
CMSC 341

Lecture 6 – STL, Stacks, & Queues

Based on slides by Lupoli, Dixon & Gibson at UMBC

Templates

2

Common Uses for Templates

 Some common algorithms that easily

lend themselves to templates:

 Swap

 … what else?

 Sort

 Search

 FindMax

 FindMin

UMBC CMSC 341 Templates 3

maxx() Overloaded Example

float maxx (const float a, const float b);

int maxx (const int a, const int b);

Rational maxx (const Rational& a, const Rational& b);

myType maxx (const myType& a, const myType& b);

 Code for each looks the same…
if (a < b)

return b;

else

return a;

UMBC CMSC 341 Templates 4

we want to reuse this
code for all types

What are Templates?

 Templates let us create functions and classes

that can work on “generic” input and types

 This means that functions like
maxx() only need to be written once

 And can then be used for almost anything

UMBC CMSC 341 Templates 5

Indicating Templates

 To let the compiler know you are going to

apply a template, use the following:

template <class T>

 What this line means overall is that we plan
to use “T” in place of a data type

 e.g., int, char, myClass, etc.

 This template prefix needs to be used before

function declarations and function definitions

UMBC CMSC 341 Templates 6

Template Example

UMBC CMSC 341 Templates 7

Function Template
template <class T>

T maxx (const T& a, const T& b)

{

if (a < b)

return b;

else

return a;

}

Compiler generates code based on the argument type
cout << maxx(4, 7) << endl;

Generates the following:
int maxx (const int& a, const int& b)

{

if (a < b)

return b;

else

return a;

}

Notice how ‘T’ is

mapped to ‘int’

everywhere in the

function…

Using Templates

 When we call these templated functions,

nothing looks different:

SwapVals(intOne, intTwo);

SwapVals(charOne, charTwo);

SwapVals(strOne, strTwo);

SwapVals(myClassA, myClassB);

UMBC CMSC 341 Templates 8

Templating Classes

 Want to be able to define classes that work with

various types of objects

 Shouldn’t matter what kind of object it stores

 Generic “collections” of objects

 Linked List

 Stack

 Vector

 Binary Tree (341)

 Hash Table (341)

UMBC CMSC 341 Templates 9

Making a Templated Class

 Three key steps:

 Add template line

 Before class declaration

 Add template line

 Before each method in implementation

 Change class name to include template

 Add <T> after the class name wherever it appears

UMBC CMSC 341 Templates 10

Example: Templated Node

template <class T>

class Node

{

public:

Node(const T& data);

const T& GetData();

void SetData(const T& data);

Node<T>* GetNext();

void SetNext(Node<T>* next);

private:

T m_data;

Node<T>* m_next;

};

template <class T>

Node<T>::Node(const T& data)

{

m_data = data;

m_next = NULL;

}

UMBC CMSC 341 Templates 11

template <class T>

const T& Node<T>::GetData()

{

return m_data;

}

template <class T>

void Node<T>::SetData(const T& data)

{

m_data = data;

}

template <class T>

Node<T>* Node<T>::GetNext()

{

return m_next;

}

template <class T>

void Node<T>::SetNext(Node<T>* next)

{

m_next = next;

}

Example: Templated Stack

template <class T>

class Stack

{

public:

Stack();

void Push(const T& item);

T Pop();

private:

Node<T>* m_head;

};

template <class T>

Stack<T>::Stack()

{

m_head = NULL;

}

UMBC CMSC 341 Templates 12

template <class T>

void Stack<T>::Push(const T& item)

{

Node<T>* newNode = new Node<T>(item);

newNode->SetNext(m_head);

m_head = newNode;

}

template <class T>

T Stack<T>::Pop()

{

T data = m_head->GetData();

Node<T>* temp = m_head;

m_head = temp->GetNext();

delete temp;

return data;

}

Using the Templated Stack

int main()

{

Stack<int> nums;

Stack<string> names;

nums.Push(7);

nums.Push(8);

cout << nums.Pop() << endl;

cout << nums.Pop() << endl;

names.Push("Freeman");

names.Push("Hrabowski");

cout << names.Pop() << endl;

cout << names.Pop() << endl;

return 0;

}

UMBC CMSC 341 Templates 13

Multiple Templated Types

14

Example: Pair
template < class Key, class Data >

class Pair

{

public:

Pair();

~Pair();

Pair(const Pair<Key, Data>& pair);

bool operator== (const Pair<Key, Data>& rhs) const;

private:

Key m_key;

Data m_data;

};

// Pair's equality operator

template <class K, class D>

bool Pair<K, D>::operator== (const Pair<K,D>& rhs) const

{

return m_key == rhs.m_key && m_data == rhs.m_data;

}

UMBC CMSC 341 Templates 15

Using the Pair Template

int main ()

{

string name1 = "Thunder";

string name2 = "Jasper";

// use pair to associate a string and its length

Pair< int, string > dog (name1.length(), name1);

Pair< int, string > cat (name2.length(), name2);

// check for equality

if (dog == cat)

cout << "All animals are equal!" << endl;

return 0;

}

UMBC CMSC 341 Templates 16

Using the Pair Template (Example 2)

int main ()

{

// use Pair for names and Employee object

Employee john, mark;

Pair< string, Employee > boss ("John", john);

Pair< string, Employee > worker("Mark", mark);

if (boss == worker)

cout << "A real small company" << endl;

return 0;

}

UMBC CMSC 341 Templates 17

Miscellaneous Extra Template Info

18

Templates as Parameters

 Not much different from a “regular” variable

template <class T>

void Sort (SmartArray<T>& theArray)

{

// code here

}

 Make sure that the behaviors used in the

function are defined for the type you’re using

UMBC CMSC 341 Templates 19

Standard Template Library (STL)

Standard Template Library (STL)

 The Standard Template Library (STL) is a

C++ library of container classes, algorithms,

and iterators

 Provides many of the basic algorithms and

data structures of computer science

From: https://www.sgi.com/tech/stl/stl_introduction.html

Considerations of the STL

 Containers replicate structures very

commonly used in programming.

 Many containers have several member

functions in common, and share

functionalities.

From: http://www.cplusplus.com/reference/stl/

Considerations of the STL

 The decision of which type of container to

use for a specific need depends on:

 the functionality offered by the container

 the efficiency of some of its members

(complexity)

From: http://www.cplusplus.com/reference/stl/

Types of Containers

 Sequence containers

 Array, vector, deque, forward_list, list

 Container adapters

 Stacks, queues, priority_queues

 Associative containers (and the unordered)

 Set, multiset, map, multimap

Focus of Today

Standard Containers

 Sequences:

 vector: Dynamic array of variables, struct or

objects. Insert data at the end.

 list: Linked list of variables, struct or objects.

Insert/remove anywhere.

 Sequence means order does matter

Container Adapters

 Container adapters:

 stack LIFO

 queue FIFO

 adapter means VERY LIMITED functionality

Will we use STL?

 Today we are going to talk about the ways

that we can implement stacks and queues

 3 Ways to Create a Stack or Queue

 Create a static stack or queue using an array

 Create a dynamic stack or queue using a linked

list

 Create a stack or queue using the STL

Stacks

Stacks

Introduction to Stacks

 A stack is a data structure that stores and

retrieves items in a last-in-first-out (LIFO)

manner.

Applications of Stacks

 Computer systems use stacks during a

program’s execution to store function return

addresses, local variables, etc.

 Some calculators use stacks for performing

mathematical operations.

Implementations of Stacks

 Static Stacks

 Fixed size

 Can be implemented with an array

 Dynamic Stacks

 Grow in size as needed

 Can be implemented with a linked list

 Using STL (dynamic)

Stack Operations

 Push

 causes a value to be stored in (pushed onto) the

stack

 Pop

 retrieves and removes a value from the stack

The Push Operation

 Suppose we have an empty integer stack
that is capable of holding a maximum of three
values. With that stack we execute the
following push operations.

push(5);

push(10);

push(15);

The Push Operation

The state of the stack after each of the push operations:

The Pop Operation

 Now, suppose we execute three

consecutive pop operations on the same

stack:

Other Stack Operations

 isFull(): A Boolean operation needed for

static stacks. Returns true if the stack is full.

Otherwise, returns false.

 isEmpty(): A Boolean operation needed for

all stacks. Returns true if the stack is empty.

Otherwise, returns false.

Static Stacks

Static Stacks

 A static stack is built on an array

 As we are using an array, we must

specify the starting size of the stack

 The stack may become full if the array

becomes full

Member Variables for Stacks

 Three major variables:

 Pointer Creates a pointer to stack

 size Tracks elements in stack

 top Tracks top element in stack

Member Functions for Stacks

 CONSTRUCTOR Creates a stack

 DESTRUCTOR Deletes a stack

 push() Pushes element to stack

 pop() Pops element from stack

 isEmpty() Is the stack empty?

 isFull() Is the stack full?

Static Stack Definition

#ifndef INTSTACK_H

#define INTSTACK_H

class IntStack

{

private:

int *stackArray;

int stackSize;

int top;

public:

IntStack(int);

~IntStack()

{delete[] stackArray;}

void push(int);

void pop(int &);

bool isFull();

bool isEmpty();

};

#endif

pointer

size()

top()

Constructor

Destructor

push()

pop()

isFull()

isEmpty()

Member Variables

Member

Functions

Dynamic Stacks

Dynamic Stacks

 A dynamic stack is built on a linked list instead of

an array.

 A linked list-based stack offers two advantages

over an array-based stack.

 No need to specify the starting size of the stack. A

dynamic stack simply starts as an empty linked list,

and then expands by one node each time a value is

pushed.

 A dynamic stack will never be full, as long as the

system has enough free memory.

Member Variables for Dynamic Stacks

 Parts:

 Linked list Linked list for stack (nodes)

 size Tracks elements in stack

Member Functions for Dynamic Stacks

 CONSTRUCTOR Creates a stack

 DESTRUCTOR Deletes a stack

 push() Pushes element to stack

 pop() Pops element from stack

 isEmpty() Is the stack empty?

 top() What is the top element?

What happened to isFull()?

Dynamic Stack

class DynIntStack

{

private:

struct StackNode

{

int value;

StackNode *next;

};

StackNode *top;

public:

DynIntStack(void)

{ top = NULL; }

void push(int);

void pop(int &);

const Elem& top() const throw(StackEmpty);

bool isEmpty(void);

};

Linked list

of elements

value

top

Constructor

push()

pop()

isEmpty()

Member

Variables

Member

Functions

pointer

top()

Common Problems with Stacks

 Stack underflow

 no elements in the stack, and you tried to pop

 Stack overflow

 maximum elements in stack, and tried to add

another

 not an issue using STL or a dynamic

implementation

Queues

Introduction to the Queue

 Like a stack, a queue is a data structure that

holds a sequence of elements.

 A queue, however, provides access to its

elements in first-in, first-out (FIFO) order.

 The elements in a queue are processed like

customers standing in a line: the first customer to

get in line is the first one to be served (and leave

the line).

Example Applications of Queues

 In a multi-user system, a queue is used to hold

print jobs submitted by users, while the printer

services those jobs one at a time.

 Communications software also uses queues to

hold information received over networks.

Sometimes information is transmitted to a

system faster than it can be processed, so it is

placed in a queue when it is received.

Implementations of Queues

 Static Queues

 Fixed size

 Can be implemented with an array

 Dynamic Queues

 Grow in size as needed

 Can be implemented with a linked list

 Using STL (dynamic)

Just like

stacks!

Queue Operations

 Think of queues as having a front and a

rear.

 rear: position where elements are added

 front: position from which elements are
removed

Queue Operations

 The two primary queue operations are

enqueuing and dequeuing.

 To enqueue means to insert an element at

the rear of a queue.

 To dequeue means to remove an element

from the front of a queue.

Queue Operations

 Suppose we have an empty static integer
queue that is capable of holding a maximum
of three values. With that queue we execute
the following enqueue operations.

Enqueue(3);

Enqueue(6);

Enqueue(9);

Queue Operations - Enqueue

 The state of the queue

after each of the

enqueue operations.

Queue Operations - Dequeue

 Now let's see how
dequeue operations are
performed. The figure
on the right shows the
state of the queue after
each of three
consecutive dequeue
operations

 An important remark

 After each dequeue,
remaining items shift
toward the front of the
queue.

3

removed

6

removed

9

removed

Efficiency Problem of Dequeue & Solution

 Shifting after each dequeue operation

causes inefficiency.

 Solution
 Let front index move as elements are

removed

 let rear index "wrap around" to the
beginning of array, treating array as
circular

 Similarly, the front index as well

 Yields more complex enqueue, dequeue
code, but more efficient

 Let's see the trace of this method on the
board for the enqueue and dequeue
operations given on the right (queue size
is 3)

Enqueue(3);

Enqueue(6);

Enqueue(9);

Dequeue();

Dequeue();

Enqueue(12);

Dequeue();

Implementation of a Static Queue

 The previous discussion was about static

arrays

 Container is an array

 Class Implementation for a static integer

queue

 Member functions

 enqueue()

 dequeue()

 isEmpty()

 isFull()

 clear()

Member Variables for Static Queues

 Five major variables:

 queueArray Creates a pointer to queue

 queueSize Tracks capacity of queue

 numItems Tracks elements in queue

 front

 rear

The variables front and rear are used when

our queue “rotates,” as discussed earlier

Member Functions for Queues

 CONSTRUCTOR Creates a queue

 DESTRUCTOR Deletes a queue

 enqueue() Adds element to queue

 dequeue() Removes element from

queue

 isEmpty() Is the queue empty?

 isFull() Is the queue full?

 clear() Empties queue

Static Queue Example

#ifndef INTQUEUE_H

#define INTQUEUE_H

class IntQueue

{

private:

int *queueArray;

int queueSize;

int front;

int rear;

int numItems;

public:

IntQueue(int);

void enqueue(int);

void dequeue(int &);

bool isEmpty() const;

bool isFull() const;

void clear();

};

#endif

pointer

queueSize()

front

Constructor

enqueue()

dequeue()

isFull()

isEmpty()

Member

Variables

Member

Functions

rear

numItems

clear()

STL Queues

STL Queues

 Another way to implement a queue is by

using the standard library

 An STL queue leverages the pre-existing

library to access the data structure

 Much easier to use

STL

Queue

Example

#include <iostream> // std::cin, std::cout

#include <queue> // std::queue

using namespace std;

int main ()

{

std::queue<int> myqueue;

int myint;

std::cout << "Please enter some integers (enter 0 to

end):\n";

do {

std::cin >> myint;

myqueue.push (myint);

} while (myint);

std::cout << "myqueue contains: ";

while (!myqueue.empty())

{

std::cout << ' ' << myqueue.front();

myqueue.pop();

}

std::cout << '\n';

return 0;

}

Iterators

Iterators

 An iterator in C++ is a concept that refines

the iterator design pattern into a specific set

of behaviors that work well with the C++

standard library.

 The standard library uses iterators to expose

elements in a range, in a consistent, familiar

way.

From: https://cise.ufl.edu/class/cop3530fa10/ITERATORS.ppt

Iterators

 Anything that implements this set of

behaviors is called an iterator.

 Allows Generic Algorithms

 Easy to implement your own iterators and have

them integrate smoothly with the standard library.

From: https://cise.ufl.edu/class/cop3530fa10/ITERATORS.ppt

Encapsulation

 Encapsulation is a form of information hiding

and abstraction

 Data and functions that act on that data are

located in the same place (inside a class)

 Ideal: separate the interface/implementation

so that you can use the former without any

knowledge of the latter

Iterator Pattern

 The iterator pattern describes a set of

requirements that allows a consumer of some

data structure to access elements in it with a

familiar interface, regardless of the internal

details of the data structure.

 The C++ standard library containers (data

structures) supply iterator interfaces, which

makes them convenient to use and

interoperable with the standard algorithms.

From: https://cise.ufl.edu/class/cop3530fa10/ITERATORS.ppt

Iterators

 The iterator pattern defines a handful of

simple requirements. An iterator should allow

its consumers to:

 Move to the beginning of the range of elements

 Advance to the next element

 Return the value referred to, often called the

referent

 Interrogate it to see if it is at the end of the range

From: https://cise.ufl.edu/class/cop3530fa10/ITERATORS.ppt

Using Iterators

 begin() returns a bidirectional iterator that

represents the first element of the container.

 end() returns an iterator that represents the

end of the elements (not the "last" element)

 The end is a position behind the last element

 Defining it this way gives us a simple ending criteria

for our loops (as we'll see) and it avoids special

handling for empty ranges of elements

Iterators in C++

 The C++ standard library provides iterators for the standard
containers (for example, list, vector, deque, and so on) and
a few other noncontainer classes. You can use an iterator
to print the contents of, for example, a vector like this:

vector<int> v;

// fill up v with data...

for (vector<int>::iterator it = v.begin(); it != v.end(); ++it)
{

cout << *it << endl;

}

From: https://cise.ufl.edu/class/cop3530fa10/ITERATORS.ppt

C++ Iterators

 C++ iterators permit the same operations as the

iterator pattern requires, but not literally.

 It's all there: move to the beginning, advance to

the next element, get the referent, and test to

see if you're at the end.

 In addition, different categories of iterators

support additional operations, such as moving

backward with the decrement operators (--it or it-

-), or advancing forward or backward by a

specified number of elements.

From: https://cise.ufl.edu/class/cop3530fa10/ITERATORS.ppt

Iterator Types

 5 main types of Iterators in C++

 Read only

 Write only

 Forward Iterator

 Reverse or Backwards Iterator

 Random Access Iterator

 With exception of Read and Write, as we go down every

iterator is a superset of the previous one in terms of

functionality.

 Common e.g. -> Pointers are a type of random access

iterators.

From: https://cise.ufl.edu/class/cop3530fa10/ITERATORS.ppt

Forward Iterators

 Essentially only need to traverse over

elements

 However to make STL – compliant, or to be

able to interface with STL Algorithms, an

iterator over a data structure needs to

implement the following functionality

From: https://cise.ufl.edu/class/cop3530fa10/ITERATORS.ppt

Forward Iterators

 Required Functionality (Forward Iterator)

 Assignment

 Tests for Equality

 Forward advancement using the prefix and

postfix forms of the ++ operator

 dereferencing that returns an rvalue (value) or

an lvalue (address)

