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CMSC 341 
Leftist Heaps 

Based on slides from previous iterations of this course 
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Today’s Topics 

• Review of Min Heaps

• Introduction of Left-ist 
Heaps

• Merge Operation

• Heap Operations 
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Review of Heaps 
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Min Binary Heap 
• A min binary heap is a…

– Complete binary tree

– Neither child is smaller than the value in the parent

– Both children are at least
as large as the parent

• In other words,
smaller items go
above larger ones
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Min Binary Heap Performance 

• Performance

– (n is the number of elements in the heap)

• construction O( n ) 

• findMin() O( 1 ) 

• insert() O( lg n ) 

• deleteMin() O( lg n ) 
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Introduction to Leftist Heaps 
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Leftist Heap Concepts 
• Structurally, a leftist heap is a min tree where

each node is marked with a rank value.

• Uses a Binary Tree (BT)!!

• Merging heaps is much easier and faster

– May use already established links to merge with a
new node

– Rather than copying pieces of an array
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Leftist Heap Concepts 
• Values STILL obey a heap order (partial order)

• Uses a null path length to maintain the 
structure (covered in detail later)

– The null path of a node’s
left child is >= null path of the right child

• At every node, the shortest path to a non-full 
node is along the rightmost path!!! 
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Leftist Heap Example 

• A leftist heap, then, is a
purposefully
unbalanced binary tree
(leaning to the left,
hence the name) that
keeps its smallest value
at the top and has an
inexpensive merge
operation

2 

4 3 

6 8 5 

9 6 8 
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Leftist Heap Performance 

• Leftist Heaps support:
   = O(1) 

– deleteMin() = O(log n)

  = O(log n) 

   = O(n) 

– findMin()

– insert()

– construct

– merge()   = O(log n) 
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Null Path Length (npl) 

• Length of shortest path from current node (X)
to a node without 2 children

– value is stored IN the node itself

• leafs

– npl = 0

• nodes with only 1 child

– npl = 0
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Null Path Length (npl) Calculation 

2 

4 3 

6 8 5 

9 6 8 

To calculate the npl for each 

node, we look to see how many 

nodes we need to traverse to get 

to an open node 
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Null Path Length (npl) Calculation 

2 

4 3 

6 8 5 

9 6 8 

0 / 0 0 / 0 0 / 0 

0 / 0 

In the leaves case, 

there is a null 

position 0 nodes 

away 
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Null Path Length (npl) Calculation 

2 

4 3 

6 8 5 

9 6 8 

0 / 1 

In these cases, one 

side is 0 and the 

other side is 1 
0 / 1 
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Null Path Length (npl) Calculation 

2 

4 3 

6 8 5 

9 6 8 

2 / 1 

1 / 1 

2 / 1 
In the root, it will take 

two levels to get to 

null to the left; one to 

the right. 
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Leftist Node 

• The node for a leftist heap will have many
member variables this time

– links (left and right)

– element (data)

– npl

• By default, the Leftist Heap sets an empty
node as the root
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Leftist Node Code 

private: 

struct LeftistNode 

{ 

 Comparable   element; 

 LeftistNode *left; 

 LeftistNode *right; 

 int          npl; 

 LeftistNode( const Comparable & theElement, LeftistNode *lt = NULL, 

 LeftistNode *rt = NULL, int np = 0 ) 

 : element( theElement ), left( lt ), right( rt ), npl( np ) { } 

}; 

LeftistNode *root; 

Looks like a binary 

tree node except the 

npl being stored. 
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Building a Leftist Heap 
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Building a Leftist Heap 

• Value of node STILL matters

– Lowest value will be root, so still a min Heap

• Data entered is random

• Uses CURRENT npl of a node to determine
where the next node will be placed
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Moves in Building Leftist Heap 

50 

New leftist heap with 

one node 
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Moves in Building Leftist Heap 

50 

Normal insertion of a 

new node into the 

tree value 75. 

75 First placed as far right 

as possible. 

Then swung left to 

satisfy npls. 
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Moves in Building Leftist Heap 

50 

Normal insertion of a 

new node into the 

tree value 25. 

75 As this is a min Tree, 

25 is the new root. 

Then swung left to 

satisfy npls. 

25 
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Moves in Building Leftist Heap 

50 

Normal insertion of a 

new node into the 

tree value 55. 

75 
No swing required. 

25 

55 
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Moves in Building Leftist Heap 

50 

Normal insertion of a 

new node into the 

tree value 40. 

75 

25 

55 

40 

What is wrong with this? 

Not a min heap at 

this point. Need to 

swap 40 and 55 and 

swing. 
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Moves in Building Leftist Heap 

50 

Normal insertion of a 

new node into the 

tree value 40. 

75 

25 

55 

40 

Not a min heap at 

this point. Need to 

swap 40 and 55 and 

swing. 
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Moves in Building Leftist Heap 

50 

Normal insertion of a 

new node into the 

tree value 65. 

75 

25 

55 

40 

While this is still a 

min heap, the npl at 

the root is not leftist 

65 

1/2 
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Moves in Building Leftist Heap 

50 

We need change this 

from 1/2 to 2/1 so 

that it remains leftist. 

75 

25 

55 

40 

To do this, we switch 

the left and the right 

subtrees. 

65 

2/1 

After we do the swap, 

the npl of the root is 

compliant. 
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Leftist Heap Algorithm 
• Add new node to right-side of tree, in order
• If new node is to be inserted as a parent (parent  < children)

– make new node parent
– link children to it
– link grandparent down to new node (now new parent)

• If leaf, attach to right of parent
• If no left sibling, push to left (hence left-ist)

– why?? (answer in a second)
• Else left node is present, leave at right child
• Update all ancestors’ npls
• Check each time that all nodes left npl > = right npls

– if not, swap children or node where this condition exists 



www.umbc.edu 

Building a Leftist Heap Example 
21, 14, 17, 10, 3, 23, 

26, 8 

21 
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Building a Leftist Heap Example 
21, 14, 17, 10, 3, 23, 

26, 8 

14 

21 
Insert 14 as the new root 
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Building a Leftist Heap Example 
21, 14, 17, 10, 3, 23, 

26, 8 

14 

21 17 
Insert 17 as the right 

child of 14 
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Building a Leftist Heap Example 
21, 14, 17, 10, 3, 23, 

26, 8 

14 

21 17 

10 

Insert 10 as the new root 
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Building a Leftist Heap Example 
21, 14, 17, 10, 3, 23, 

26, 8 

14 

21 17 

10 

3 

Insert 3 as the new root 
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Building a Leftist Heap Example 
21, 14, 17, 10, 3, 23, 

26, 8 

14 

21 17 

10 

3 

23 

Insert 23 as the right 

child of 3 
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Building a Leftist Heap Example 
21, 14, 17, 10, 3, 23, 

26, 8 

14 

21 17 

10 

3 

26 

23 

Insert 26 as the right 

child of 23 

Swing 26 to the left 
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Building a Leftist Heap Example 
21, 14, 17, 10, 3, 23, 

26, 8 

14 

21 17 

10 

3 

23 

26 

8 

Take the right subtree of 

root 3: nodes 23 & 26 

Insert 8 as the new root 

(parent of 23) 

Reattach to original root 
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Merging Leftist Heaps 
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Merging Leftist Heaps 

• In the code, adding a single node is treated as 
merging a heap (just one node) with an 
established heap’s root 

– And work from that root as we just went over 

• We will go over merging whole heaps 
momentarily 

• But in reality, isn’t ONE node a heap?? 
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Merging Leftist Heaps 

• The heaps we are about to merge must be 
LEFTIST heaps 

• At the end we will get a heap that is both 

– a min-heap 

– leftist 
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Merging Leftist Heaps 

• The Merge procedure takes two leftist trees, A 
and B, and returns a leftist tree that contains 
the union of the elements of A and B. In a 
program, a leftist tree is represented by a 
pointer to its root. 
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Merging Leftist Heaps Example 

10 

50 

15 

5 

1 

20 25 

7 

99 

75 

22 

2 

1 

0 0 

0 0 

0 

0 

0 

1 

1 

Where should we 

attempt to merge? 
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Merging Leftist Heaps Example 

50 

20 25 

7 

99 

75 

22 

In the right sub-tree 
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Merging Leftist Heaps Example 

25 
75 

22 

All the way down to 

the right most node 
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Merging Leftist Heaps Example 

25 75 

22 

As there are two 

nodes in the right 

subtree, swap. 

Important: We don’t “split” 

a heap, so 22 must be 

the parent in this merge 
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Merging Leftist Heaps Example 

25 75 

22 

Merge two subtrees 



www.umbc.edu 

Merging Leftist Heaps Example 

50 

20 

7 

99 

Next level of the tree 

25 75 

22 
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Merging Leftist Heaps Example 

50 

20 

7 

99 25 75 

22 

Right side of the tree 

has a npl of 2 so we 

need to swap 

10 

5 

1 

15 

2 1 
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Merging Leftist Heaps Example 

50 

20 

7 

99 25 75 

22 

Now the highest npl 

is on the left. 

10 

5 

1 

15 

2 1 

2 
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Merging Leftist Heaps 
– Start at the (sub) root, and finalize the node AND 

LEFT with the smallest value 

– REPEADLY, until no lists left unmerged.  

• Start at the rightmost root of the sub-tree, and finalize 
the node AND LEFT with the next smallest value in 
leftist lists.  

• Add to RIGHT of finalized tree. 

– Verify that it is a Min Heap!! (Parent < Children) 

– Verify a leftist heap! (left npl >= right npl) 

• if not, swap troubled node with sibling 
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Merging Leftist Heaps Code 

 /** 

     * Merge rhs into the priority queue. 

     * rhs becomes empty. rhs must be different from this. 

     */ 

    void merge( LeftistHeap & rhs ) 

    { 

        if( this == &rhs )    // Avoid aliasing problems 

            return; 

 

        root = merge( root, rhs.root ); 

        rhs.root = NULL; 

    } 
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Merging Leftist Heaps Code 

    /** 

     * Internal method to merge two roots. 

     * Deals with deviant cases and calls recursive merge1. 

     */ 

    LeftistNode * merge( LeftistNode *h1, LeftistNode *h2 ) 

    { 

        if( h1 == NULL ) 

            return h2; 

        if( h2 == NULL ) 

            return h1; 

        if( h1->element < h2->element ) 

            return merge1( h1, h2 ); 

        else 

            return merge1( h2, h1 ); 

    } 
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Merging Leftist Heaps Code 

    /** 

     * Internal method to merge two roots. 

     * Assumes trees are not empty, & h1's root contains smallest item. 

     */ 

    LeftistNode * merge1( LeftistNode *h1, LeftistNode *h2 ) 

    { 

        if( h1->left == NULL ) // Single node 

            h1->left = h2;     // Other fields in h1 already accurate 

        else 

        { 

            h1->right = merge( h1->right, h2 ); 

            if( h1->left->npl < h1->right->npl ) 

                swapChildren( h1 ); 

            h1->npl = h1->right->npl + 1; 

        } 

        return h1; 

    } 



www.umbc.edu 

Deleting from Leftist Heap 
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Deleting from Leftist Heap 

• Simple to just remove a node (since at top) 

– this will make two trees 

• Merge the two trees like we just did 

 



www.umbc.edu 

Deleting from Leftist Heap 

14 23 

8 

3 

21 17 

10 

26 

2 

1 1 

0 0 0 0 

0 

We remove the root. 
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Deleting from Leftist Heap 

14 23 

8 

3 

21 17 

10 

26 

2 

1 1 

0 0 0 0 

0 

Then we do a merge 

and because min is 

in left subtree, we 

recursively merge 

right into left 
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Deleting from Leftist Heap 

14 23 

8 

3 

21 17 

10 

26 

2 

1 1 

0 0 0 0 

0 

Then we do a merge 

and because min is 

in left subtree, we 

recursively merge 

right into left 
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Deleting from Leftist Heap 

10 14 

8 

21 23 

17 26 

1 

1 

1 0 

0 0 

0 

After Merge 
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Leftist Heaps 

• Merge with two trees of size n 
– O(log n), we are not creating a totally new tree!! 
– some was used as the LEFT side! 

• Inserting into a left-ist heap 
– O(log n) 
– same as before with a regular heap 

• deleteMin with heap size n 
– O(log n) 
– remove and return root (minimum value) 
– merge left and right subtrees 
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Announcements 

• Project 3 

– Due Tuesday, November 7th at 8:59:59 PM 




