
www.umbc.edu 

CMSC 341 
Leftist Heaps 

Based on slides from previous iterations of this course 



www.umbc.edu 

Today’s Topics 

• Review of Min Heaps

• Introduction of Left-ist 
Heaps

• Merge Operation

• Heap Operations 



www.umbc.edu 

Review of Heaps 



www.umbc.edu 

Min Binary Heap 
• A min binary heap is a…

– Complete binary tree

– Neither child is smaller than the value in the parent

– Both children are at least
as large as the parent

• In other words,
smaller items go
above larger ones



www.umbc.edu 

Min Binary Heap Performance 

• Performance

– (n is the number of elements in the heap)

• construction O( n ) 

• findMin() O( 1 ) 

• insert() O( lg n ) 

• deleteMin() O( lg n ) 



www.umbc.edu 

Introduction to Leftist Heaps 



www.umbc.edu 

Leftist Heap Concepts 
• Structurally, a leftist heap is a min tree where

each node is marked with a rank value.

• Uses a Binary Tree (BT)!!

• Merging heaps is much easier and faster

– May use already established links to merge with a
new node

– Rather than copying pieces of an array



www.umbc.edu 

Leftist Heap Concepts 
• Values STILL obey a heap order (partial order)

• Uses a null path length to maintain the 
structure (covered in detail later)

– The null path of a node’s
left child is >= null path of the right child

• At every node, the shortest path to a non-full 
node is along the rightmost path!!! 



www.umbc.edu 

Leftist Heap Example 

• A leftist heap, then, is a
purposefully
unbalanced binary tree
(leaning to the left,
hence the name) that
keeps its smallest value
at the top and has an
inexpensive merge
operation

2 

4 3 

6 8 5 

9 6 8 



www.umbc.edu 

Leftist Heap Performance 

• Leftist Heaps support:
   = O(1) 

– deleteMin() = O(log n)

  = O(log n) 

   = O(n) 

– findMin()

– insert()

– construct

– merge()   = O(log n) 



www.umbc.edu 

Null Path Length (npl) 

• Length of shortest path from current node (X)
to a node without 2 children

– value is stored IN the node itself

• leafs

– npl = 0

• nodes with only 1 child

– npl = 0



www.umbc.edu 

Null Path Length (npl) Calculation 

2 

4 3 

6 8 5 

9 6 8 

To calculate the npl for each 

node, we look to see how many 

nodes we need to traverse to get 

to an open node 



www.umbc.edu 

Null Path Length (npl) Calculation 

2 

4 3 

6 8 5 

9 6 8 

0 / 0 0 / 0 0 / 0 

0 / 0 

In the leaves case, 

there is a null 

position 0 nodes 

away 



www.umbc.edu 

Null Path Length (npl) Calculation 

2 

4 3 

6 8 5 

9 6 8 

0 / 1 

In these cases, one 

side is 0 and the 

other side is 1 
0 / 1 



www.umbc.edu 

Null Path Length (npl) Calculation 

2 

4 3 

6 8 5 

9 6 8 

2 / 1 

1 / 1 

2 / 1 
In the root, it will take 

two levels to get to 

null to the left; one to 

the right. 



www.umbc.edu 

Leftist Node 

• The node for a leftist heap will have many
member variables this time

– links (left and right)

– element (data)

– npl

• By default, the Leftist Heap sets an empty
node as the root



www.umbc.edu 

Leftist Node Code 

private: 

struct LeftistNode 

{ 

 Comparable   element; 

 LeftistNode *left; 

 LeftistNode *right; 

 int          npl; 

 LeftistNode( const Comparable & theElement, LeftistNode *lt = NULL, 

 LeftistNode *rt = NULL, int np = 0 ) 

 : element( theElement ), left( lt ), right( rt ), npl( np ) { } 

}; 

LeftistNode *root; 

Looks like a binary 

tree node except the 

npl being stored. 



www.umbc.edu 

Building a Leftist Heap 



www.umbc.edu 

Building a Leftist Heap 

• Value of node STILL matters

– Lowest value will be root, so still a min Heap

• Data entered is random

• Uses CURRENT npl of a node to determine
where the next node will be placed



www.umbc.edu 

Moves in Building Leftist Heap 

50 

New leftist heap with 

one node 



www.umbc.edu 

Moves in Building Leftist Heap 

50 

Normal insertion of a 

new node into the 

tree value 75. 

75 First placed as far right 

as possible. 

Then swung left to 

satisfy npls. 



www.umbc.edu 

Moves in Building Leftist Heap 

50 

Normal insertion of a 

new node into the 

tree value 25. 

75 As this is a min Tree, 

25 is the new root. 

Then swung left to 

satisfy npls. 

25 



www.umbc.edu 

Moves in Building Leftist Heap 

50 

Normal insertion of a 

new node into the 

tree value 55. 

75 
No swing required. 

25 

55 



www.umbc.edu 

Moves in Building Leftist Heap 

50 

Normal insertion of a 

new node into the 

tree value 40. 

75 

25 

55 

40 

What is wrong with this? 

Not a min heap at 

this point. Need to 

swap 40 and 55 and 

swing. 



www.umbc.edu 

Moves in Building Leftist Heap 

50 

Normal insertion of a 

new node into the 

tree value 40. 

75 

25 

55 

40 

Not a min heap at 

this point. Need to 

swap 40 and 55 and 

swing. 



www.umbc.edu 

Moves in Building Leftist Heap 

50 

Normal insertion of a 

new node into the 

tree value 65. 

75 

25 

55 

40 

While this is still a 

min heap, the npl at 

the root is not leftist 

65 

1/2 



www.umbc.edu 

Moves in Building Leftist Heap 

50 

We need change this 

from 1/2 to 2/1 so 

that it remains leftist. 

75 

25 

55 

40 

To do this, we switch 

the left and the right 

subtrees. 

65 

2/1 

After we do the swap, 

the npl of the root is 

compliant. 



www.umbc.edu 

Leftist Heap Algorithm 
• Add new node to right-side of tree, in order
• If new node is to be inserted as a parent (parent  < children)

– make new node parent
– link children to it
– link grandparent down to new node (now new parent)

• If leaf, attach to right of parent
• If no left sibling, push to left (hence left-ist)

– why?? (answer in a second)
• Else left node is present, leave at right child
• Update all ancestors’ npls
• Check each time that all nodes left npl > = right npls

– if not, swap children or node where this condition exists 



www.umbc.edu 

Building a Leftist Heap Example 
21, 14, 17, 10, 3, 23, 

26, 8 

21 



www.umbc.edu 

Building a Leftist Heap Example 
21, 14, 17, 10, 3, 23, 

26, 8 

14 

21 
Insert 14 as the new root 



www.umbc.edu 

Building a Leftist Heap Example 
21, 14, 17, 10, 3, 23, 

26, 8 

14 

21 17 
Insert 17 as the right 

child of 14 



www.umbc.edu 

Building a Leftist Heap Example 
21, 14, 17, 10, 3, 23, 

26, 8 

14 

21 17 

10 

Insert 10 as the new root 



www.umbc.edu 

Building a Leftist Heap Example 
21, 14, 17, 10, 3, 23, 

26, 8 

14 

21 17 

10 

3 

Insert 3 as the new root 



www.umbc.edu 

Building a Leftist Heap Example 
21, 14, 17, 10, 3, 23, 

26, 8 

14 

21 17 

10 

3 

23 

Insert 23 as the right 

child of 3 



www.umbc.edu 

Building a Leftist Heap Example 
21, 14, 17, 10, 3, 23, 

26, 8 

14 

21 17 

10 

3 

26 

23 

Insert 26 as the right 

child of 23 

Swing 26 to the left 



www.umbc.edu 

Building a Leftist Heap Example 
21, 14, 17, 10, 3, 23, 

26, 8 

14 

21 17 

10 

3 

23 

26 

8 

Take the right subtree of 

root 3: nodes 23 & 26 

Insert 8 as the new root 

(parent of 23) 

Reattach to original root 



www.umbc.edu 

Merging Leftist Heaps 



www.umbc.edu 

Merging Leftist Heaps 

• In the code, adding a single node is treated as 
merging a heap (just one node) with an 
established heap’s root 

– And work from that root as we just went over 

• We will go over merging whole heaps 
momentarily 

• But in reality, isn’t ONE node a heap?? 

 



www.umbc.edu 

Merging Leftist Heaps 

• The heaps we are about to merge must be 
LEFTIST heaps 

• At the end we will get a heap that is both 

– a min-heap 

– leftist 



www.umbc.edu 

Merging Leftist Heaps 

• The Merge procedure takes two leftist trees, A 
and B, and returns a leftist tree that contains 
the union of the elements of A and B. In a 
program, a leftist tree is represented by a 
pointer to its root. 



www.umbc.edu 

Merging Leftist Heaps Example 

10 

50 

15 

5 

1 

20 25 

7 

99 

75 

22 

2 

1 

0 0 

0 0 

0 

0 

0 

1 

1 

Where should we 

attempt to merge? 



www.umbc.edu 

Merging Leftist Heaps Example 

50 

20 25 

7 

99 

75 

22 

In the right sub-tree 



www.umbc.edu 

Merging Leftist Heaps Example 

25 
75 

22 

All the way down to 

the right most node 



www.umbc.edu 

Merging Leftist Heaps Example 

25 75 

22 

As there are two 

nodes in the right 

subtree, swap. 

Important: We don’t “split” 

a heap, so 22 must be 

the parent in this merge 



www.umbc.edu 

Merging Leftist Heaps Example 

25 75 

22 

Merge two subtrees 



www.umbc.edu 

Merging Leftist Heaps Example 

50 

20 

7 

99 

Next level of the tree 

25 75 

22 



www.umbc.edu 

Merging Leftist Heaps Example 

50 

20 

7 

99 25 75 

22 

Right side of the tree 

has a npl of 2 so we 

need to swap 

10 

5 

1 

15 

2 1 



www.umbc.edu 

Merging Leftist Heaps Example 

50 

20 

7 

99 25 75 

22 

Now the highest npl 

is on the left. 

10 

5 

1 

15 

2 1 

2 



www.umbc.edu 

Merging Leftist Heaps 
– Start at the (sub) root, and finalize the node AND 

LEFT with the smallest value 

– REPEADLY, until no lists left unmerged.  

• Start at the rightmost root of the sub-tree, and finalize 
the node AND LEFT with the next smallest value in 
leftist lists.  

• Add to RIGHT of finalized tree. 

– Verify that it is a Min Heap!! (Parent < Children) 

– Verify a leftist heap! (left npl >= right npl) 

• if not, swap troubled node with sibling 



www.umbc.edu 

Merging Leftist Heaps Code 

 /** 

     * Merge rhs into the priority queue. 

     * rhs becomes empty. rhs must be different from this. 

     */ 

    void merge( LeftistHeap & rhs ) 

    { 

        if( this == &rhs )    // Avoid aliasing problems 

            return; 

 

        root = merge( root, rhs.root ); 

        rhs.root = NULL; 

    } 

 



www.umbc.edu 

Merging Leftist Heaps Code 

    /** 

     * Internal method to merge two roots. 

     * Deals with deviant cases and calls recursive merge1. 

     */ 

    LeftistNode * merge( LeftistNode *h1, LeftistNode *h2 ) 

    { 

        if( h1 == NULL ) 

            return h2; 

        if( h2 == NULL ) 

            return h1; 

        if( h1->element < h2->element ) 

            return merge1( h1, h2 ); 

        else 

            return merge1( h2, h1 ); 

    } 



www.umbc.edu 

Merging Leftist Heaps Code 

    /** 

     * Internal method to merge two roots. 

     * Assumes trees are not empty, & h1's root contains smallest item. 

     */ 

    LeftistNode * merge1( LeftistNode *h1, LeftistNode *h2 ) 

    { 

        if( h1->left == NULL ) // Single node 

            h1->left = h2;     // Other fields in h1 already accurate 

        else 

        { 

            h1->right = merge( h1->right, h2 ); 

            if( h1->left->npl < h1->right->npl ) 

                swapChildren( h1 ); 

            h1->npl = h1->right->npl + 1; 

        } 

        return h1; 

    } 



www.umbc.edu 

Deleting from Leftist Heap 



www.umbc.edu 

Deleting from Leftist Heap 

• Simple to just remove a node (since at top) 

– this will make two trees 

• Merge the two trees like we just did 

 



www.umbc.edu 

Deleting from Leftist Heap 

14 23 

8 

3 

21 17 

10 

26 

2 

1 1 

0 0 0 0 

0 

We remove the root. 



www.umbc.edu 

Deleting from Leftist Heap 

14 23 

8 

3 

21 17 

10 

26 

2 

1 1 

0 0 0 0 

0 

Then we do a merge 

and because min is 

in left subtree, we 

recursively merge 

right into left 



www.umbc.edu 

Deleting from Leftist Heap 

14 23 

8 

3 

21 17 

10 

26 

2 

1 1 

0 0 0 0 

0 

Then we do a merge 

and because min is 

in left subtree, we 

recursively merge 

right into left 



www.umbc.edu 

Deleting from Leftist Heap 

10 14 

8 

21 23 

17 26 

1 

1 

1 0 

0 0 

0 

After Merge 



www.umbc.edu 

Leftist Heaps 

• Merge with two trees of size n 
– O(log n), we are not creating a totally new tree!! 
– some was used as the LEFT side! 

• Inserting into a left-ist heap 
– O(log n) 
– same as before with a regular heap 

• deleteMin with heap size n 
– O(log n) 
– remove and return root (minimum value) 
– merge left and right subtrees 



www.umbc.edu 

Announcements 

• Project 3 

– Due Tuesday, November 7th at 8:59:59 PM 




