CMSC 341
Lecture 5 Asymptotic Analysis
Today’s Topics

- Review
 - Mathematical properties
 - Proof by induction
- Program complexity
 - Growth functions
- Big O notation
Mathematical Properties
Why Review Mathematical Properties?

- You will be solving complex problems
 - That use division and power

- These mathematical properties will help you solve these problems more quickly
 - Exponents
 - Logarithms
 - Summations
 - Mathematical Series
Exponents

- Shorthand for multiplying a number by itself
 - Several times

- Used in identifying sizes of memory

- Help to determine the most efficient way to write a program
Exponent Identities

\[x^a x^b = \]

\[x^a y^a = \]

\[(x^a)^b = \]

\[x^{(a-b)} = \]

\[x^{(-a)} = \]

\[x^{(a/b)} = \]
Exponent Identities

\[x^a x^b = x^{(a+b)} \]

\[x^a y^a = (xy)^a \]

\[(x^a)^b = x^{(ab)} \]

\[x^{(a-b)} = (x^a) / (x^b) \]

\[x^{(-a)} = 1 / (x^a) \]

\[x^{(a/b)} = (x^a)^{\frac{1}{b}} = b\sqrt[x^a]{ } \]
Logarithms

- **ALWAYS** base 2 in Computer Science
 - Unless stated otherwise

- Used for:
 - Conversion between numbering systems
 - Determining the mathematical power needed

- Definition:
 - \(n = \log_a x \) if and only if \(a^n = x \)
Logarithm Identities

\[\log_b(1) = 0 \]
\[\log_b(b) = 1 \]
\[\log_b(x \cdot y) = \log_b(x) + \log_b(y) \]
\[\log_b(x/y) = \log_b(x) - \log_b(y) \]
\[\log_b(x^n) = n \cdot \log_b(x) \]
\[\log_b(x) = \log_c(x) / \log_c(b) \]
Logarithm Identities

\[\log_b(1) = 0 \]
\[\log_b(b) = 1 \]
\[\log_b(xy) = \log_b(x) + \log_b(y) \]
\[\log_b(x/y) = \log_b(x) - \log_b(y) \]
\[\log_b(x^n) = n \log_b(x) \]
\[\log_b(x) = \log_b(c) \times \log_c(x) \]
\[= \frac{\log_c(x)}{\log_c(b)} \]
Summations

- The addition of a sequence of numbers
 - Result is their sum or total

\[
\sum_{n=1}^{4} n = 1 + 2 + 3 + 4 = 10
\]

- Can break a function into several summations

\[
\sum_{i=1}^{100} (4 + 3i) = \sum_{i=1}^{100} 4 + \sum_{i=1}^{100} 3i = \sum_{i=1}^{100} 4 + 3 \left(\sum_{i=1}^{100} i \right)
\]
Proof by Induction
Proof by Induction

- A proof by induction is just like an ordinary proof
 - In which every step must be justified
- However, it employs a neat trick:
 - You can prove a statement about an arbitrary number n by first proving
 - It is true when n is 1 and then
 - Assuming it is true for n=k and
 - Showing it is true for n=k+1
Proof by Induction Example

- Let’s say you want to show that you can climb to the nth floor of a fire escape.

- With induction, need to show that:
 - They can climb the ladder up to the fire escape ($n = 0$).
 - They can climb the first flight of stairs ($n = 1$).

- Then we can show that you can climb the stairs from any level of the fire escape ($n = k$) to the next level ($n = k + 1$).
Program Complexity
What is Complexity?

- How many resources will it take to solve a problem of a given size?
 - Time (ms, seconds, minutes, years)
 - Space (kB, MB, GB, TB, PB)

- Expressed as a function of problem size (beyond some minimum size)
Increasing Complexity

- How do requirements grow as size grows?

- Size of the problem
 - Number of elements to be handled
 - Size of thing to be operated on
Determining Complexity: Experimental

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like `clock()` to get an accurate measure of the actual running time
- Plot the results
Limitations of Experimental Method

- What are some limitations of this approach?
- Must implement algorithm to be tested
 - May be difficult

- Results may not apply to all possible inputs
 - Only applies to inputs explicitly tested

- Comparing two algorithms is difficult
 - Requires same hardware and software
Determining Complexity: Analysis

- Theoretical analysis solves these problems

- Use a high-level description of the algorithm
 - Instead of an implementation

- Run time is a function of the input size, n

- Take into account all possible inputs

- Evaluation is independent of specific hardware or software
 - Including compiler optimization
Using Asymptotic Analysis

- For an algorithm:
 - With input size n
 - Define the run time as $T(n)$

- Purpose of asymptotic analysis is to examine:
 - The rate of growth of $T(n)$
 - As n grows larger and larger
Growth Functions
Seven Important Functions

- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- N-Log-N $\approx n \log n$
- Quadratic $\approx n^2$
- Cubic $\approx n^3$
- Exponential $\approx 2^n$
Constant and Linear

- **Constant**
 - $T(n) = c$
 - Getting array element at known location
 - Any simple C++ statement (e.g. assignment)

- **Linear**
 - $T(n) = cn [+ any lower order terms]$
 - Finding particular element in array of size n
 - Sequential search
 - Trying on all of your n shirts

“c” is a constant value, like 1
Quadratic and Polynomial

- **Quadratic**
 - \(T(n) = cn^2 \ [+ \text{any lower order terms}] \)
 - Sorting an array using bubble sort
 - Trying all your \(n \) shirts with all your \(n \) pants

- **Polynomial**
 - \(T(n) = cn^k \ [+ \text{any lower order terms}] \)
 - Finding the largest element of a \(k \)-dimensional array
 - Looking for maximum substrings in array
Exponential and Logarithmic

- **Exponential**
 - $T(n) = c^n$ [+ any lower order terms]
 - Constructing all possible orders of array elements
 - Towers of Hanoi (2^n)
 - Recursively calculating nth Fibonacci number (2^n)

- **Logarithmic**
 - $T(n) = \lg n$ [+ any lower order terms]
 - Finding a particular array element (binary search)
 - Algorithms that continually divide a problem in half
Graph of Growth Functions

UMBC CMSC 341 Asymptotic Analysis
Graph of Growth Functions

- logarithmic
- linear
- n-log-n
- quadratic
- cubic
- exponential

Problem Size, n

T(n)
Expanded Growth Functions Graph

![Graph showing the growth of functions](image)

- $lg(n)$
- $n \cdot lg(n)$
- n^2
- 2^n

Problem Size, n

Function Values

<table>
<thead>
<tr>
<th>Function</th>
<th>Graph Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>$lg(n)$</td>
<td>Red</td>
</tr>
<tr>
<td>$n \cdot lg(n)$</td>
<td>Blue</td>
</tr>
<tr>
<td>n^2</td>
<td>Green</td>
</tr>
<tr>
<td>2^n</td>
<td>Yellow</td>
</tr>
</tbody>
</table>
Asymptotic Analysis
Simplification

- We are only interested in the growth rate as an “order of magnitude”
 - As the problem grows really, really, really large

- We are not concerned with the fine details
 - Constant multipliers are dropped
 - If $T(n) = c \cdot 2^n$, we reduce it to $T(n) = 2^n$
 - Lower order terms are dropped
 - If $T(n) = n^4 + n^2$, we reduce it to $T(n) = n^4$
Three Cases of Analysis

- **Best case**
 - When input data minimizes the run time
 - An array that needs to be sorted is already in order

- **Average case**
 - The “run time efficiency” over all possible inputs

- **Worst case**
 - When input data maximizes the run time
 - Most adversarial data possible
Analysis Example: Mileage

- How much gas does it take to go 20 miles?
 - Best case
 - Straight downhill, wind at your back
 - Average case
 - “Average” terrain
 - Worst case
 - Winding uphill gravel road, inclement weather
Analysis Example: Sequential Search

- Consider sequential search on an unsorted array of length n, what is the time complexity?

 - Best case
 - Worst case
 - Average case
Comparison of Two Algorithms

- **Insertion sort:**
 - \((n^2)/4\)

- **Merge sort:**
 - \(2n\log n\)

- \(n = 1,000,000\)

- Million ops per second
 - Merge takes 40 secs
 - Insert takes 70 **hours**

Source: Matt Stallmann, Goodrich and Tamassia slides
Big O Notation
What is Big O Notation?

- Big O notation has a special meaning in Computer Science
 - Used to describe the complexity (or performance) of an algorithm

- Big O describes the worst-case scenario
 - Big Omega (Ω) describes the best-case
 - Big Theta (Θ) is used when the best and worst case scenarios are the same
Big O Definition

- We say that $f(n)$ is $O(g(n))$ if
 - There is a real constant $c > 0$
 - And an integer constant $n_0 \geq 1$

- Such that
 - $f(n) \leq c \cdot g(n)$, for $n \geq n_0$

- Let’s do an example
 - Taken from https://youtu.be/ev-A_wy5Yxw
Big O: Example – n^4

- We have $f(n) = 4n^2 + 16n + 2$
- Let’s test if $f(n)$ is $O(n^4)$
 - Remember, we want to see $f(n) \leq c \cdot g(n)$, for $n \geq n_0$
- We’ll start with $c = 1$

<table>
<thead>
<tr>
<th>n_0</th>
<th>$4n^2 + 16n + 2$</th>
<th>\leq</th>
<th>$c \cdot n^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Big O: Example – n^4

- We have $f(n) = 4n^2 + 16n + 2$
- Let’s test if $f(n)$ is $O(n^4)$
 - Remember, we want to see $f(n) \leq c \cdot g(n)$, for $n \geq n_0$
- We’ll start with $c = 1$

<table>
<thead>
<tr>
<th>n_0</th>
<th>$4n^2 + 16n + 2$</th>
<th>\leq</th>
<th>$c \cdot n^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>$>$</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>$>$</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>$>$</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>86</td>
<td>$>$</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>130</td>
<td>$<$</td>
<td>256</td>
</tr>
</tbody>
</table>
Big O: Example

- So we can say that
 - \(f(n) = 4n^2 + 16n + 2 \) is \(O(n^4) \)

- Big O is an upper bound
 - The worst the algorithm could perform

- Does \(n^4 \) seem high to you?
Big O: Example – n^2

- We have $f(n) = 4n^2 + 16n + 2$
- Let’s test if $f(n)$ is $O(n^2)$
 - Remember, we want to see $f(n) \leq c \cdot g(n)$, for $n \geq n_0$
- Let’s start with $c = 10$

<table>
<thead>
<tr>
<th>n_0</th>
<th>$4n^2 + 16n + 2$</th>
<th>\leq</th>
<th>$c \cdot n^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Big O: Example – \(n^2 \)

- We have \(f(n) = 4n^2 + 16n + 2 \)
- Let’s test if \(f(n) \) is \(O(n^2) \)
 - Remember, we want to see \(f(n) \leq c \cdot g(n) \), for \(n \geq n_0 \)
- Let’s start with \(c = 10 \)

<table>
<thead>
<tr>
<th>(n_0)</th>
<th>(4n^2 + 16n + 2)</th>
<th>(\leq)</th>
<th>(c \cdot n^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>></td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>></td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>86</td>
<td><</td>
<td>90</td>
</tr>
</tbody>
</table>
Big O: Example

- So we can more accurately say that
 - $f(n) = 4n^2 + 16n + 2$ is $O(n^2)$

- Could $f(n) = 4n^2 + 16n + 2$ be $O(n)$ ever be true?
 - Why not?
Big O: Practice Examples
Big O: Example 1

- **Code:**
  ```
  a = b;
  ++sum;
  int y = Mystery( 42 );
  ```

- **Complexity:**
 - Constant – $O(c)$
Big O: Example 2

- **Code:**
  ```
  sum = 0;
  for (i = 1; i <= n; i++) {
    sum += n;
  }
  ```

- **Complexity:**
 - Linear – $O(n)$
Big O: Example 3

- **Code:**

  ```
  int sum1 = 0;
  for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= n; j++) {
      sum1++;
    }
  }
  ```

- **Complexity:**

 - Quadratic – \(O(n^2) \)
Big O: Example 4

- **Code:**
  ```java
  sum2 = 0;
  for (i = 1; i <= n; i++) {
    for (j = 1; j <= i; j++) {
      sum2++;
    }
  }
  ```

- **Complexity:**
 - Quadratic – $O(n^2)$

 how many times do we execute this statement?

 $1 + 2 + 3 + 4 + \ldots + n-2 + n-1 + n$
Can we express this as a summation?
- Yes!

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \]

Does this have a known formula?
- Yes!

What does this formula multiply out to?
- (n^2 + n) / 2
- or O(n^2)
Other Geometric Formulas

- $O(n^3)$
 \[\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \]

- $O(n^4)$
 \[\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4} \]

- $O(c^n)$
 \[\sum_{i=0}^{n} c^i = \frac{1-c^{n+1}}{1-c} \text{, where } c \neq 1 \]
Big O: Example 5

- **Code:**
  ```
  sum3 = 0;
  for (i = 1; i <= n; i++) {
    for (j = 1; j <= i; j++) {
      sum3++; } 
  }
  for (k = 0; k < n; k++) {
    a[k] = k;
  }
  ```

- **Complexity:**
 - Quadratic – $O(n^2)$
Big O: Example 6

- **Code:**

  ```
  sum4 = 0;
  for (k = 1; k <= n; k *= 2) {
    for (j = 1; j <= n; j++) {
      sum4++;
    }
  }
  ```

- **Complexity:**
 - $O(n \log n)$
Big O: More Examples

- Square each element of an \(N \times N \) matrix
- Printing the first and last row of an \(N \times N \) matrix
- Finding the smallest element in a sorted array of \(N \) integers
- Printing all permutations of \(N \) distinct elements
Big Omega (Ω) and Big Theta (Θ)
“Big” Notation (words)

- Big O describes an *asymptotic upper bound*
 - The worst possible performance we can expect

- Big Ω describes an *asymptotic lower bound*
 - The best possible performance we can expect

- Big Θ describes an *asymptotically tight bound*
 - The best and worst running times can be expressed with the same equation
“Big” Notation (equations)

- Big O describes an asymptotic upper bound
 - $f(n)$ is asymptotically \textbf{less than or equal to} $g(n)$

- Big Ω describes an asymptotic lower bound
 - $f(n)$ is asymptotically \textbf{greater than or equal to} $g(n)$

- Big Θ describes an asymptotically tight bound
 - $f(n)$ is asymptotically \textbf{equal to} $g(n)$
Big O and Big Omega Example

Graph for $4x^2 + 16x + 2$, x^4, $4x^2$

- $f(n)$: $4x^2 + 16x + 2$
- $g(n)$: x^4
- $4g(n)$: x^2

$O(n^4)$
$\Omega(n^2)$
Big Theta Example

Graph for $4x^2+16x+2$, $10x^2$, $4x^2$

- $f(n) = 4x^2+16x+2$
- $10g(n) = x^2$
- $4g(n) = x^2$

$O(n^2)$, $\Omega(n^2)$, $\Theta(n^2)$
A Simple Example

- Say we write an algorithm that takes in an array of numbers and returns the highest one
 - What is the absolute fastest it can run?
 - Linear time – $\Omega(n)$
 - What is the absolute slowest it can run?
 - Linear time – $O(n)$
 - Can this algorithm be *tightly* asymptotically bound?
 - YES – so we can also say it’s $\Theta(n)$
Proof by Induction
Proof by Induction

- The only way to prove that Big O will work
 - As n becomes larger and larger numbers

- To prove $F(n)$ for any positive integer n
 1. **Base case**: prove $F(1)$ is true
 2. **Hypothesis**: Assume $F(k)$ is true for any $k \geq 1$
 3. **Inductive**: Prove the if $F(k)$ is true, then $F(k+1)$ is true
Induction Example (Step 1)

- Show that for all $n \geq 1$:
 \[
 \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}
 \]

1. **Base case:**
 - $n = 1$
 - (This is our n_0)

\[
\begin{align*}
\sum_{i=1}^{1} i^2 &= \frac{1(1+1)(2(1)+1)}{6} \\
\sum_{i=1}^{1} i^2 &= \frac{1(2)(3)}{6} \\
\sum_{i=1}^{1} i^2 &= \frac{6}{6} \\
\sum_{i=1}^{1} i^2 &= 1
\end{align*}
\]
Induction Example (Step 2)

- Show that for all $n \geq 1$:
 \[\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \]

2. **Hypothesis:**
 - Assume that $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ holds for any $n \geq 1$
Induction Example (Step 3)

- Show that for all $n \geq 1$:
 \[\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \]

3. **Inductive:**
 - Prove that if $F(k)$ is true (assumed), the $F(k+1)$ is also true
 - We’ve already proved $F(1)$ is true
 - So proving this step will prove $F(2)$ from $F(1)$, and $F(3)$ from $F(2)$, ..., and $F(k+1)$ from $F(k)$
Induction Example (Step 3)

\[\sum_{i=1}^{k+1} i^2 = \sum_{i=1}^{k} i^2 + (k+1)^2 \]

\[\sum_{i=1}^{k+1} i^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \]

\[\sum_{i=1}^{k+1} i^2 = \frac{(k+1)(k(2k+1) + 6(k+1))}{6} \]

\[\sum_{i=1}^{k+1} i^2 = \frac{(k+1)(2k^2 + 7k + 6)}{6} \]

\[\sum_{i=1}^{k+1} i^2 = \frac{(k+1)(k+2)(2k+3)}{6} \]

\[\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \]