

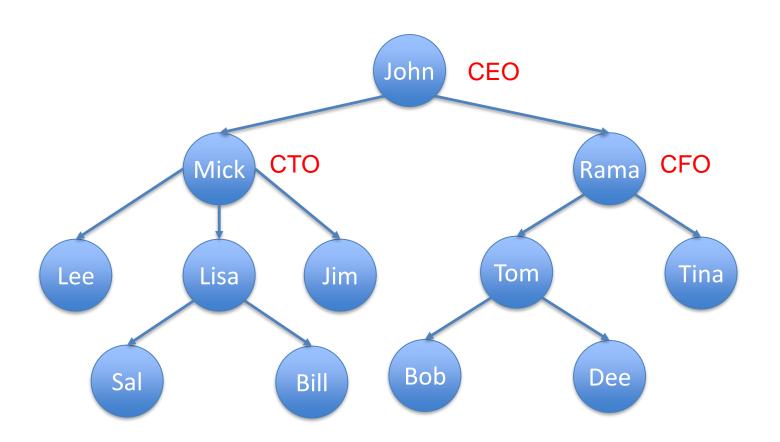
CMSC 341 Lecture 9 Introduction to Trees

(Adapted from Profs. Gibson & Dixon's slides)

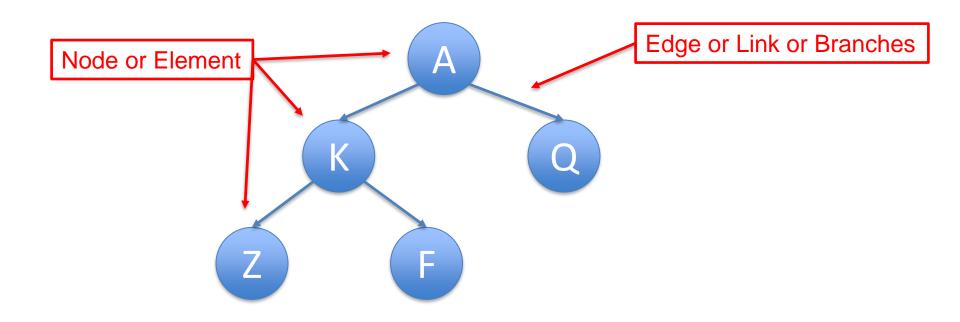
Introduction to Trees

- In computer science, a <u>tree</u> is an abstract model of a hierarchical structure
- Applications:
 - Organization charts
 - File systems
 - Programming environments

Tree Example – Org Chart



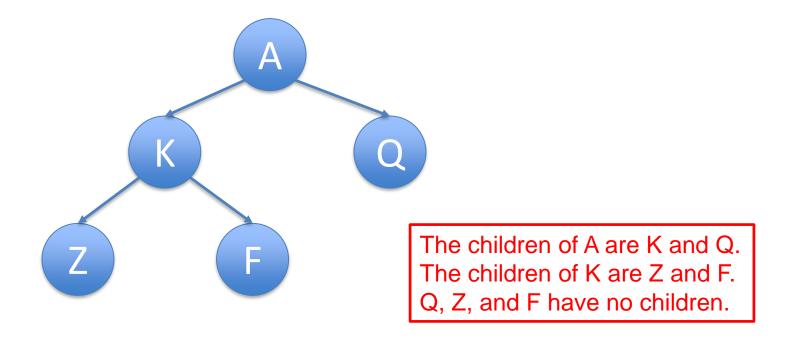
- A tree is a special form of a graph; it consists of:
 - Elements, called nodes or vertices
 - Connections, called *edges* or *arcs*
- A tree has the following additional properties:
 - The edges are directional (have arrows)
 - All nodes but one (the root node) have exactly one edge coming in (i.e., pointing to it) and 0 or more going out
 - There are no cycles (loops)



Tree Terminology

- There are two main ways that trees are described.
 - 1. Terms are related to "trees" such as *root,* branches, and leaves
 - 2. Terms are related to "ancestry" such as *parent*, *children*, *sibling*, *ancestors*, and *descendants*

Each node may have 0 or more <u>children</u>

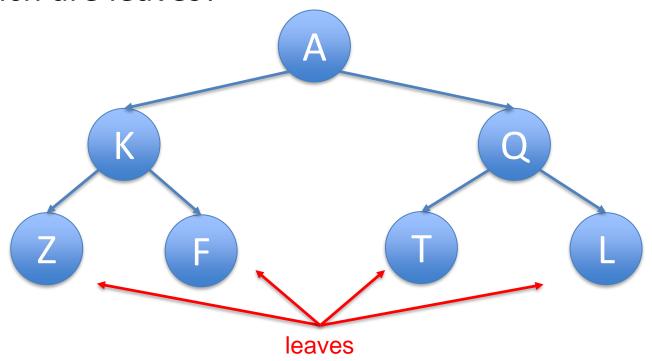


- Each node has exactly one parent
 - Except the starting / top node, called the <u>root</u>



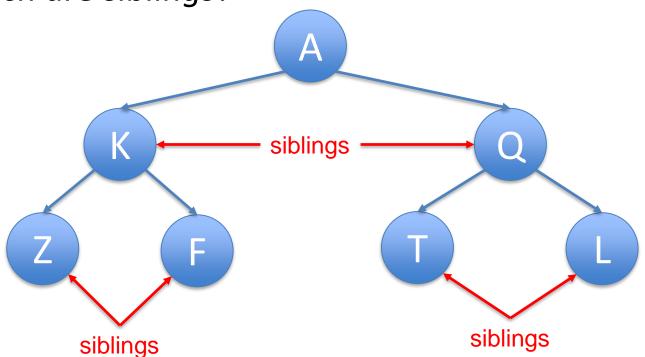
The parent of K is A.
The parent of Q is A.
The parent of Z is K.
The parent of F is K.

- Nodes with no children are called <u>leaves</u>
- Which are leaves?



Nodes with same parent are <u>siblings</u>

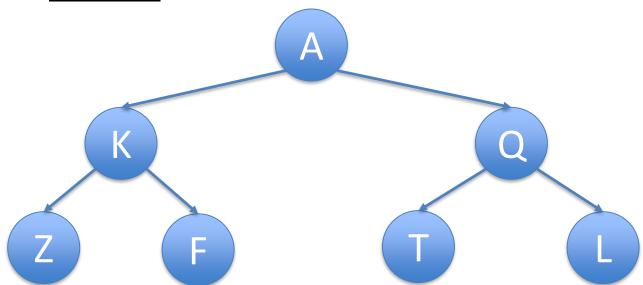
Which are siblings?



If there is a path between node A and node Z:

Z is a <u>descendant</u> of A

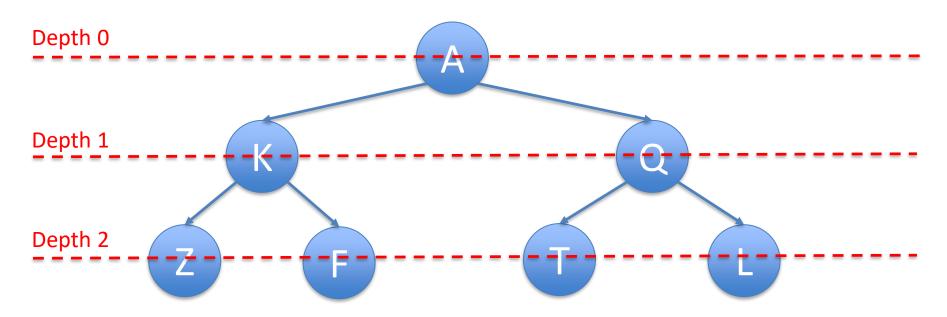
A is an *ancestor* of Z



UMBC

What is a Tree?

• <u>Depth</u> of a node: The number of ancestors excluding itself.

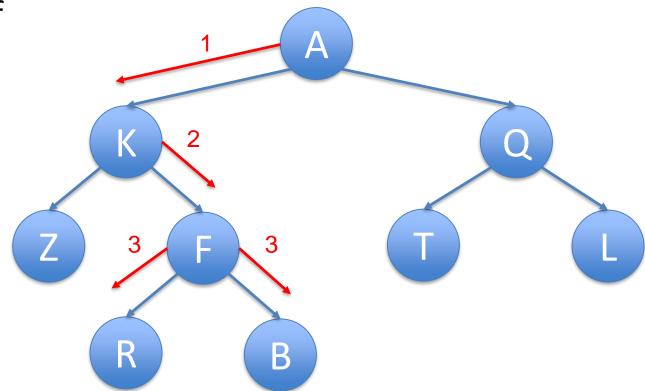


Count number of edges between root and node for depth

<u>Height</u> of a tree: Number of edges between root and farthest leaf

What is the height of this tree?

Height = 3

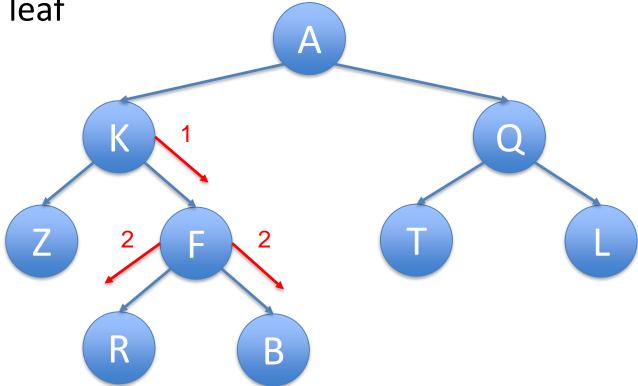


• *Height* of a node: Number of edges between node

and deepest leaf

What is the height of node K?

Height = 2



• Subtree: A tree that consists of a child and the child's descendants Considered recursive

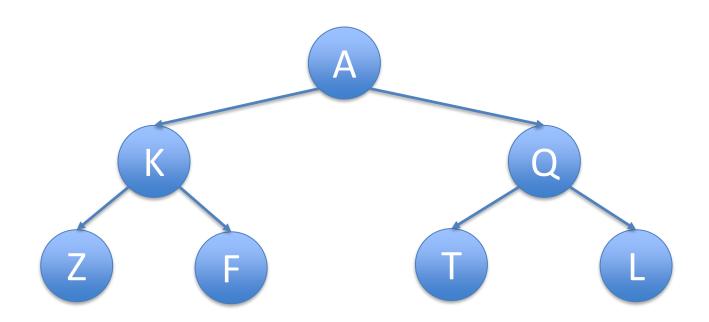
can be viewed as the root of a smaller tree Subtree 1 Subtree 2

because each sub-tree

Includes Q, T, and L

Tree Terminology Practice

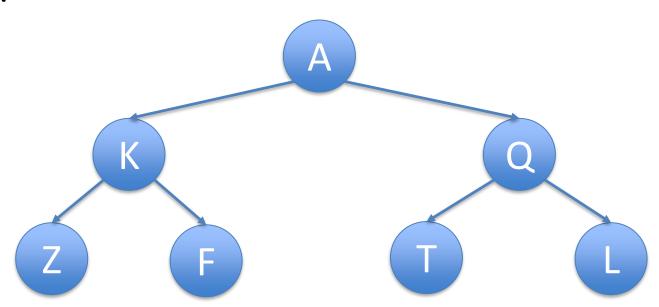
1. How could we describe Z?



Z is a node, a leaf, a sibling of F and a child of K

Tree Terminology Practice

2. How could we describe the relationship between T and L?



T is a sibling of L and they are both leaves

Tree Terminology Summary

- A <u>tree</u> is a collection of nodes(elements)
- Each node may have 0 or more <u>children</u>
 - (Unlike a list, which has 0 or 1 successors)
- Each node has exactly one parent
 - Except the starting / top node, called the <u>root</u>
- Links from a node to its successors are called <u>edges</u> or <u>branches</u>
- Nodes with same parent are <u>siblings</u>
- Nodes with no children are called leaves

Types of Trees

Types of Trees

- Regular Tree
- Regular Binary Tree
- Binary Search Tree (BST)

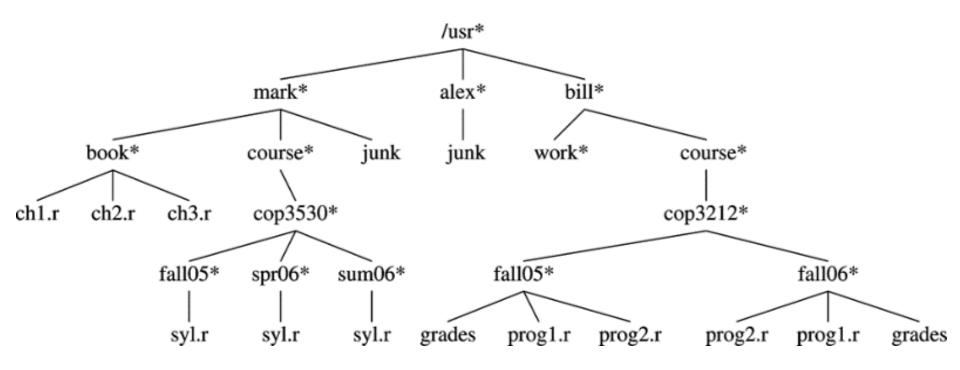
All regular binary trees are also regular trees.

All binary search trees (BST) are also regular binary trees.

UMBC

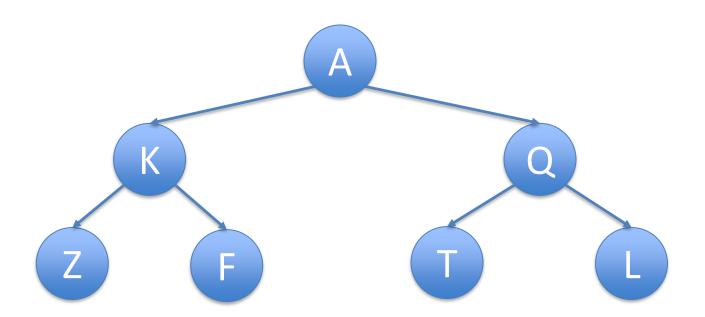
Regular (Non-binary) Tree

Many links to many children



Regular Binary Tree

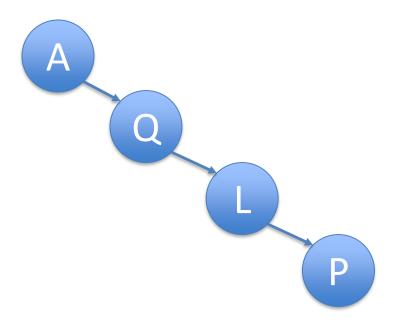
No node can have more than two children.



Average depth is $O(\sqrt{n})$

Regular Binary Tree

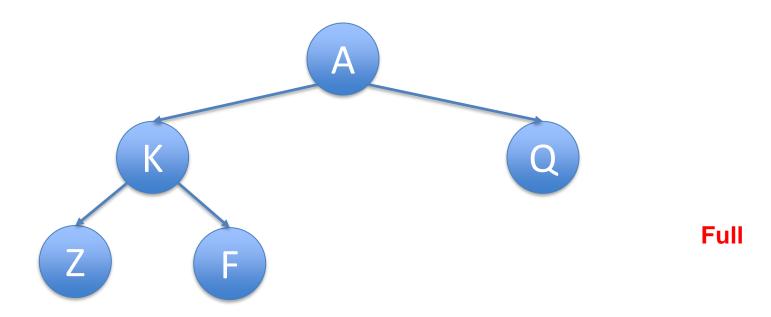
No node can have more than two children.



Worst scenario depth is O(n-1)

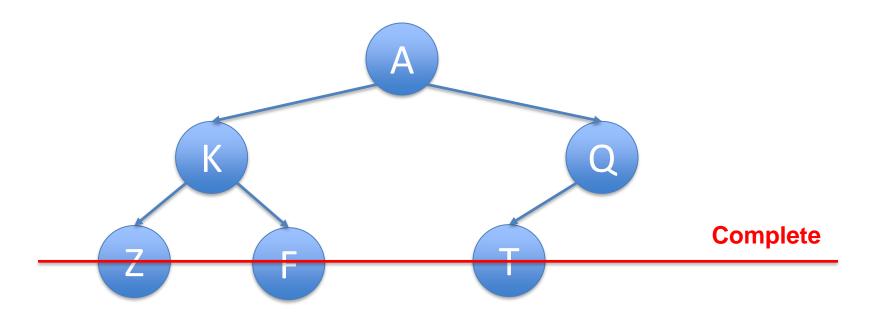
Full Binary Tree

 A binary tree is <u>full</u> if all nodes have exactly 0 or 2 child nodes



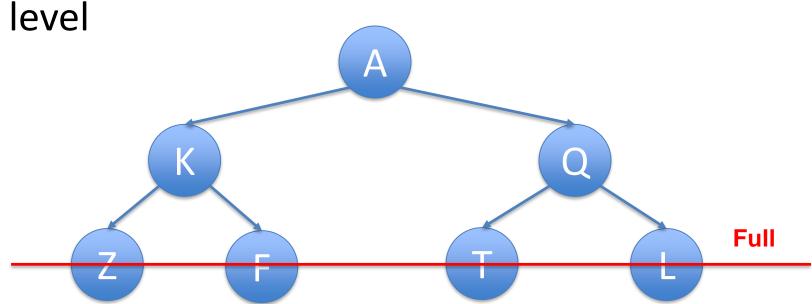
Complete Binary Tree

- A binary tree is *complete* if:
 - Every level but the last must be full
 - All leaves are as far to the left as possible



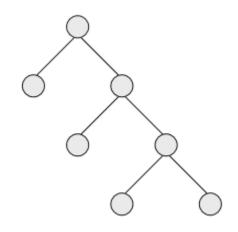
Perfect Binary Tree

 A binary tree is <u>perfect</u> if all interior nodes have 2 children and all leaves are at the same

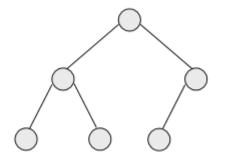


Complete & Full Binary Trees

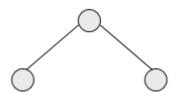
• Is each tree full, complete, neither, or both?



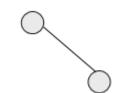
Full, but not complete



Complete, but not full



Full and complete ("perfect")



Neither full nor complete

Binary Search Tree (BST)

- A binary search tree (BST) or ordered binary tree is a type of binary tree where the nodes are arranged in order:
 - For each node, all elements in its left subtree are less than the node (<)
 - All the elements in its right subtree are greater than the node (>)

BSTs Next Class!

Other Binary Tree Information

- Trees are <u>SHALLOW</u> they can hold many nodes with very few levels
- A height of 19 can hold 1,048,575 nodes

- 2(height+1) -1 = How many TOTAL nodes can be held by this tree
 - Can also be expressed as 2^(depth+1) 1

Tree Implementations

Tree Implementation

- There are two ways to construct trees
 - Linked Lists
 - Use links to connect to the other nodes in the tree
 - Array (K-ary)
 - Can only use if we know the MAXIMUM number of children allowed

K-ary Trees (also called M-ary)

- "k" is the number of children (links)
- Built as an array of nodes
- Will only work if we know the MAXIMUM number of children
- Empty spots in the array to denote a missing node
- Useful in coding since we can dictate the number of nodes we want
 - Also since there is a formula to calculate the node's kids
- Child and grandchild index and corresponding items can be found in constant time.

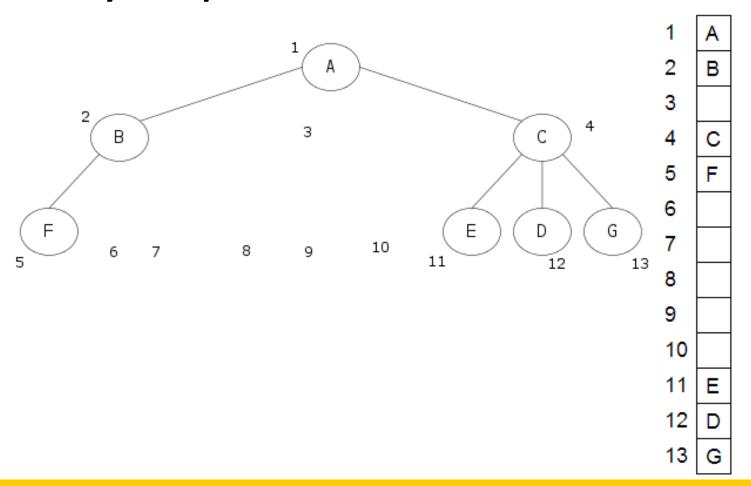
K-ary Trees

- A k-ary tree is a tree in which the children of a node appear at distinct index positions in 0..k-1
- This means the maximum number of children for a node is k

K-ary Trees

- Some k-ary trees have special names
 - 2-ary trees are called binary trees
 - 3-ary trees are called **trinary trees** or **ternary** trees
 - 1-ary trees are called lists

Array Representation Of A Tree



Array Representation Of A Tree

- For k-ary trees, with first node=1:
 - parent(i) = (i 2) / k + 1 (0-origin: (i 1) / k) for binary: i / 2
 - child(i) = k(i-1) + 1 + j(0-origin: k*i+j+1)
- For binary trees, especially simple:
 - parent(i) = i/2, child(i) = 2i, 2i+1

Tree Traversals

Traversals of Binary Trees

- To iterate over and process the nodes of a tree
 - We walk the tree and visit the nodes in order
 - This process is called <u>tree traversal</u>
- Three kinds of binary tree traversal:
 - <u>Pre</u>order
 - <u>In</u>order
 - <u>Post</u>order

UMBC

Traversals of Binary Trees

- Preorder: Visit root, traverse left, traverse right
- Inorder: Traverse left, visit root, traverse right
- Postorder: Traverse left, traverse right, visit root

Algorithm for Preorder Traversal

- 1. if the tree is empty
- 2. Return
- 3. Visit the root.
- 4. Preorder traverse the left subtree.
- 5. Preorder traverse the right subtree.

Algorithm for Inorder Traversal

- 1. if the tree is empty
- 2. Return
- 3. Inorder traverse the left subtree.
- 4. Visit the root.
- 5. Inorder traverse the right subtree.

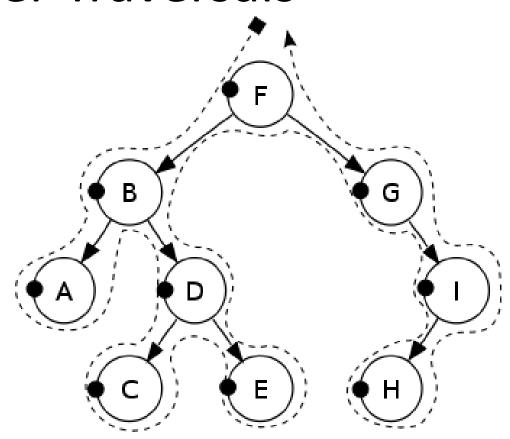
Algorithm for Postorder Traversal

- 1. if the tree is empty
- 2. Return
- 3. Postorder traverse the left subtree.
- 4. Postorder traverse the right subtree.
- 5. Visit the root.

Preorder Traversals

Preorder: F, B, A, D, C, E, G, I, H

Display a node's data as soon as you see it

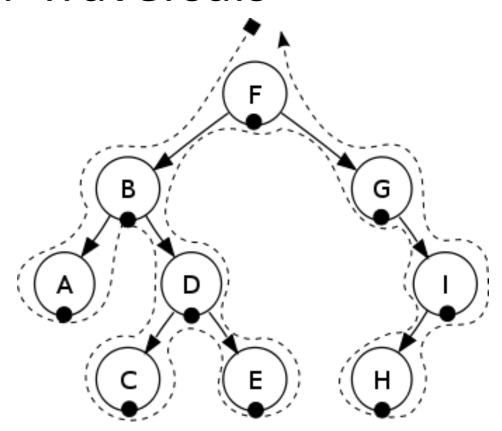


- Display the data part of root element (or current element)
- Traverse the left subtree by recursively calling the pre-order function.
- Traverse the right subtree by recursively calling the pre-order function.

Inorder Traversals

Inorder: A, B, C, D, E, F, G, H, I

Display the nodes in order (sort of from left to right, with the lower nodes first)

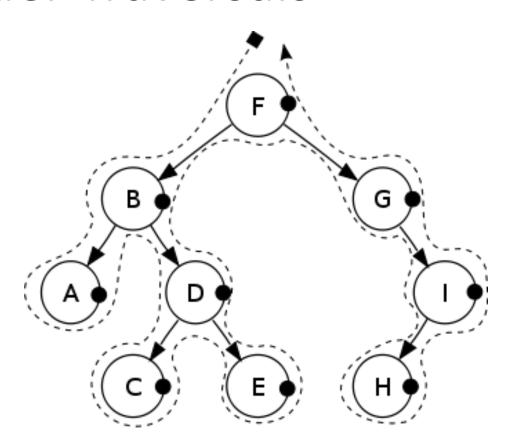


- 1. Traverse the left subtree by recursively calling the in-order function
- 2. Display the data part of root element (or current element)
- 3. Traverse the right subtree by recursively calling the in-order function

Postorder Traversals

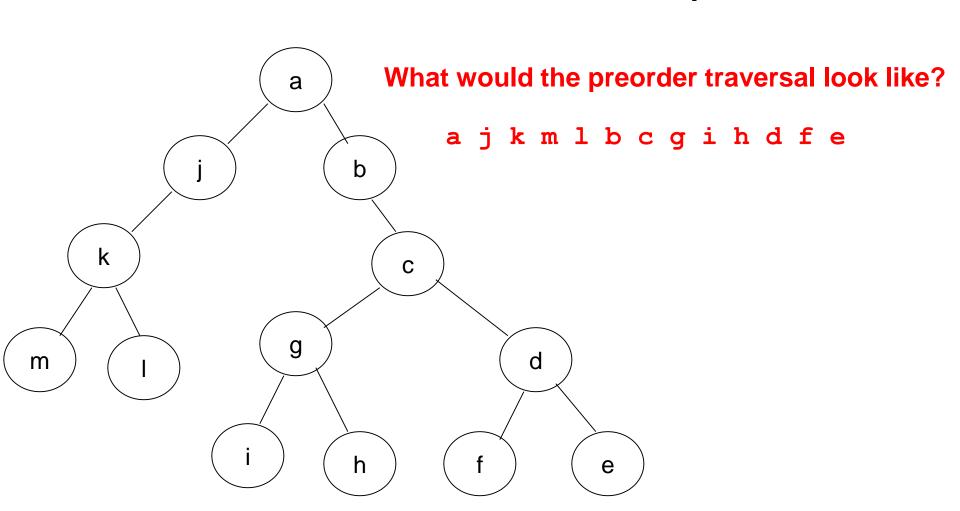
Postorder: A, C, E, D, B, H, I, G, F

Display a node's data the last time you see it

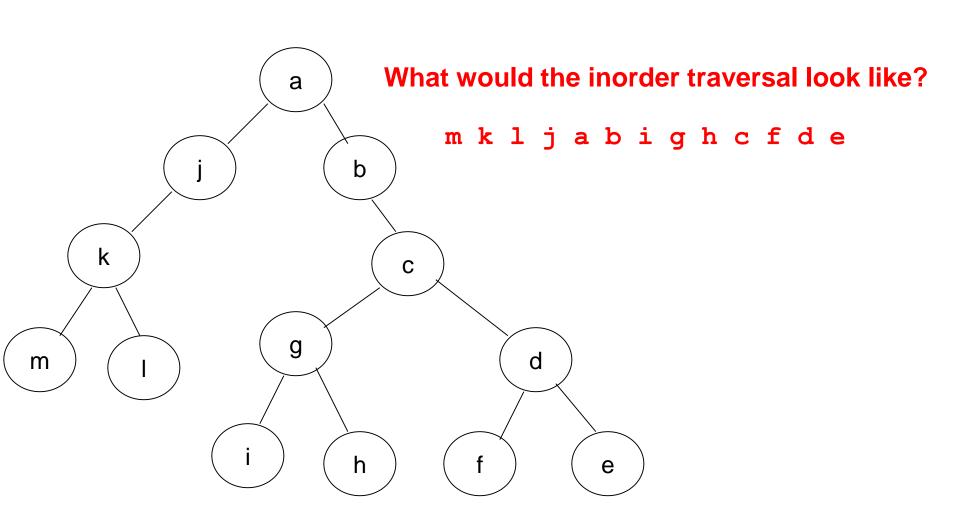


- 1. Traverse the left subtree by recursively calling the post-order function.
- 2. Traverse the right subtree by recursively calling the post-order function.
- 3. Display the data part of root element (or current element).

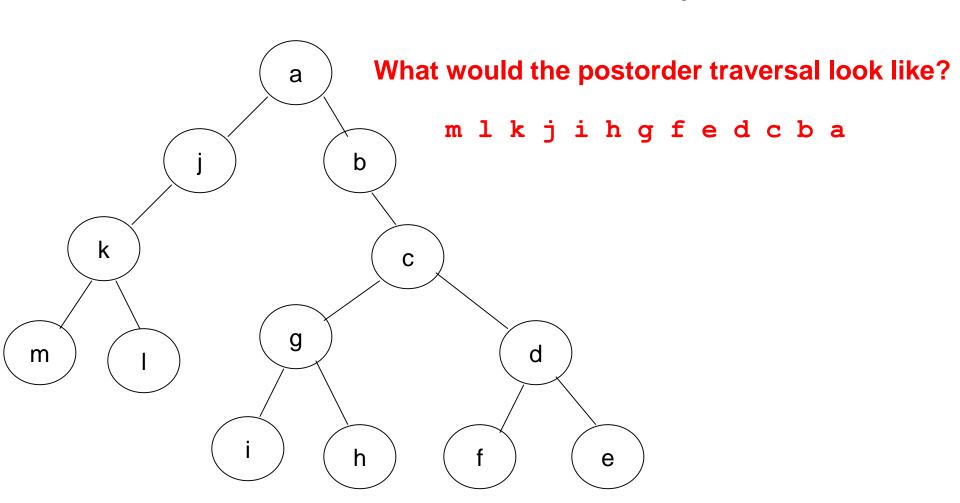
Tree Traversal Example



Tree Traversal Example



Tree Traversal Example



Preorder Traversals

```
preorder (Node t)
                           Preorder
   if (t == null)
                            NLR
      return;
   visit (t.value());
   preorder (t.lchild());
   preorder (t.rchild());
} // preorder
```

Inorder Traversals

```
inorder (Node t)
                           Inorder
   if (t == null)
                            LNR
      return;
   inorder (t.lchild());
   visit (t.value());
   inorder (t.rchild());
} // inorder
```

Postorder Traversals

```
postorder (Node t)
                           Postorder
   if (t == null)
                            LRN
      return;
   postorder (t.lchild());
   postorder (t.rchild());
   visit (t.value());
} // postorder
```

Another Tree Traversal

- A <u>level-order</u> walk iterates over all the nodes level-by-level, starting from the root (level 0) this is known as a <u>breadth-first search</u>
- Nodes are traversed level by level
 - Root node is visited first
 - Followed by its direct child nodes
 - Followed by its grandchild nodes
 - Until all nodes in the tree have been traversed

Tree Functions

Binary Tree Functions

```
Node Setup
void insert( x )
                            --> Insert x
void remove( x )
                            --> Remove x
                            --> Return true if x is present
boolean contains (x)
Comparable findMin()
                            --> Return smallest item
Comparable findMax()
                            --> Return largest item
                            --> Return true if empty; else false
boolean isEmpty( )
                            --> Remove all items
void makeEmpty( )
                             --> Print tree in sorted order
void printTree( )
```


Generic Struct for Binary Tree

```
private struct BinaryNode
    Comparable element; // Data in the node
    BinaryNode *left; // Left child
    BinaryNode *right; // Right child
    // Constructors
    BinaryNode (const Comparable & theElement,
              BinaryNode *lt, BinaryNode *rt )
       element = theElement;
        left = lt;
        right = rt;
```