Merge Sort

[72|94—>2479]

/\
[7|2—>27] [9|4—>49]
O~
[7—)7] [2—)2] 959 454 |

© 2004 Goodrich, Tamassia Merge Sort

Divide-and-Conquer (§ 10.1.1)

p
4
Divide-and conquer is a # Merge-sort is a sorting
general algorithm design algorithm based on the
paradigm: divide-and-conquer
= Divide: divide the input data paradigm
S in two disjoint subsets S, # Like heap-sort
and S, m It uses a comparator
= Recur: solve the = It has O(n log n) running

subproblems associated
with S, and S,

= Conquer: combine the

time
Unlike heap-sort

solutions for S, and S, into a = It does not use an
solution for S auxiliary priority queue
The base case for the = It accesses data in a
recursion are subproblems of sequential manner
size 0 or 1 (s_,wtable to sort data on a
disk)

© 2004 Goodrich, Tamassia Merge Sort 2

N

Merge-sort on an input
sequence S with n
elements consists of
three steps:

= Divide: partition S into
two sequences S, and S,
of about n/2 elements
each

= Recur: recursively sort S,
and S,

= Conquer: merge S, and
S, into a unique sorted
sequence

© 2004 Goodrich, Tamassia Merge Sort

Merge-Sort (§ 10.1)

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted
according to C

If S.size() > 1
(S;, S,) « partition(S, n/2)
mergeSort(S,, C)
mergeSort(S,, C)
S < merge(S;, S,)

Merging Two Sorted Sequences

p
<V
The conquer step of Algorithm merge(A, B)
merge-sort consists Input sequences A and B with
of merging two n/2 elements each
sorted sequences A Output sorted sequence of A U B
and B into a sorted
sequence S S « empty sequence
containing the union while —A.empty() A —=B.empty()
of the elements of A if A.front() < B.front()
and B S.addBack(A.front()); A.eraseFront();
Merging two sorted else
sequences, each S.addBack(B.front()); B.eraseFront();
with n/2 elements while —A.empty()
and implemented by S.addBack(A.front()); A.eraseFront();
Fqiagslpi at dISUbly while —B.empty()
INKEA IS, LaKes S.addBack(B.front()); B.eraseFront();
O(n) time
return S

© 2004 Goodrich, Tamassia Merge Sort 4

Merge-Sort Tree

| # An execution of merge-sort is depicted by a binary tree

= each node represents a recursive call of merge-sort and stores
» unsorted sequence before the execution and its partition
» sorted sequence at the end of the execution

= the root is the initial call
= the leaves are calls on subsequences of size 0 or 1

[72|94—>2479]

/
712527 |914 >4 9]

3]

© 2004 Goodrich, Tamassia Merge Sort 5

[9—)9] 454

Execution Example
Partition

N

729413861]

__

© 2004 Goodrich, Tamassia Merge Sort 6

Execution Example (cont.)

Recursive call, partition

(729413861]

——————————

Execution Example (cont.)

N

Recursive call, partition

© 2004 Goodrich, Tamassia Merge Sort 8

Execution Example (cont.)

Recursive call, base case

(729413861]

/\
(72194] []
e o e &

|
/A AN N N

S D e U I U s G B D e R

© 2004 Goodrich, Tamass ia Merge Sort

Execution Example (cont.)

Recursive call, base case

© 2004 Goodrich, Tamassia Merge Sort 10

Execution Example (cont.)

#Merge

[7294|3861_]

Execution Example (cont.)

#Recursive call, ..., base case, merge

(729413861]

(72194]

/\

UI2+27 o4 > 4 9]

/\ //\\ /\ r/\

[7—)7] [2—)2] 9—)9 4—)4

© 2004 Goodrich, Tamassia Merge Sort 12

Execution Example (cont.)

#Merge

(729413861]

7219452479

AN

712527 |94>409]

© 2004 Goodrich, Tamassia Merge Sort 13

Execution Example (cont.)

#Recursive call, ..., merge, merge

(729413861]
/\
(7219452479 [3861 5136 8]
ZARERSN AN
712527 |94>409] 38538 (61516

AN LN LN LN

757 [252) (959 454 (353 8>8 (656 (151

© 2004 Goodrich, Tamassia Merge Sort 14

Execution Example (cont.)

#Merge

729413861 5123467809]

P AR RRRRp =

(7219452479 (3861136 8]
e oh e o

AN LN LN LN

757 [252) (959 454 (353 8>8 (656 (151

© 2004 Goodrich, Tamassia Merge Sort 15

Analysis of Merge-Sort

The height h of the merge-sort tree is O(log n)
= at each recursive call we divide in half the sequence,

The overall amount or work done at the nodes of depth iis O(n)
= we partition and merge 2' sequences of size n/2'
= we make 2+ recursive calls

Thus, the total running time of merge-sort is O(n log n)

N

depth #seqgs size

0 1 n [J
1 2 n/2 [] []
| 2 n/2t |

) |]|) l
[/][\][ﬁ] [/][\][) L

© 2004 Goodrich, Tamassia Merge Sort 16

Summary of Sorting Algorithms

L

N

Algorithm Time |Notes

= slow

selection-sort O(n?) = in-place

= for small data sets (< 1K)

= Slow

insertion-sort O(n?) = in-place

= for small data sets (< 1K)

= fast

heap-sort O(nlogn) |= in-place

= for large data sets (1K — 1M)
= fast

merge-sort | O(nlogn) |= sequential data access
= for huge data sets (> 1M)

© 2004 Goodrich, Tamassia Merge Sort 17

