
CMSC 341

Priority Queues & Heaps

Based on slides from previous iterations of this course

Today’s Topics

 Priority Queues

 Abstract Data Type

 Implementations of Priority Queues:

 Lists

 BSTs

 Heaps

 Heaps

 Properties

 Insertion

 Deletion

UMBC CMSC 341 Priority Queues (Heaps) 2

Priority Queues

3

Priority Queue ADT

 A priority queue stores a collection of entries

 Typically, an entry is a pair
(key, value)

where the key indicates the priority

 Smaller value, higher priority
 Keys in a priority queue can be arbitrary

objects on which an order is defined

UMBC CMSC 341 Priority Queues (Heaps) 4

Priority Queue vs Queue

 Priority queue is a specific type of queue

 Queues are FIFO

 The element in the queue for the longest time is

the first one we take out

 Priority queues: most important, first out

 The element in the priority queue with the highest

priority is the first one we take out

 Examples: emergency rooms, airline boarding

UMBC CMSC 341 Priority Queues (Heaps) 5

Implementing Priority Queues

 Priority queues are an Abstract Data Type

 They are a concept, and hence there are many

different ways to implement them

 Possible implementations include

 A sorted list

 An ordinary BST

 A balanced BST

 Run time will vary based on implementation

UMBC CMSC 341 Priority Queues (Heaps) 6

Implementing a Priority Queue

7

Priority Queue: Sorted List

 We can implemented a priority queue with a

sorted list (array, vector, etc.)

 Sorted by priority upon insertion

 To find the highest priority, simply find the

minimum, in O(1) time

findMin() --> list.front()

 Insertion can take O(n) time, however

UMBC CMSC 341 Priority Queues (Heaps) 8

Priority Queue: BST

 A BST makes a bit more sense than a list

 Sorted like a regular BST upon insertion

 To find the minimum, just go to the left

call findMin()

 And removal will be easy, because

it will always be a leaf node!

 Insertion should take no more than O(log n) time

call Insert()

UMBC CMSC 341 Priority Queues (Heaps) 9

Priority Queue: BST Downsides

 Unfortunately, a BST Priority Queue can

become unbalanced very easily, and the

actual run time will suffer

 If we have a low

priority (high value)

instance as our root,

nearly everything

will be to its left

 findMin() is

now O(n) time 

UMBC CMSC 341 Priority Queues (Heaps) 10

Priority Queue: Heap

 The most common way to implement a

priority queue is using a heap

 A heap is a binary tree (not a BST!!!) that

satisfies the “heap condition”:

 Nodes in the tree are sorted based in relation to

their parent’s value, such that if A is a parent

node of B, then the key of node A is ordered with

respect to the key of node B with the same

ordering applying across the heap

 Additionally, the tree must be complete

UMBC CMSC 341 Priority Queues (Heaps) 11

Heaps

12

Min Binary Heap

 A min binary heap is a…

 Complete binary tree

 Neither child is smaller than the value in the parent

 Both children are at least

as large as the parent

 In other words,

smaller items go

above larger ones

UMBC CMSC 341 Priority Queues (Heaps) 13

Min Binary Heap

 This property is called a partial ordering

 There is no set relation between siblings,

cousins, etc – only that the values grow as we

increase our distance from the root

 As a result of this partial ordering, every path

from the root to a leaf visits nodes in a non-

decreasing order

UMBC CMSC 341 Priority Queues (Heaps) 14

Min Binary Heap Performance

 Performance

 (n is the number of elements in the heap)

 construction O(n)

 findMin() O(1)

 insert() O(lg n)

 deleteMin() O(lg n)

UMBC CMSC 341 Priority Queues (Heaps) 15

Min Binary Heap Performance

 Heap efficiency results, in part, from the
implementation

 Conceptually a complete binary tree

 Can think of implementation in an array/vector
(in level order) with the root at index 1

UMBC CMSC 341 Priority Queues (Heaps) 16

Min Binary Heap Performance

 For a node at index i

 its left child is at index 2i

 its right child is at index 2i+1

 its parent is at index ⎣i/2⎦

 No pointer storage

 Fast computation of 2i and ⎣i/2⎦ by bit shifting

 i << 1 = 2i

 i >> 1 = ⎣i/2⎦

UMBC CMSC 341 Priority Queues (Heaps) 17

Min Binary Heap: Exercises

 How to find the parent of E?

 The left child of D?

 The right child of A?

UMBC CMSC 341 Priority Queues (Heaps) 18

Convert a Heap to an Array

 Level-order traversal

UMBC CMSC 341 Priority Queues (Heaps) 19

Building a Heap

20

Insert Operation

 Must maintain

 Heap shape:

 Easy, just insert new element at “the end” of the array

 Min heap order:

1. Could be wrong after insertion if new element is

smaller than its ancestors

2. Continuously swap the new element with its parent

until parent is not greater than it

 Called sift up or percolate up

 Performance of insert is O(lg n) in the worst
case because the height of a CBT is O(lg n)

UMBC CMSC 341 Priority Queues (Heaps) 21

Insert Code

void insert(const Comparable & x)

{

 if(currentSize == array.size() - 1)

array.resize(array.size() * 2);

 // Percolate up

 int hole = ++currentSize;

 for(; hole > 1 && x < array[hole / 2];

hole /= 2)

 {

// swap, from child to parent

array[hole] = array[hole / 2];

 }

 array[hole] = x;

}

UMBC CMSC 341 Priority Queues (Heaps) 22

Insert Example: 14

UMBC CMSC 341 Priority Queues (Heaps) 23

Delete Operation

 Steps
 Remove min element (the root)

 Maintain heap shape

 Maintain min heap order

 To maintain heap shape, actual node

removed is “last one” in the array
 Replace root value with value from last node and

delete last node

 Sift-down the new root value
 Continually exchange value with the smaller child until

no child is smaller.

UMBC CMSC 341 Priority Queues (Heaps) 24

Delete Code

void deleteMin()

{

 if(isEmpty())

 {

throw UnderflowException();

 }

 array[1] = array[currentSize--];

 percolateDown(1);

}

UMBC CMSC 341 Priority Queues (Heaps) 25

Percolate Down Function

void percolateDown(int hole)

{

 int child;

 Comparable tmp = array[hole];

 for(; hole * 2 <= currentSize; hole = child)

 {

 child = hole * 2;

 if(child != currentSize && array[child+1]<array[child])

 { child++; }

 if(array[child] < tmp)

 { array[hole] = array[child]; }

 else { break; }

 }

 array[hole] = tmp;

}

UMBC CMSC 341 Priority Queues (Heaps) 26

Example: Delete Min

UMBC CMSC 341 Priority Queues (Heaps) 27

Example: Delete Min

UMBC CMSC 341 Priority Queues (Heaps) 28

Announcements

 Homework 4

 Due Thursday, October 26th at 8:59:59 PM

 Project 3

 Due Tuesday, October 31st at 8:59:59 PM

 Next Time:

 Priority Queues and Heaps (part 2)

UMBC CMSC 341 Lists 29

