
CMSC 341 

Lecture 4 Asymptotic Analysis 

Based on slides from previous iterations at UMBC, and from book publisher 



Today’s Topics 

 Review 

 Mathematical properties 

 Proof by induction 

 Program complexity 

 Growth functions 

 Big O notation 
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Mathematical Properties 
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Why Review Mathematical Properties? 

 You will be solving complex problems 

 That use division and power 

 

 These mathematical properties will help you 

solve these problems more quickly 

 Exponents 

 Logarithms 

 Summations 

 Mathematical Series 
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Exponents 

 Shorthand for multiplying a number by itself 

 Several times 

 

 Used in identifying sizes of memory 

 

 Help to determine the most efficient way to 

write a program 
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Exponent Identities 

 xaxb  = x(a+b) 

 xaya  = (xy)a 

(xa)b  = x(ab) 

 x(a-b) = (xa)/(xb) 

 x(-a) = 1/(xa) 

 

 x(a/b) = (xa)  =  √xa 
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Exponent Identities 

 xaxb  = x(a+b) 

 xaya  = (xy)a 

(xa)b  = x(ab) 

 x(a-b) = (xa)/(xb) 

 x(-a) = 1/(xa) 

 

 x(a/b) = (xa)  =  √xa 
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Logarithms 

 ALWAYS base 2 in Computer Science 

 Unless stated otherwise 
 

 Used for: 

 Conversion between numbering systems 

 Determining the mathematical power needed 
 

 Definition: 

 n = logax if and only if an = x 
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Logarithm Identities 

logb(1)   = 0 

logb(b)   = 1 

logb(x*y) = logb(x) + logb(y) 

logb(x/y) = logb(x) - logb(y) 

logb(x
n)   = n*logb(x) 

logb(x)   = logb(c) * logc(x)  

          = logc(x) / logc(b) 
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Logarithm Identities 

logb(1)   = 0 

logb(b)   = 1 

logb(x*y) = logb(x) + logb(y) 

logb(x/y) = logb(x) - logb(y) 

logb(x
n)   = n*logb(x) 

logb(x)   = logb(c) * logc(x)  

          = logc(x) / logc(b) 
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Summations 

 The addition of a sequence of numbers 

 Result is their sum or total 

 

 

 
 

 Can break a function into several summations 
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Proof by Induction 
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Proof by Induction 

 A proof by induction is just like an ordinary 

proof 

 In which every step must be justified 

 However, it employs a neat trick: 

 You can prove a statement about an arbitrary 

number n by first proving  

 It is true when n is 1 and then 

Assuming it is true for n=k and  

Showing it is true for n=k+1 
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Proof by Induction Example 

 Let’s say you want to show that you can 

climb to the nth floor of a fire escape 
 

 With induction, need to show that: 

 They can climb the ladder up to the fire 

escape (n = 0) 

 They can climb the first flight of stairs (n = 1) 

 Then we can show that you can climb the 

stairs from any level of the fire escape  

(n = k) to the next level (n = k + 1) 
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Program Complexity 
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What is Complexity? 

 How many resources will it take to solve a 

problem of a given size? 

 Time (ms, seconds, minutes, years) 

 Space (kB, MB, GB, TB, PB) 

 

 Expressed as a function of problem size 

(beyond some minimum size) 
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Increasing Complexity 

 How do requirements grow as size grows? 

 

 Size of the problem 

 Number of elements to be handled 

 Size of thing to be operated on 
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Determining Complexity: Experimental  

 Write a program implementing the algorithm 

 Run the program with inputs of varying size 

and composition 

 Use a method like clock()  

to get an accurate  

measure of the actual  

running time 

 Plot the results 
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Limitations of Experimental Method 

 What are some limitations of this approach? 

 Must implement algorithm to be tested 

 May be difficult 
 

 Results may not apply to all possible inputs 

 Only applies to inputs explicitly tested 
 

 Comparing two algorithms is difficult 

 Requires same hardware and software 
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Determining Complexity: Analysis 

 Theoretical analysis solves these problems 
 

 Use a high-level description of the algorithm 

 Instead of an implementation 

 Run time is a function of the input size, n 

 Take into account all possible inputs 

 Evaluation is independent of specific 

hardware or software 

 Including compiler optimization 
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Using Asymptotic Analysis 

 For an algorithm: 

 With input size n 

 Define the run time as T(n) 

 

 Purpose of asymptotic analysis is to 

examine: 

 The rate of growth of T(n) 

 As n grows larger and larger 
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Growth Functions 
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Seven Important Functions 

 

 Constant  1 

 Logarithmic  log n 

 Linear  n 

 N-Log-N  n log n 

 Quadratic  n2 

 Cubic  n3 

 Exponential  2n 
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Constant and Linear 

 Constant 

 T(n) = c 

 Getting array element at known location  

 Any simple C++ statement (e.g. assignment) 
 

 Linear 

 T(n) = cn  [+ any lower order terms] 

 Finding particular element in array of size n 

 Sequential search 

 Trying on all of your n shirts 
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“c” is a constant value, like 1 



Quadratic and Polynomial 

 Quadratic 

 T(n) = cn2 [ + any lower order terms] 

 Sorting an array using bubble sort 

 Trying all your n shirts with all your n pants 
 

 Polynomial 

 T(n) = cnk [ + any lower order terms] 

 Finding the largest element of a k-dimensional array 

 Looking for maximum substrings in array 
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Exponential and Logarithmic 

 Exponential 

 T(n) = cn [ + any lower order terms]  

 Constructing all possible orders of array elements 

 Towers of Hanoi (2n)  

 Recursively calculating nth Fibonacci number (2n) 
 

 Logarithmic 

 T(n) = lg n [ + any lower order terms] 

 Finding a particular array element (binary search) 

 Algorithms that continually divide a problem in half  
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Graph of Growth Functions 
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Graph of Growth Functions 
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logarithmic 

linear quadratic 

n-log-n cubic 

exponential 



Expanded Growth Functions Graph 
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Asymptotic Analysis 
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Simplification 

 We are only interested in the growth rate as 

an “order of magnitude” 

 As the problem grows really, really, really large 

 

 We are not concerned with the fine details 

 Constant multipliers are dropped 

 If T(n) = c*2n, we reduce it to T(n) = 2n 

 Lower order terms are dropped 

 If T(n) = n4 + n2, we reduce it to T(n) = n4 
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Three Cases of Analysis  

 Best case 

 When input data minimizes the run time 

 An array that needs to be sorted is already in order 

 

 Average case 

 The “run time efficiency” over all possible inputs 
 

 Worst case 

 When input data maximizes the run time 

 Most adversarial data possible 
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Analysis Example: Mileage 

 How much gas does it take to go 20 miles? 
 

 Best case 

 Straight downhill, wind at your back 

 Average case 

 “Average” terrain 

 Worst case 

 Winding uphill gravel road, inclement weather 
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Analysis Example: Sequential Search 

 Consider sequential search on an unsorted 

array of length n, what is the time complexity? 
 

 Best case 

 

 Worst case 

 

 Average case 
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Comparison of Two Algorithms 

 Insertion sort: 

 (n2)/4 

 Merge sort: 

 2nlgn 

 

 n = 1,000,000 

 Million ops per second 

 Merge takes 40 secs 

 Insert takes 70 hours 
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Big O Notation 
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What is Big O Notation? 

 Big O notation has a special meaning in 

Computer Science 

 Used to describe the complexity (or 

performance) of an algorithm 

 

 Big O describes the worst-case scenario 

 Big Omega (Ω) describes the best-case 

 Big Theta (Θ) is used when the best and 

worst case scenarios are the same 
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Big O Definition 

 We say that f(n) is O(g(n)) if 

 There is a real constant c > 0 

 And an integer constant n0 ≥ 1 

 Such that 

 f(n) ≤ c*g(n), for n ≥ n0 

 

 Let’s do an example 

 Taken from https://youtu.be/ei-A_wy5Yxw 
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Big O: Example – n4 

 We have f(n) = 4n2 + 16n + 2 

 Let’s test if f(n) is O(n4) 

 Remember, we want to see f(n) ≤ c*g(n), for n ≥ n0 

 We’ll start with c = 1 
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n0 4n2 + 16n + 2 ≤ c*n4 

0 2 > 0 

1 22 > 1 

2 50 > 16 

3 86 > 81 

4 130 < 256 



Big O: Example – n4 

 We have f(n) = 4n2 + 16n + 2 

 Let’s test if f(n) is O(n4) 

 Remember, we want to see f(n) ≤ c*g(n), for n ≥ n0 

 We’ll start with c = 1 
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Big O: Example 

 So we can say that  

 f(n) = 4n2 + 16n + 2 is O(n4) 

 

 Big O is an upper bound 

 The worst the algorithm could perform 

 

 Does n4 seem high to you? 
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Big O: Example – n2 

 We have f(n) = 4n2 + 16n + 2 

 Let’s test if f(n) is O(n2) 

 Remember, we want to see f(n) ≤ c*g(n), for n ≥ n0 

 Let’s start with c = 10 
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n0 4n2 + 16n + 2 ≤ c*n2 

0 2 > 0 

1 22 > 10 

2 50 > 40 

3 86 > 90 



Big O: Example – n2 

 We have f(n) = 4n2 + 16n + 2 

 Let’s test if f(n) is O(n2) 

 Remember, we want to see f(n) ≤ c*g(n), for n ≥ n0 

 Let’s start with c = 10 
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Big O: Example 

 So we can more accurately say that 

 f(n) = 4n2 + 16n + 2 is O(n2) 

 

 Could f(n) = 4n2 + 16n + 2 is O(n) ever be true? 

 Why not? 
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Big O: 

Practice Examples 
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Big O: Example 1 

 Code: 

a = b; 

++sum; 

int y = Mystery( 42 ); 

 

 Complexity: 

 Constant – O(c) 
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Big O: Example 2 

 Code: 
sum = 0; 

for (i = 1; i <= n; i++) { 

  sum += n; 

} 

 

 Complexity: 

 Linear – O(n) 
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Big O: Example 3  

 Code: 
sum1 = 0; 

for (i = 1; i <= n; i++) { 

  for (j = 1; j <= n; j++) { 

    sum1++; 

  } 

} 

 

 Complexity: 

 Quadratic – O(n2) 
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Big O: Example 4  

 Code: 
sum2 = 0; 

for (i = 1; i <= n; i++) { 

  for (j = 1; j <= i; j++) { 

    sum2++; 

  } 

} 

 

 Complexity: 

 Quadratic – O(n2) 
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Big O: Example 5  

 Code: 
sum3 = 0; 

for (i = 1; i <= n; i++) { 

  for (j = 1; j <= i; j++) { 

    sum3++; } 

} 

for (k = 0; k < n; k++) { 

  a[ k ] = k; 

} 

 Complexity: 

 Quadratic – O(n2) 
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Big O: Example 6 

 Code:
sum4 = 0; 

for (k = 1; k <= n; k *= 2) 

  for (j = 1; j <= n; j++) { 

sum4++; 

} 

 Complexity:

 O(n log n)
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Big O: More Examples 

 Square each element of an N x N matrix 
 

 Printing the first and last row of an N x N 

matrix 
 

 Finding the smallest element in a sorted array 

of N integers 
 

 Printing all permutations of N distinct 

elements 
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Announcements 

 Homework 2 will be out 9/13/2017
 Due Thursday, September 21st at 8:59:59 PM 

 Project 1 is out this week

 Due Tuesday, September 26th at 8:59:59 PM 

 Next Time:

 More Asymptotic Analysis 
& Project 1 
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