
© 2004 Goodrich, Tamassia AVL Trees 1

AVL Trees

6

3 8

4

v

z



© 2004 Goodrich, Tamassia AVL Trees 2

AVL Tree Definition

AVL trees are 
balanced

An AVL Tree is a 
binary search tree
such that for every 
internal node v of T, 
the heights of the 
children of v can 
differ by at most 1

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An example of an AVL tree where the 

heights are shown next to the nodes:



© 2004 Goodrich, Tamassia AVL Trees 3

Height of an AVL Tree
Fact: The height of an AVL tree storing n keys is O(log n).

Proof: Let us bound n(h): the minimum number of internal 
nodes of an AVL tree of height h.

We easily see that n(1) = 1 and n(2) = 2

For n > 2, an AVL tree of height h contains the root node, 
one AVL subtree of height n-1 and another of height n-2.

That is, n(h) = 1 + n(h-1) + n(h-2)

Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),

n(h) > 2in(h-2i)

Solving the base case we get: n(h) > 2 h/2-1

Taking logarithms: h < 2log n(h) +2

Thus the height of an AVL tree is O(log n)

3

4 n(1)

n(2)



© 2004 Goodrich, Tamassia AVL Trees 4

Insertion
Insertion is as in a binary search tree
Always done by expanding an external node.
Example:

44

17 78

32 50 88

48 62

54
w

b=x

a=y

c=z

44

17 78

32 50 88

48 62

before insertion after insertion



© 2004 Goodrich, Tamassia AVL Trees 5

Trinode Restructuring
let (a,b,c) be an inorder listing of x, y, z

perform the rotations needed to make b the topmost node of 
the three

b=y

a=z

c=x

T0

T1

T2 T3

b=y

a=z c=x

T0 T1 T2 T3

c=y

b=x

a=z

T0

T1 T2

T3
b=x

c=ya=z

T0 T1 T2 T3

case 1: single rotation

(a left rotation about a)

case 2: double rotation

(a right rotation about c, 

then a left rotation about a)

(other two cases 

are symmetrical)



© 2004 Goodrich, Tamassia AVL Trees 6

Insertion Example, continued

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0
T2

T3

x

y

z

2

3

4

5

6

7

1

88

44

17

7832 50

48

62
2

4

1

1

2 2

3

1

54

1

T0 T1

T2

T3

x

y z

unbalanced...

...balanced

1

2

3

4

5

6

7

T1



© 2004 Goodrich, Tamassia AVL Trees 7

Restructuring 
(as Single Rotations)

Single Rotations:

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x

b = y

a = z
single rotation

T3
T2

T1

T0

a = x

b = y

c = z

T0T1T2

T3

a = x
b = y

c = z
single rotation



© 2004 Goodrich, Tamassia AVL Trees 8

Restructuring 
(as Double Rotations)

double rotations:

double rotationa = z

b = x

c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y



© 2004 Goodrich, Tamassia AVL Trees 9

Removal
Removal begins as in a binary search tree, which 
means the node removed will become an empty 
external node. Its parent, w, may cause an imbalance.

Example: 
44

17

7832 50

8848

62

54

44

17

7850

8848

62

54

before deletion of 32 after deletion



© 2004 Goodrich, Tamassia AVL Trees 10

Rebalancing after a Removal
Let z be the first unbalanced node encountered while travelling 
up the tree from w. Also, let y be the child of z with the larger 
height, and let x be the child of y with the larger height

We perform restructure(x) to restore balance at z

As this restructuring may upset the balance of another node 
higher in the tree, we must continue checking for balance until 
the root of T is reached

44

17

7850

8848

62

54

w

c=x

b=y

a=z

44

17

78

50 88

48

62

54



© 2004 Goodrich, Tamassia AVL Trees 11

Rebalancing after a Removal
[Slide added –jyp]

In the case below, restructuring the subtree rooted at 44 
created a new subtree (incidentally now rooted at 62) which is 
has height decreased by 1

This might cause an unbalanced situation at an ancestor of this 
subtree

44

17

7850

88

62w

c=x

b=y

a=z

44

17

78

50 88

62



© 2004 Goodrich, Tamassia AVL Trees 12

AVL Tree Performance
a single restructure takes O(1) time

 using a linked-structure binary tree

find takes O(log n) time

 height of tree is O(log n), no restructures needed

put takes O(log n) time

 initial find is O(log n)

 Restructuring up the tree, maintaining heights is O(log n)

erase takes O(log n) time

 initial find is O(log n)

 Restructuring up the tree, maintaining heights is O(log n)


