
CMSC 341 Section 01 Fall 2016
Data Structures Exam 1

Name:

Score Max

I. 20

II. 20

III. 20

IV. 40

Instructions:

1. This is a closed-book, closed-notes exam.

2. You have 75 minutes for the exam.

3. Calculators, cell phones and laptops must be put away.

4. Clearly indicate your final answer.

I. True/False (2 points each)

For each question in this section, indicate whether the statement is TRUE or FALSE. Circle ONE answer.
Choose the BEST answer.

1. The function 17n + 4 log n + 3 is O(log n).

TRUE FALSE

2. The function 17n + 4 log n + 3 is O(n).

TRUE FALSE

3. The function 17n + 4 log n + 3 is O(n log n).

TRUE FALSE

4. The function 17n + 4 log n + 3 is O(n2).

TRUE FALSE

5. The function 17n + 4 log n + 3 is O(n3).

TRUE FALSE

6. The function 32n log n− 94n + 37 log n + 2 is O(log n).

TRUE FALSE

7. The function 32n log n− 94n + 37 log n + 2 is O(n).

TRUE FALSE

8. The function 32n log n− 94n + 37 log n + 2 is O(n log n).

TRUE FALSE

9. The function 32n log n− 94n + 37 log n + 2 is O(n2).

TRUE FALSE

10. The function 32n log n− 94n + 37 log n + 2 is O(n3).

TRUE FALSE

1

II. Multiple Choice (4 points each)

For each question in this section, circle ONE answer. Choose the BEST answer.

1. Assuming enough storage is available, what is the running time to add an item in an unsorted array?

(a) O(1)

(b) O(log n)

(c) O(n)

(d) O(n2)

2. What is one disadvantage of storing data in an array?

(a) Cannot use binary search.

(b) It takes O(n) time to access an item in the middle of the array.

(c) If the array is full and we want to add another item, it takes O(n) time to allocate a new array
and copy the data.

(d) all of the above

3. When a linked list is used to implement a stack, what is the running time for the push and pop

operations?

(a) O(1) to push and O(n) to pop.

(b) O(n) to push and O(1) to pop.

(c) O(n) to push and O(n) to pop.

(d) O(1) to push and O(1) to pop.

4. When an array is used to implement a stack, what is the running time for the push and pop opera-
tions?

(a) O(1) to push and O(n) to pop.

(b) O(n) to push and O(1) to pop.

(c) O(n) to push and O(n) to pop.

(d) O(1) to push and O(1) to pop.

5. What is one disadvantage of storing data in a linked list?

(a) Cannot use binary search.

(b) It takes O(n) time to access the last item of the linked list.

(c) If the linked list is full and we want to add another item, it takes O(n) time to allocate a new
node and copy the data.

(d) none of the above

2

III. Running Times (5 points each)

For each of the following code fragments, estimate an upper bound on the worst case running time of the
code fragment using O() notation. Give your answer in terms of n.

Briefly explain your answer.

1. What is the running time of the following code fragment?

t = n ;

while (t > 1) {

t = t / 2 ;

}

Running Time =

Explanation:

2. What is the running time of the following code fragment?

int something = 0 ;

for (int i=0 ; i<n ; i++) {

t = i ;

while (t > 1) {

t = t / 2 ;

}

}

Running Time =

Explanation:

3

3. What is the running time of the following code fragment?

int something = 0 ;

int t = n ;

while (t > 1) {

for (int i=0 ; i<t ; i++) {

something++ ;

}

t = t / 2 ;

}

Running Time =

Explanation:

4. What is the running time of the following code fragment?

t = 5 * n ;

while (t < n) { // less than!

t = t + 5 ;

}

Running Time =

Explanation:

4

IV. Coding (20 points each)

The following are class definitions for a singly-linked list of int values. You should assume that the list
does not use a dummy header. Also, note that the data members for Node are public.

// The node used in List

class Node {

public:

Node() ;

Node(int data);

int m_data;

Node* m_next;

};

// List is a linked list of ints

class List {

public:

// Creates a default empty list

List();

// Creates a copy of another list

List(const List &other);

// Destructor

~List();

// Assignment operator

const List& operator=(const List &rhs);

// Insert "data" into the list

void insert(int data);

// Remove the last node in the linked list, if it exists

Node * removeLast() ;

// Return the number of times that the value n appears

int count(int n) ;

private:

Node* m_header ;

};

5

1. Write an implementation of the count() member function for List as it would appear in a .cpp file.
The count() function should return the number of times that the parameter n appears in the linked
list. If the list is empty, count() should return 0.

6

2. Write a stand alone function (not a member function) copyList() with the following prototype:

Node * copyList(Node *ptr) ;

This function should assume that ptr points to the beginning of a linked list. It should make a “deep
copy” of that list. Make sure that you allocate memory for nodes of the new list. The return value
is a pointer to the first node of the new list. The intention here is that copyList() can be a helper
function for the copy constructor and the assignment operator for the List class. For example, the
copy constructor for the List class can be implemented as:

List::List(const List& other) {

m_header = copyList(other.m_header) ;

}

7

