
CMSC 341

Lecture 6 – STL, Stacks, & Queues

Based on slides by Lupoli, Dixon & Gibson at UMBC

Templates

2

Common Uses for Templates

 Some common algorithms that easily

lend themselves to templates:

 Swap

 … what else?

 Sort

 Search

 FindMax

 FindMin

UMBC CMSC 341 Templates 3

maxx() Overloaded Example

float maxx (const float a, const float b);

int maxx (const int a, const int b);

Rational maxx (const Rational& a, const Rational& b);

myType maxx (const myType& a, const myType& b);

 Code for each looks the same…
if (a < b)

return b;

else

return a;

UMBC CMSC 341 Templates 4

we want to reuse this
code for all types

What are Templates?

 Templates let us create functions and classes

that can work on “generic” input and types

 This means that functions like
maxx() only need to be written once

 And can then be used for almost anything

UMBC CMSC 341 Templates 5

Indicating Templates

 To let the compiler know you are going to

apply a template, use the following:

template <class T>

 What this line means overall is that we plan
to use “T” in place of a data type

 e.g., int, char, myClass, etc.

 This template prefix needs to be used before

function declarations and function definitions

UMBC CMSC 341 Templates 6

Template Example

UMBC CMSC 341 Templates 7

Function Template
template <class T>

T maxx (const T& a, const T& b)

{

if (a < b)

return b;

else

return a;

}

Compiler generates code based on the argument type
cout << maxx(4, 7) << endl;

Generates the following:
int maxx (const int& a, const int& b)

{

if (a < b)

return b;

else

return a;

}

Notice how ‘T’ is

mapped to ‘int’

everywhere in the

function…

Using Templates

 When we call these templated functions,

nothing looks different:

SwapVals(intOne, intTwo);

SwapVals(charOne, charTwo);

SwapVals(strOne, strTwo);

SwapVals(myClassA, myClassB);

UMBC CMSC 341 Templates 8

Templating Classes

 Want to be able to define classes that work with

various types of objects

 Shouldn’t matter what kind of object it stores

 Generic “collections” of objects

 Linked List

 Stack

 Vector

 Binary Tree (341)

 Hash Table (341)

UMBC CMSC 341 Templates 9

Making a Templated Class

 Three key steps:

 Add template line

 Before class declaration

 Add template line

 Before each method in implementation

 Change class name to include template

 Add <T> after the class name wherever it appears

UMBC CMSC 341 Templates 10

Example: Templated Node

template <class T>

class Node

{

public:

Node(const T& data);

const T& GetData();

void SetData(const T& data);

Node<T>* GetNext();

void SetNext(Node<T>* next);

private:

T m_data;

Node<T>* m_next;

};

template <class T>

Node<T>::Node(const T& data)

{

m_data = data;

m_next = NULL;

}

UMBC CMSC 341 Templates 11

template <class T>

const T& Node<T>::GetData()

{

return m_data;

}

template <class T>

void Node<T>::SetData(const T& data)

{

m_data = data;

}

template <class T>

Node<T>* Node<T>::GetNext()

{

return m_next;

}

template <class T>

void Node<T>::SetNext(Node<T>* next)

{

m_next = next;

}

Example: Templated Stack

template <class T>

class Stack

{

public:

Stack();

void Push(const T& item);

T Pop();

private:

Node<T>* m_head;

};

template <class T>

Stack<T>::Stack()

{

m_head = NULL;

}

UMBC CMSC 341 Templates 12

template <class T>

void Stack<T>::Push(const T& item)

{

Node<T>* newNode = new Node<T>(item);

newNode->SetNext(m_head);

m_head = newNode;

}

template <class T>

T Stack<T>::Pop()

{

T data = m_head->GetData();

Node<T>* temp = m_head;

m_head = temp->GetNext();

delete temp;

return data;

}

Using the Templated Stack

int main()

{

Stack<int> nums;

Stack<string> names;

nums.Push(7);

nums.Push(8);

cout << nums.Pop() << endl;

cout << nums.Pop() << endl;

names.Push("Freeman");

names.Push("Hrabowski");

cout << names.Pop() << endl;

cout << names.Pop() << endl;

return 0;

}

UMBC CMSC 341 Templates 13

Multiple Templated Types

14

Example: Pair
template < class Key, class Data >

class Pair

{

public:

Pair();

~Pair();

Pair(const Pair<Key, Data>& pair);

bool operator== (const Pair<Key, Data>& rhs) const;

private:

Key m_key;

Data m_data;

};

// Pair's equality operator

template <class K, class D>

bool Pair<K, D>::operator== (const Pair<K,D>& rhs) const

{

return m_key == rhs.m_key && m_data == rhs.m_data;

}

UMBC CMSC 341 Templates 15

Using the Pair Template

int main ()

{

string name1 = "Thunder";

string name2 = "Jasper";

// use pair to associate a string and its length

Pair< int, string > dog (name1.length(), name1);

Pair< int, string > cat (name2.length(), name2);

// check for equality

if (dog == cat)

cout << "All animals are equal!" << endl;

return 0;

}

UMBC CMSC 341 Templates 16

Using the Pair Template (Example 2)

int main ()

{

// use Pair for names and Employee object

Employee john, mark;

Pair< string, Employee > boss ("John", john);

Pair< string, Employee > worker("Mark", mark);

if (boss == worker)

cout << "A real small company" << endl;

return 0;

}

UMBC CMSC 341 Templates 17

Miscellaneous Extra Template Info

18

Templates as Parameters

 Not much different from a “regular” variable

template <class T>

void Sort (SmartArray<T>& theArray)

{

// code here

}

 Make sure that the behaviors used in the

function are defined for the type you’re using

UMBC CMSC 341 Templates 19

Standard Template Library (STL)

Standard Template Library (STL)

 The Standard Template Library (STL) is a

C++ library of container classes, algorithms,

and iterators

 Provides many of the basic algorithms and

data structures of computer science

From: https://www.sgi.com/tech/stl/stl_introduction.html

Considerations of the STL

 Containers replicate structures very

commonly used in programming.

 Many containers have several member

functions in common, and share

functionalities.

From: http://www.cplusplus.com/reference/stl/

Considerations of the STL

 The decision of which type of container to

use for a specific need depends on:

 the functionality offered by the container

 the efficiency of some of its members

(complexity)

From: http://www.cplusplus.com/reference/stl/

Types of Containers

 Sequence containers

 Array, vector, deque, forward_list, list

 Container adapters

 Stacks, queues, priority_queues

 Associative containers (and the unordered)

 Set, multiset, map, multimap

Focus of Today

Standard Containers

 Sequences:

 vector: Dynamic array of variables, struct or

objects. Insert data at the end.

 list: Linked list of variables, struct or objects.

Insert/remove anywhere.

 Sequence means order does matter

Container Adapters

 Container adapters:

 stack LIFO

 queue FIFO

 adapter means VERY LIMITED functionality

Will we use STL?

 Today we are going to talk about the ways

that we can implement stacks and queues

 3 Ways to Create a Stack or Queue

 Create a static stack or queue using an array

 Create a dynamic stack or queue using a linked

list

 Create a stack or queue using the STL

Stacks

Stacks

Introduction to Stacks

 A stack is a data structure that stores and

retrieves items in a last-in-first-out (LIFO)

manner.

Applications of Stacks

 Computer systems use stacks during a

program’s execution to store function return

addresses, local variables, etc.

 Some calculators use stacks for performing

mathematical operations.

Implementations of Stacks

 Static Stacks

 Fixed size

 Can be implemented with an array

 Dynamic Stacks

 Grow in size as needed

 Can be implemented with a linked list

 Using STL (dynamic)

Stack Operations

 Push

 causes a value to be stored in (pushed onto) the

stack

 Pop

 retrieves and removes a value from the stack

The Push Operation

 Suppose we have an empty integer stack
that is capable of holding a maximum of three
values. With that stack we execute the
following push operations.

push(5);

push(10);

push(15);

The Push Operation

The state of the stack after each of the push operations:

The Pop Operation

 Now, suppose we execute three

consecutive pop operations on the same

stack:

Other Stack Operations

 isFull(): A Boolean operation needed for

static stacks. Returns true if the stack is full.

Otherwise, returns false.

 isEmpty(): A Boolean operation needed for

all stacks. Returns true if the stack is empty.

Otherwise, returns false.

Static Stacks

Static Stacks

 A static stack is built on an array

 As we are using an array, we must

specify the starting size of the stack

 The stack may become full if the array

becomes full

Member Variables for Stacks

 Three major variables:

 Pointer Creates a pointer to stack

 size Tracks elements in stack

 top Tracks top element in stack

Member Functions for Stacks

 CONSTRUCTOR Creates a stack

 DESTRUCTOR Deletes a stack

 push() Pushes element to stack

 pop() Pops element from stack

 isEmpty() Is the stack empty?

 isFull() Is the stack full?

Static Stack Definition

#ifndef INTSTACK_H

#define INTSTACK_H

class IntStack

{

private:

int *stackArray;

int stackSize;

int top;

public:

IntStack(int);

~IntStack()

{delete[] stackArray;}

void push(int);

void pop(int &);

bool isFull();

bool isEmpty();

};

#endif

pointer

size()

top()

Constructor

Destructor

push()

pop()

isFull()

isEmpty()

Member Variables

Member

Functions

Dynamic Stacks

Dynamic Stacks

 A dynamic stack is built on a linked list instead of

an array.

 A linked list-based stack offers two advantages

over an array-based stack.

 No need to specify the starting size of the stack. A

dynamic stack simply starts as an empty linked list,

and then expands by one node each time a value is

pushed.

 A dynamic stack will never be full, as long as the

system has enough free memory.

Member Variables for Dynamic Stacks

 Parts:

 Linked list Linked list for stack (nodes)

 size Tracks elements in stack

Member Functions for Dynamic Stacks

 CONSTRUCTOR Creates a stack

 DESTRUCTOR Deletes a stack

 push() Pushes element to stack

 pop() Pops element from stack

 isEmpty() Is the stack empty?

 top() What is the top element?

What happened to isFull()?

Dynamic Stack

class DynIntStack

{

private:

struct StackNode

{

int value;

StackNode *next;

};

StackNode *top;

public:

DynIntStack(void)

{ top = NULL; }

void push(int);

void pop(int &);

const Elem& top() const throw(StackEmpty);

bool isEmpty(void);

};

Linked list

of elements

value

top

Constructor

push()

pop()

isEmpty()

Member

Variables

Member

Functions

pointer

top()

Common Problems with Stacks

 Stack underflow

 no elements in the stack, and you tried to pop

 Stack overflow

 maximum elements in stack, and tried to add

another

 not an issue using STL or a dynamic

implementation

Queues

Introduction to the Queue

 Like a stack, a queue is a data structure that

holds a sequence of elements.

 A queue, however, provides access to its

elements in first-in, first-out (FIFO) order.

 The elements in a queue are processed like

customers standing in a line: the first customer to

get in line is the first one to be served (and leave

the line).

Example Applications of Queues

 In a multi-user system, a queue is used to hold

print jobs submitted by users, while the printer

services those jobs one at a time.

 Communications software also uses queues to

hold information received over networks.

Sometimes information is transmitted to a

system faster than it can be processed, so it is

placed in a queue when it is received.

Implementations of Queues

 Static Queues

 Fixed size

 Can be implemented with an array

 Dynamic Queues

 Grow in size as needed

 Can be implemented with a linked list

 Using STL (dynamic)

Just like

stacks!

Queue Operations

 Think of queues as having a front and a

rear.

 rear: position where elements are added

 front: position from which elements are
removed

Queue Operations

 The two primary queue operations are

enqueuing and dequeuing.

 To enqueue means to insert an element at

the rear of a queue.

 To dequeue means to remove an element

from the front of a queue.

Queue Operations

 Suppose we have an empty static integer
queue that is capable of holding a maximum
of three values. With that queue we execute
the following enqueue operations.

Enqueue(3);

Enqueue(6);

Enqueue(9);

Queue Operations - Enqueue

 The state of the queue

after each of the

enqueue operations.

Queue Operations - Dequeue

 Now let's see how
dequeue operations are
performed. The figure
on the right shows the
state of the queue after
each of three
consecutive dequeue
operations

 An important remark

 After each dequeue,
remaining items shift
toward the front of the
queue.

3

removed

6

removed

9

removed

Efficiency Problem of Dequeue & Solution

 Shifting after each dequeue operation

causes inefficiency.

 Solution
 Let front index move as elements are

removed

 let rear index "wrap around" to the
beginning of array, treating array as
circular

 Similarly, the front index as well

 Yields more complex enqueue, dequeue
code, but more efficient

 Let's see the trace of this method on the
board for the enqueue and dequeue
operations given on the right (queue size
is 3)

Enqueue(3);

Enqueue(6);

Enqueue(9);

Dequeue();

Dequeue();

Enqueue(12);

Dequeue();

Implementation of a Static Queue

 The previous discussion was about static

arrays

 Container is an array

 Class Implementation for a static integer

queue

 Member functions

 enqueue()

 dequeue()

 isEmpty()

 isFull()

 clear()

Member Variables for Static Queues

 Five major variables:

 queueArray Creates a pointer to queue

 queueSize Tracks capacity of queue

 numItems Tracks elements in queue

 front

 rear

The variables front and rear are used when

our queue “rotates,” as discussed earlier

Member Functions for Queues

 CONSTRUCTOR Creates a queue

 DESTRUCTOR Deletes a queue

 enqueue() Adds element to queue

 dequeue() Removes element from

queue

 isEmpty() Is the queue empty?

 isFull() Is the queue full?

 clear() Empties queue

Static Queue Example

#ifndef INTQUEUE_H

#define INTQUEUE_H

class IntQueue

{

private:

int *queueArray;

int queueSize;

int front;

int rear;

int numItems;

public:

IntQueue(int);

void enqueue(int);

void dequeue(int &);

bool isEmpty() const;

bool isFull() const;

void clear();

};

#endif

pointer

queueSize()

front

Constructor

enqueue()

dequeue()

isFull()

isEmpty()

Member

Variables

Member

Functions

rear

numItems

clear()

STL Queues

STL Queues

 Another way to implement a queue is by

using the standard library

 An STL queue leverages the pre-existing

library to access the data structure

 Much easier to use

STL

Queue

Example

#include <iostream> // std::cin, std::cout

#include <queue> // std::queue

using namespace std;

int main ()

{

std::queue<int> myqueue;

int myint;

std::cout << "Please enter some integers (enter 0 to

end):\n";

do {

std::cin >> myint;

myqueue.push (myint);

} while (myint);

std::cout << "myqueue contains: ";

while (!myqueue.empty())

{

std::cout << ' ' << myqueue.front();

myqueue.pop();

}

std::cout << '\n';

return 0;

}

Iterators

Iterators

 An iterator in C++ is a concept that refines

the iterator design pattern into a specific set

of behaviors that work well with the C++

standard library.

 The standard library uses iterators to expose

elements in a range, in a consistent, familiar

way.

From: https://cise.ufl.edu/class/cop3530fa10/ITERATORS.ppt

Iterators

 Anything that implements this set of

behaviors is called an iterator.

 Allows Generic Algorithms

 Easy to implement your own iterators and have

them integrate smoothly with the standard library.

From: https://cise.ufl.edu/class/cop3530fa10/ITERATORS.ppt

Encapsulation

 Encapsulation is a form of information hiding

and abstraction

 Data and functions that act on that data are

located in the same place (inside a class)

 Ideal: separate the interface/implementation

so that you can use the former without any

knowledge of the latter

Iterator Pattern

 The iterator pattern describes a set of

requirements that allows a consumer of some

data structure to access elements in it with a

familiar interface, regardless of the internal

details of the data structure.

 The C++ standard library containers (data

structures) supply iterator interfaces, which

makes them convenient to use and

interoperable with the standard algorithms.

From: https://cise.ufl.edu/class/cop3530fa10/ITERATORS.ppt

Iterators

 The iterator pattern defines a handful of

simple requirements. An iterator should allow

its consumers to:

 Move to the beginning of the range of elements

 Advance to the next element

 Return the value referred to, often called the

referent

 Interrogate it to see if it is at the end of the range

From: https://cise.ufl.edu/class/cop3530fa10/ITERATORS.ppt

Using Iterators

 begin() returns a bidirectional iterator that

represents the first element of the container.

 end() returns an iterator that represents the

end of the elements (not the "last" element)

 The end is a position behind the last element

 Defining it this way gives us a simple ending criteria

for our loops (as we'll see) and it avoids special

handling for empty ranges of elements

Iterators in C++

 The C++ standard library provides iterators for the standard
containers (for example, list, vector, deque, and so on) and
a few other noncontainer classes. You can use an iterator
to print the contents of, for example, a vector like this:

vector<int> v;

// fill up v with data...

for (vector<int>::iterator it = v.begin(); it != v.end(); ++it)
{

cout << *it << endl;

}

From: https://cise.ufl.edu/class/cop3530fa10/ITERATORS.ppt

C++ Iterators

 C++ iterators permit the same operations as the

iterator pattern requires, but not literally.

 It's all there: move to the beginning, advance to

the next element, get the referent, and test to

see if you're at the end.

 In addition, different categories of iterators

support additional operations, such as moving

backward with the decrement operators (--it or it-

-), or advancing forward or backward by a

specified number of elements.

From: https://cise.ufl.edu/class/cop3530fa10/ITERATORS.ppt

Iterator Types

 5 main types of Iterators in C++

 Read only

 Write only

 Forward Iterator

 Reverse or Backwards Iterator

 Random Access Iterator

 With exception of Read and Write, as we go down every

iterator is a superset of the previous one in terms of

functionality.

 Common e.g. -> Pointers are a type of random access

iterators.

From: https://cise.ufl.edu/class/cop3530fa10/ITERATORS.ppt

Forward Iterators

 Essentially only need to traverse over

elements

 However to make STL – compliant, or to be

able to interface with STL Algorithms, an

iterator over a data structure needs to

implement the following functionality

From: https://cise.ufl.edu/class/cop3530fa10/ITERATORS.ppt

Forward Iterators

 Required Functionality (Forward Iterator)

 Assignment

 Tests for Equality

 Forward advancement using the prefix and

postfix forms of the ++ operator

 dereferencing that returns an rvalue (value) or

an lvalue (address)

