
CMSC 341

Lecture 10 Binary Search Trees

John Park

Based on slides from previous iterations of this course

Review: Tree Traversals

2

Traversal – Preorder, Inorder, Postorder

UMBC CMSC 341 Binary Search Trees 3

B EKA

MX

H

L WGN Y

Preorder Traversal

UMBC CMSC 341 Binary Search Trees 4

B EKA

MX

H

L WGN Y

1

2

3

4 5

6

7

8

9

10

11 12

Display the current node’s value

Traverse the left subtree (may be NULL)

Traverse the right subtree (may be NULL)

LEFT, NODE, RIGHT

Inorder Traversal

UMBC CMSC 341 Binary Search Trees 5

B EKA

MX

H

L WGN Y

6

4

2

1 3

5

9

8

7

11

10 12

Traverse the left subtree (may be NULL)

Display the current node’s value

Traverse the right subtree (may be NULL)

NODE, LEFT, RIGHT

Postorder Traversal

UMBC CMSC 341 Binary Search Trees 6

B EKA

MX

H

L WGN Y 6

4

21

3

5

98

7

11

10

12

Traverse the left subtree (may be NULL)

Traverse the right subtree (may be NULL)

Display the current node’s value

LEFT, RIGHT, NODE

Level Order Traversal

UMBC CMSC 341 Binary Search Trees 7

B EKA

MX

H

L WGN Y

64

2

1

3

5

98

7

1110 12

Requires the use of a Queue

Pointers vs References

8

Passing by Value

 The “default” way to pass variables to functions

// function prototype

void PrintVal (int x);

int x = 5;

int *xPtr = &x;

PrintVal(x); // function call

PrintVal(*xPtr); // also valid call

UMBC CMSC 341 Binary Search Trees 9

Passing a Pointer (Reference by Value)

 Uses pointers (address to the variable)

 Uses * to dereference, and & to get address

void ChangeVal(int *x); //prototype

int x = 5;

int *xPtr = &x;

ChangeVal(&x); // function call

ChangeVal(xPtr); // also valid call

UMBC CMSC 341 Binary Search Trees 10

Passing a Reference

 Uses references (different from pointers)

 Allows called function to modify caller’s variable

void ChangeVal(int &x); //prototype

int x = 5;

int *xPtr = &x;

ChangeVal(x); //function call

ChangeVal(*xPtr); //also valid call

UMBC CMSC 341 Binary Search Trees 11

Passing a Reference

 Uses references (different from pointers)

 Allows called function to modify caller’s variable

void ChangeVal(int &x); //prototype

int x = 5;

int &xRef = x; //create reference

ChangeVal(x); //function call

ChangeVal(xRef); //also valid call

UMBC CMSC 341 Binary Search Trees 12

Pointers vs. References

 How are references different from pointers?

 References must be initialized at declaration

 References cannot be changed

 References can be treated as another

“name” for a variable

 No dereferencing to get the value

 Functions that take values and references

have identical definitions

UMBC CMSC 341 Binary Search Trees 13

Advantages of Passing by Pointer/Ref

 Advantages:

 Allows a function to change the value

 Doesn’t make a copy of the argument (fast!)

 We can return multiple values

 Disadvantages:

 Dereferencing a pointer is slower than direct access

to the value. (References are internally implemented

via pointers)

UMBC CMSC 341 Binary Search Trees 14

From: http://www.learncpp.com/cpp-tutorial/74-passing-arguments-by-address

Advantages of References vs. Pointers

 Reference advantages:

 Can pass as const to avoid unintentional changes

 Values don’t have to be checked to see if they’re

NULL

 Disadvantages:

 Hard to tell if the function is passing by value or

reference without looking at the function itself

UMBC CMSC 341 Binary Search Trees 15

From: http://www.learncpp.com/cpp-tutorial/74-passing-arguments-by-address

Properties of Binary Search Trees

16

Advantages of a BST

 Binary Search Trees are sorted as they’re made

 How quickly does linear binary search find a

value?

 O(log n)

 Binary Search Trees work on the same principle

 What if the tree isn’t “perfect”?

 Performance will be better/worse: worst-case O(n)

 But on average, will be O(log n)

UMBC CMSC 341 Binary Search Trees 17

Searching Through a BST

 Easy to locate an element of the tree

 Find arbitrary element:

 Compare to the current node’s value

 If current node is bigger, go left; otherwise, go right

 Minimum:

 Go left until it’s no longer possible

 (It may not be a leaf – it may have a right subtree)

 Maximum:

 Go right until it’s no longer possible

 (It may not be a leaf – it may have a left subtree)

UMBC CMSC 341 Binary Search Trees 18

Practice: BST of Integers

 Describe the values that might appear in the

subtrees A, B, C, and D

UMBC CMSC 341 Binary Search Trees 19

Example: Creating a BST

 Draw the BST that would result from these

values, given in this exact order

 H,F,A,M,G,Z

UMBC CMSC 341 Binary Search Trees 20

H

F

A

M

G Z

Practice: Creating a BST

 Draw the BST that would result from these

values, given in this exact order

 8,2,1,9,6,5,3,7,4

 5,9,1,8,2,6,7,3,4

 8,1,2,6,9,3,4,7,5

 1,2,3,4,5,6,7,8,9

 5,3,7,9,6,1,4

UMBC CMSC 341 Binary Search Trees 21

Great website where you can

practice and learn about BSTs:

http://visualgo.net/bst.html

http://visualgo.net/bst.html

Subtrees and Recursion

 Every node is the root for its own subtree

 (Subtree of the actual root is the whole tree)

 Almost everything we do with trees can be

(and should be) coded using recursion

 For example: traversal of the tree (pre-, in-,

and postorder) can be done recursively

 Which will print out a BST from low to high?

UMBC CMSC 341 Binary Search Trees 22

Implementing a Binary Search Tree

23

Representing a Binary Search Tree

 What data structure would you use for a BST?

 Array? Stack? Queue? ???

 (Modified) implementation of Linked List

 Linked List nodes contain two things:

 Data, and a pointer to the next node

 BST nodes should contain…

 Data, and two pointers: left and right children

UMBC CMSC 341 Binary Search Trees 24

Generic Structure for BST node

struct BinaryNode

{

// Member variables

<AnyType> element; // Data in the node

BinaryNode *left; // Left child

BinaryNode *right; // Right child

// Constructor

BinaryNode(const <AnyType> & theElement,

BinaryNode *lt, BinaryNode *rt)

{

element = theElement;

left = lt;

right = rt;

}

}

UMBC CMSC 341 Binary Search Trees 25

BST Node Functions

 What other functions might we want for a node?

 Constructor that just takes in data (no children)

 Initializes children to NULL automatically

 print() function

 May be mostly handled if the data is really
simple or another class with a print() function

 Destructor (again, may already be handled)

 Getters and setters (mutators/accessors)

UMBC CMSC 341 Binary Search Trees 26

Generic Class for BST
class BinarySearchTree

{

public:

BinarySearchTree() :root(NULL)

{ }

BinarySearchTree(const BinarySearchTree

&rhs) : root(NULL)

{

*this = rhs;

}

private:

// this private BinaryNode is within BST

BinaryNode *root;

}

UMBC CMSC 341 Binary Search Trees 27

Binary Search Tree Operations

28

Basic BST Operations

 (BST Setup) → set up a BST

 (Node Setup) → set up a BST Node

 void insert(x) → insert x into the BST

 void remove(x) → remove x from the BST

 <type> findMin() → find min value in the BST

 <type> findMax() → find max value in the BST

 boolean contains(x) → is x in the BST?

 boolean isEmpty() → is the BST empty?

 void makeEmtpy() → make the BST empty

 void PrintTree() → print the BST

UMBC CMSC 341 Binary Search Trees 29

Public and Private Functions

 Many of the operations we want to use will

have two (overloaded) versions

 Public function takes in zero or one arguments

 Calls the private function

 Private function takes in one or two arguments

 Additional argument is the “root” of the subtree

 Private function recursively calls itself

 Changes the “root” each time to go further down the tree

UMBC CMSC 341 Binary Search Trees 30

Insert

void insert(x)

31

Inserting a Node

 Insertion will always create a new leaf node

 In determining what to do, there are 4 choices

 Insert the node at the current spot
 The current “node” is NULL (we’ve reached a leaf)

 Go down the left subtree (visit the left child)
 Value we want to insert is smaller than current

 Go down the right subtree (visit the right child)
 Value we want to insert is greater than current

 Do nothing (if we’ve found a duplicate)

UMBC CMSC 341 Binary Search Trees 32

Insert Functions

 Two versions of insert

 Public version (one argument)

 Private version (two arguments, recursive)

 Public version immediately calls private one
void insert(const Comparable & x)

{

// calls the overloaded private insert()

insert(x, root);

}

UMBC CMSC 341 Binary Search Trees 33

Starting at the Root of a (Sub)tree

 First check if the “root” of the tree is NULL

 If it is, create and insert the new node

 Send left and right children to NULL

// overloaded function that allows recursive calls

void insert(const Comparable & x, BinaryNode * & t)

{

if(t == NULL) // no node here (make a leaf)

t = new BinaryNode(x, NULL, NULL);

// rest of function…

}

UMBC CMSC 341 Binary Search Trees 34

Insert New Node (Left or Right)

 If the “root” we have is not NULL

 Traverse down another level via its children

 Call insert() with new sub-root (recursive)

// value in CURRENT root 't' < new value

else if(x < t->element) {

insert(x, t->left); }

// value in CURRENT root 't' > new value

else if(t->element < x) {

insert(x, t->right); }

else; // Duplicate; do nothing

UMBC CMSC 341 Binary Search Trees 35

Full Insert() Function

 Remember, this function is recursive!

// overloaded function that allows recursive calls

void insert(const Comparable & x, BinaryNode * & t)

{

if(t == NULL) // no node here (make a new leaf)

t = new BinaryNode(x, NULL, NULL);

// value in CURRENT root 't' < new value

else if(x < t->element) { insert(x, t->left); }

// value in CURRENT root 't' > new value

else if(t->element < x) { insert(x, t->right); }

else; // Duplicate; do nothing

}

UMBC CMSC 341 Binary Search Trees 36

What’s Up With BinaryNode * & t?

 The code “ * & t ” is a reference to a pointer

 Remember that passing a reference allows us

to change the value of a variable in a function

 And have that change “stick” outside the function

 When we pass a variable, we pass its value

 It just so happens that a pointer’s “value” is the

address of something else in memory

UMBC CMSC 341 Binary Search Trees 37

Find Minimum

Comparable findMin()

41

Finding the Minimum

 What do we do?

 Go all the way down to the left

Comparable findMin(BinaryNode *t)
{

// empty tree
if (t == NULL) { return NULL; }

// no further nodes to the left
if (t->left == NULL) {

return t->value; }
else {

return findMin(t->left); }
}

UMBC CMSC 341 Binary Search Trees 42

Find Maximum

Comparable findMax()

43

Finding the Minimum

 What do we do?

 Go all the way down to the right

Comparable findMax(BinaryNode *t)
{

// empty tree
if (t == NULL) { return NULL; }

// no further nodes to the right
if (t->right == NULL) {

return t->value; }
else {

return findMax(t->right); }
}

UMBC CMSC 341 Binary Search Trees 44

Recursive Finding of Min/Max

 Just like insert() and other functions,

findMin() and findMax() have 2 versions

 Public (no arguments):

 Comparable findMin();

 Comparable findMax();

 Private (one argument):

 Comparable findMax (BinaryNode *t);

 Comparable findMax (BinaryNode *t);

UMBC CMSC 341 Binary Search Trees 45

Delete the Entire Tree

void makeEmpty ()

46

Memory Management

 Remember, we don’t want to lose any

memory by freeing things out of order!

 Nodes to be carefully deleted

 BST nodes are only deleted when

 A single node is removed

 We are finished with the entire tree

Call the destructor

UMBC CMSC 341 Binary Search Trees 47

Destructor

 The destructor for the tree simply calls the
makeEmpty() function

// destructor for the tree

~BinarySearchTree()

{

// we call a separate function

// so that we can use recursion

makeEmpty(root);

}

UMBC CMSC 341 Binary Search Trees 48

Make Empty

 A recursive call will make sure we hang onto

each node until its children are deleted

void makeEmpty(BinaryNode * & t)
{

if(t != NULL)
{

// delete both children, then t
makeEmpty(t->left);
makeEmpty(t->right);
delete t;
// set t to NULL after deletion
t = NULL;

}
}

UMBC CMSC 341 Binary Search Trees 49

Find a Specific Value

boolean contains(x)

50

Finding a Node

 Only want to know if it’s in the tree, not where

 Use recursion to traverse the tree

bool contains(const Comparable & x) const {

return contains(x, root); }

bool contains(const Comparable & x, BinaryNode *t) const

{

if(t == NULL) { return false; }

// our value is lower than the current node's

else if(x < t->element) { return contains(x, t->left); }

// our value is higher than the current node's

else if(t->element < x) { return contains(x, t->right);}

else { return true; } // Match

}

UMBC CMSC 341 Binary Search Trees 51

Finding a Node

 Only want to know if it’s in the tree, not where

 Use recursion to traverse the tree

bool contains(const Comparable & x) const {

return contains(x, root); }

bool contains(const Comparable & x, BinaryNode *t) const

{

if(t == NULL) { return false; }

// our value is lower than the current node's

else if(x < t->element) { return contains(x, t->left); }

// our value is higher than the current node's

else if(t->element < x) { return contains(x, t->right);}

else { return true; } // Match

}

UMBC CMSC 341 Binary Search Trees 52

We have to have a defined
overloaded comparison
operator for this to work!

(Both of the else if statements
use < so we only need to write one)

Removing a Node

void remove(x)

54

Complicated Removal

 Similar to a linked list, removal is often much

more complicated than insertion or complete

deletion

 We must first traverse the tree to find the

target we want to remove
 If we “disconnect” a link, we need to reestablish

 Possible scenarios
 No children (leaf)

 One child

 Two children

UMBC CMSC 341 Binary Search Trees 55

Removing A Node – Example 1

 Remove 4

 Any issues?

UMBC CMSC 341 Binary Search Trees 56

Removing A Node – Example 2

 Remove 6

 Any issues?

UMBC CMSC 341 Binary Search Trees 57

Removing A Node – Example 3

 Remove 8

 Any issues?

UMBC CMSC 341 Binary Search Trees 58

Removing a Node – No Children

 Simplest scenario for removal

 No children to worry about managing

 Reminder: nodes with no children are leaves

 We still have to find the target node first

 To remove a node with no children, we need

to do the following:

 Cut the link from the parent node

 Free the memory

UMBC CMSC 341 Binary Search Trees 59

Removing a Node – One Child

 Second easiest scenario for removal
 Only one child is linked to the node

 The node can only be deleted after its parent

adjusts the link to bypass the node to the child
 The “grandparent” node takes custody

 To remove a node with one child, we need to

do the following:
 Connect node’s parent to its child (custody)

 Free the memory

UMBC CMSC 341 Binary Search Trees 60

Example Removal – One Child

 Remove “18” from this BST:

 Grandparent takes custody

UMBC CMSC 341 Binary Search Trees 61

Source: http://www.algolist.net/Data_structures/Binary_search_tree/Removal

Code for Removal

void remove(const Comparable & x, BinaryNode * & t)

{

// code to handle two children prior to this

else

{

// "hold" the position of node we'll delete

BinaryNode *oldNode = t;

// ternary operator

t = (t->left != NULL) ? t->left : t->right;

delete oldNode;

}

}

UMBC CMSC 341 Binary Search Trees 62

Removing a Node – One Child

 Second easiest scenario for removal
 Only one child is linked to the node

 The node can only be deleted after its parent

adjusts the link to bypass the node to the child
 The “grandparent” node takes custody

 To remove a node with one child, we need to

do the following:
 Connect node’s parent to its child (custody)

 Free the memory

UMBC CMSC 341 Binary Search Trees 64

Removing a Node – Two Children

 Most difficult scenario for removal
 Everyone in the subtree will be affected

 Instead of completely deleting the node, we

will replace its value with another node’s
 The smallest value in the right subtree
 Use findMin() to locate this value

 Then delete the node whose value we moved

 Using the minimum of a subtree ensures it

does not also have two children to handle

UMBC CMSC 341 Binary Search Trees 65

Remove Function

66

void remove(const Comparable & x, BinaryNode * & t)

{

if(t == NULL) { return; } // item not found; do nothing

// continue to traverse until we find the element

if(x < t->element) { remove(x, t->left); }

else if(t->element < x) { remove(x, t->right); }

else if(t->left != NULL && t->right != NULL) // two children

{

// find right’s lowest value

t->element = findMin(t->right)->element;

// now delete that found value

remove(t->element, t->right);

}

else // zero or one child

{

BinaryNode *oldNode = t;

// ternary operator

t = (t->left != NULL) ? t->left : t->right;

delete oldNode;

}

} UMBC CMSC 341 Binary Search Trees

Printing a Tree

void printTree()

67

Printing a Tree

 Printing is simple – only question is which

order we want to traverse the tree in?

// ostream &out is the stream we want to print to

// (it maybe cout, it may be a file – our choice)

void printTree(BinaryNode *t, ostream & out) const

{

// if the node isn't null

if(t != NULL)

{

// print an in-order traversal

printTree(t->left, out);

out << t->element << endl;

printTree(t->right, out);

}

}

UMBC CMSC 341 Binary Search Trees 68

Performance

Run Time of BST Operations

69

Big O of BST Operations

Operation Big O

contains(x) O(log n)

insert(x) O(log n)

remove(x) O(log n)

findMin/findMax(x) O(log n)

isEmpty() O(1)

printTree() O(n)

UMBC CMSC 341 Binary Search Trees 70

