort

o) (o (w0oy (wog (oo
@9 @Y @Y @9 @
) =) @00 = 0 = BF =) @
o) G @9 @9 2@
G0 @ @9 @D @O

