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Review: Tree Traversals
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Traversal – Preorder, Inorder, Postorder

UMBC CMSC 341 Binary Search Trees 3

B EKA

MX

H

L WGN Y



Preorder Traversal
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Inorder Traversal
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Postorder Traversal

UMBC CMSC 341 Binary Search Trees 6

B EKA

MX

H

L WGN Y 6

4

21

3

5

98

7

11

10

12

Traverse the left subtree (may be NULL)

Traverse the right subtree (may be NULL)

Display the current node’s value

LEFT, RIGHT, NODE



Level Order Traversal
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Pointers vs References
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Passing by Value

 The “default” way to pass variables to functions

// function prototype

void PrintVal (int x);

int x = 5;

int *xPtr = &x;

PrintVal(x);     // function call

PrintVal(*xPtr); // also valid call
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Passing a Pointer (Reference by Value)

 Uses pointers (address to the variable)

 Uses * to dereference, and & to get address

void ChangeVal(int *x); //prototype

int x = 5;

int *xPtr = &x;

ChangeVal(&x);   // function call

ChangeVal(xPtr); // also valid call
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Passing a Reference

 Uses references (different from pointers)

 Allows called function to modify caller’s variable

void ChangeVal(int &x); //prototype

int x = 5;

int *xPtr = &x;

ChangeVal(x);     //function call

ChangeVal(*xPtr); //also valid call
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Passing a Reference

 Uses references (different from pointers)

 Allows called function to modify caller’s variable

void ChangeVal(int &x); //prototype

int x = 5;

int &xRef = x;    //create reference

ChangeVal(x);     //function call

ChangeVal(xRef);  //also valid call
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Pointers vs. References

 How are references different from pointers?

 References must be initialized at declaration

 References cannot be changed

 References can be treated as another 

“name” for a variable

 No dereferencing to get the value

 Functions that take values and references 

have identical definitions
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Advantages of Passing by Pointer/Ref

 Advantages:

 Allows a function to change the value

 Doesn’t make a copy of the argument (fast!)

 We can return multiple values

 Disadvantages:

 Dereferencing a pointer is slower than direct access 

to the value. (References are internally implemented 

via pointers)
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From: http://www.learncpp.com/cpp-tutorial/74-passing-arguments-by-address



Advantages of References vs. Pointers

 Reference advantages:

 Can pass as const to avoid unintentional changes

 Values don’t have to be checked to see if they’re 

NULL

 Disadvantages:

 Hard to tell if the function is passing by value or 

reference without looking at the function itself
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Properties of Binary Search Trees
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Advantages of a BST

 Binary Search Trees are sorted as they’re made

 How quickly does linear binary search find a 

value?

 O(log n)

 Binary Search Trees work on the same principle

 What if the tree isn’t “perfect”?

 Performance will be better/worse: worst-case O(n)

 But on average, will be O(log n)
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Searching Through a BST

 Easy to locate an element of the tree

 Find arbitrary element:

 Compare to the current node’s value

 If current node is bigger, go left; otherwise, go right

 Minimum:

 Go left until it’s no longer possible

 (It may not be a leaf – it may have a right subtree)

 Maximum:

 Go right until it’s no longer possible

 (It may not be a leaf – it may have a left subtree)
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Practice: BST of Integers

 Describe the values that might appear in the 

subtrees A, B, C, and D
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Example: Creating a BST

 Draw the BST that would result from these 

values, given in this exact order

 H,F,A,M,G,Z
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Practice: Creating a BST

 Draw the BST that would result from these 

values, given in this exact order

 8,2,1,9,6,5,3,7,4

 5,9,1,8,2,6,7,3,4

 8,1,2,6,9,3,4,7,5

 1,2,3,4,5,6,7,8,9

 5,3,7,9,6,1,4
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Great website where you can 

practice and learn about BSTs:

http://visualgo.net/bst.html

http://visualgo.net/bst.html


Subtrees and Recursion

 Every node is the root for its own subtree

 (Subtree of the actual root is the whole tree)

 Almost everything we do with trees can be 

(and should be) coded using recursion

 For example: traversal of the tree (pre-, in-, 

and postorder) can be done recursively

 Which will print out a BST from low to high?
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Implementing a Binary Search Tree
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Representing a Binary Search Tree

 What data structure would you use for a BST?

 Array?  Stack?  Queue?  ???

 (Modified) implementation of Linked List

 Linked List nodes contain two things:

 Data, and a pointer to the next node

 BST nodes should contain…

 Data, and two pointers: left and right children
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Generic Structure for BST node

struct BinaryNode

{

// Member variables

<AnyType>  element; // Data in the node

BinaryNode *left;   // Left child

BinaryNode *right;  // Right child

// Constructor

BinaryNode(const <AnyType> & theElement, 

BinaryNode *lt, BinaryNode *rt )

{

element  = theElement;

left = lt;

right = rt;

}

}
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BST Node Functions

 What other functions might we want for a node?

 Constructor that just takes in data (no children)

 Initializes children to NULL automatically

 print() function

 May be mostly handled if the data is really 
simple or another class with a print() function

 Destructor (again, may already be handled)

 Getters and setters (mutators/accessors)
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Generic Class for BST
class BinarySearchTree

{

public:

BinarySearchTree( ) :root( NULL )

{ }

BinarySearchTree( const BinarySearchTree

&rhs ) : root( NULL )

{ 

*this = rhs; 

}

private:

// this private BinaryNode is within BST

BinaryNode *root;

}
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Binary Search Tree Operations
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Basic BST Operations

 (BST Setup) → set up a BST

 (Node Setup) → set up a BST Node

 void insert(x) → insert x into the BST

 void remove(x) → remove x from the BST

 <type> findMin() → find min value in the BST

 <type> findMax() → find max value in the BST

 boolean contains(x) → is x in the BST?

 boolean isEmpty() → is the BST empty?

 void makeEmtpy() → make the BST empty

 void PrintTree() → print the BST
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Public and Private Functions

 Many of the operations we want to use will 

have two (overloaded) versions

 Public function takes in zero or one arguments

 Calls the private function

 Private function takes in one or two arguments

 Additional argument is the “root” of the subtree

 Private function recursively calls itself

 Changes the “root” each time to go further down the tree
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Insert

void insert( x )
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Inserting a Node

 Insertion will always create a new leaf node

 In determining what to do, there are 4 choices

 Insert the node at the current spot
 The current “node” is NULL (we’ve reached a leaf)

 Go down the left subtree (visit the left child)
 Value we want to insert is smaller than current

 Go down the right subtree (visit the right child)
 Value we want to insert is greater than current

 Do nothing (if we’ve found a duplicate)
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Insert Functions

 Two versions of insert

 Public version (one argument)

 Private version (two arguments, recursive)

 Public version immediately calls private one
void insert( const Comparable & x )

{

// calls the overloaded private insert()

insert( x, root );

}
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Starting at the Root of a (Sub)tree

 First check if the “root” of the tree is NULL

 If it is, create and insert the new node

 Send left and right children to NULL

// overloaded function that allows recursive calls

void insert( const Comparable & x, BinaryNode * & t )

{

if( t == NULL ) // no node here (make a leaf)

t = new BinaryNode( x, NULL, NULL );

// rest of function…

}
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Insert New Node (Left or Right)

 If the “root” we have is not NULL

 Traverse down another level via its children

 Call insert() with new sub-root (recursive)

// value in CURRENT root 't' < new value

else if( x < t->element ) { 

insert( x, t->left ); } 

// value in CURRENT root 't' > new value

else if( t->element < x ) { 

insert( x, t->right ); }

else;  // Duplicate; do nothing
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Full Insert() Function

 Remember, this function is recursive!

// overloaded function that allows recursive calls

void insert( const Comparable & x, BinaryNode * & t )

{

if( t == NULL ) // no node here (make a new leaf)

t = new BinaryNode( x, NULL, NULL ); 

// value in CURRENT root 't' < new value

else if( x < t->element ) { insert( x, t->left ); } 

// value in CURRENT root 't' > new value

else if( t->element < x ) { insert( x, t->right ); }

else;  // Duplicate; do nothing

}
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What’s Up With BinaryNode * & t?

 The code “ * & t ” is a reference to a pointer

 Remember that passing a reference allows us 

to change the value of a variable in a function

 And have that change “stick” outside the function

 When we pass a variable, we pass its value

 It just so happens that a pointer’s “value” is the 

address of something else in memory
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Find Minimum

Comparable findMin( )
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Finding the Minimum

 What do we do?

 Go all the way down to the left

Comparable findMin(BinaryNode *t )
{

// empty tree
if (t == NULL) { return NULL; }

// no further nodes to the left
if (t->left == NULL) {

return t->value;   }
else {

return findMin(t->left);   }
}
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Find Maximum

Comparable findMax( )
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Finding the Minimum

 What do we do?

 Go all the way down to the right

Comparable findMax(BinaryNode *t )
{

// empty tree
if (t == NULL) { return NULL; }

// no further nodes to the right
if (t->right == NULL) {

return t->value;   }
else {

return findMax(t->right);   }
}
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Recursive Finding of Min/Max

 Just like insert() and other functions, 

findMin() and findMax() have 2 versions

 Public (no arguments):

 Comparable findMin( );

 Comparable findMax( );

 Private (one argument):

 Comparable findMax (BinaryNode *t);

 Comparable findMax (BinaryNode *t);
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Delete the Entire Tree

void makeEmpty ( )
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Memory Management

 Remember, we don’t want to lose any 

memory by freeing things out of order!

 Nodes to be carefully deleted

 BST nodes are only deleted when

 A single node is removed

 We are finished with the entire tree

Call the destructor
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Destructor

 The destructor for the tree simply calls the 
makeEmpty() function

// destructor for the tree

~BinarySearchTree( )

{

// we call a separate function

// so that we can use recursion

makeEmpty( root );

}
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Make Empty

 A recursive call will make sure we hang onto 

each node until its children are deleted

void makeEmpty( BinaryNode * & t )
{

if( t != NULL )
{

// delete both children, then t
makeEmpty( t->left );
makeEmpty( t->right );
delete t;
// set t to NULL after deletion
t = NULL;

}
}
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Find a Specific Value

boolean contains( x )
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Finding a Node

 Only want to know if it’s in the tree, not where

 Use recursion to traverse the tree

bool contains( const Comparable & x ) const {

return contains( x, root ); }

bool contains( const Comparable & x, BinaryNode *t ) const

{

if( t == NULL ) { return false; }

// our value is lower than the current node's

else if( x < t->element ) { return contains( x, t->left ); }

// our value is higher than the current node's

else if( t->element < x ) { return contains( x, t->right );} 

else { return true; }   // Match

}
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Finding a Node

 Only want to know if it’s in the tree, not where

 Use recursion to traverse the tree

bool contains( const Comparable & x ) const {

return contains( x, root ); }

bool contains( const Comparable & x, BinaryNode *t ) const

{

if( t == NULL ) { return false; }

// our value is lower than the current node's

else if( x < t->element ) { return contains( x, t->left ); }

// our value is higher than the current node's

else if( t->element < x ) { return contains( x, t->right );} 

else { return true; }   // Match

}
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We have to have a defined 
overloaded comparison 
operator for this to work!

(Both of the else if statements
use < so we only need to write one)



Removing a Node

void remove( x )
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Complicated Removal

 Similar to a linked list, removal is often much 

more complicated than insertion or complete 

deletion

 We must first traverse the tree to find the 

target we want to remove
 If we “disconnect” a link, we need to reestablish

 Possible scenarios
 No children (leaf)

 One child

 Two children
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Removing A Node – Example 1

 Remove 4

 Any issues?
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Removing A Node – Example 2

 Remove 6

 Any issues?
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Removing A Node – Example 3

 Remove 8

 Any issues?
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Removing a Node – No Children

 Simplest scenario for removal

 No children to worry about managing

 Reminder: nodes with no children are leaves

 We still have to find the target node first

 To remove a node with no children, we need 

to do the following:

 Cut the link from the parent node

 Free the memory
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Removing a Node – One Child

 Second easiest scenario for removal
 Only one child is linked to the node

 The node can only be deleted after its parent 

adjusts the link to bypass the node to the child
 The “grandparent” node takes custody

 To remove a node with one child, we need to 

do the following:
 Connect node’s parent to its child (custody)

 Free the memory
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Example Removal – One Child

 Remove “18” from this BST:

 Grandparent takes custody
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Code for Removal

void remove( const Comparable & x, BinaryNode * & t )

{

// code to handle two children prior to this

else

{

// "hold" the position of node we'll delete

BinaryNode *oldNode = t;

// ternary operator

t = ( t->left != NULL ) ? t->left : t->right; 

delete oldNode;

}

}
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Removing a Node – One Child

 Second easiest scenario for removal
 Only one child is linked to the node

 The node can only be deleted after its parent 

adjusts the link to bypass the node to the child
 The “grandparent” node takes custody

 To remove a node with one child, we need to 

do the following:
 Connect node’s parent to its child (custody)

 Free the memory
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Removing a Node – Two Children

 Most difficult scenario for removal
 Everyone in the subtree will be affected

 Instead of completely deleting the node, we 

will replace its value with another node’s
 The smallest value in the right subtree
 Use findMin() to locate this value

 Then delete the node whose value we moved

 Using the minimum of a subtree ensures it 

does not also have two children to handle
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Remove Function
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void remove( const Comparable & x, BinaryNode * & t )

{

if( t == NULL ) { return; }  // item not found; do nothing

// continue to traverse until we find the element

if( x < t->element ) { remove( x, t->left ); }

else if( t->element < x ) { remove( x, t->right ); }

else if( t->left != NULL && t->right != NULL ) // two children

{

// find right’s lowest value

t->element = findMin( t->right )->element; 

// now delete that found value

remove( t->element, t->right ); 

}

else // zero or one child

{

BinaryNode *oldNode = t;

// ternary operator

t = ( t->left != NULL ) ? t->left : t->right; 

delete oldNode;

}
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Printing a Tree

void printTree( )
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Printing a Tree

 Printing is simple – only question is which 

order we want to traverse the tree in?

// ostream &out is the stream we want to print to

// (it maybe cout, it may be a file – our choice)

void printTree( BinaryNode *t, ostream & out ) const

{

// if the node isn't null

if( t != NULL )

{

// print an in-order traversal

printTree( t->left, out );

out << t->element << endl;

printTree( t->right, out );

}

}
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Performance

Run Time of BST Operations
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Big O of BST Operations

Operation Big O

contains( x ) O(log n)

insert( x ) O(log n)

remove( x ) O(log n)

findMin/findMax( x ) O(log n)

isEmpty( ) O(1)

printTree( ) O(n)
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