CMSC 341 Lecture 5 Asymptotic Analysis (Continued)

Today's Topics

- More on Big O notation
 - Examples
 - Big Omega (Ω)
 - □ Big Theta (Θ)
- More detail on proof by induction

In-class bonus question

First, an Explanation from Last Class...

Big O: Example 4

Code:

```
sum2 = 0;
for (i = 1; i <= n; i++) {
  for (j = 1; j <= i; j++) {
    sum2++;
  }
}</pre>
```

- Complexity:
 - Quadratic O(n²)

But why???

Big O: Example 4

Code:

```
sum2 = 0;
for (i = 1; i <= n; i++) {
  for (j = 1; j <= i; j++) {
    sum2++;
    how many times do
    we execute this
    statement?</pre>
```

1 + 2 + 3 + 4 + ... + n-2 + n-1 + n

- Complexity:
 - Quadratic O(n²)

Expressing as a summation

- Can we express this as a summation?
 - Yes!

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

- Does this have a known formula?
 - Yes!
- What does this formula multiply out to?
 - $(n^2 + n) / 2$
 - \Box or $O(n^2)$

Other Geometric Formulas

• O(n³)
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

O(n⁴)
$$\sum_{i=1}^{n} i^3 = \frac{n^2 (n+1)^2}{4}$$

• O(cⁿ)
$$\sum_{i=0}^{n} r^{i} = \frac{1 - r^{(n+1)}}{1 - r}, \text{ where } r \neq 1$$

Big O: Example 5

Code:

```
sum3 = 0;
for (i = 1; i <= n; i++) {
  for (j = 1; j <= i; j++) {
    sum3++; }
}
for (k = 0; k < n; k++) {
  a[k] = k;
}</pre>
```

- Complexity:
 - Quadratic O(n²)

Big O: Example 6

Code:

```
sum4 = 0;
for (k = 1; k <= n; k *= 2)
  for (j = 1; j <= n; j++) {
    sum4++;
}</pre>
```

- Complexity:
 - □ O(n log n)

More Help with Summations

- CodeTimeComplexityNotes.pdf
- AsymptoticAnalysisNotes.pdf
- MathReviewNotes.pdf
- Simplifying functions for geometric series
- Solving summations quickly
- Mathematical series shortcuts
- Reading sigma notation
- And more!

Big Omega (Ω) and Big Theta(Θ)

"Big" Notation (words)

- Big O describes an asymptotic upper bound
 - The worst possible performance we can expect

- Big Ω describes an asymptotic lower bound
 - The best possible performance we can expect

- Big Θ describes an asymptotically tight bound
 - The best and worst running times can be expressed with the same equation

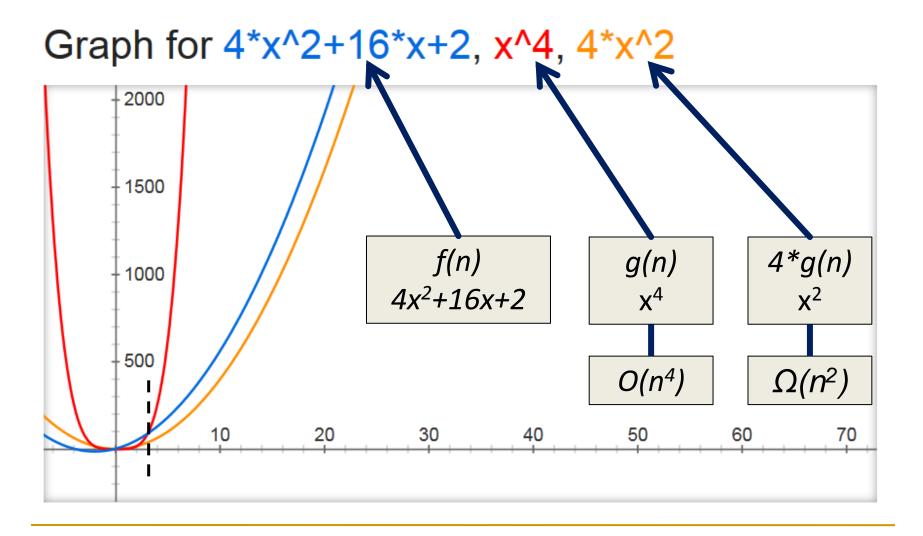
"Big" Notation (equations)

- Big O describes an asymptotic upper bound
 - \neg f(n) is asymptotically **less than or equal to** g(n)

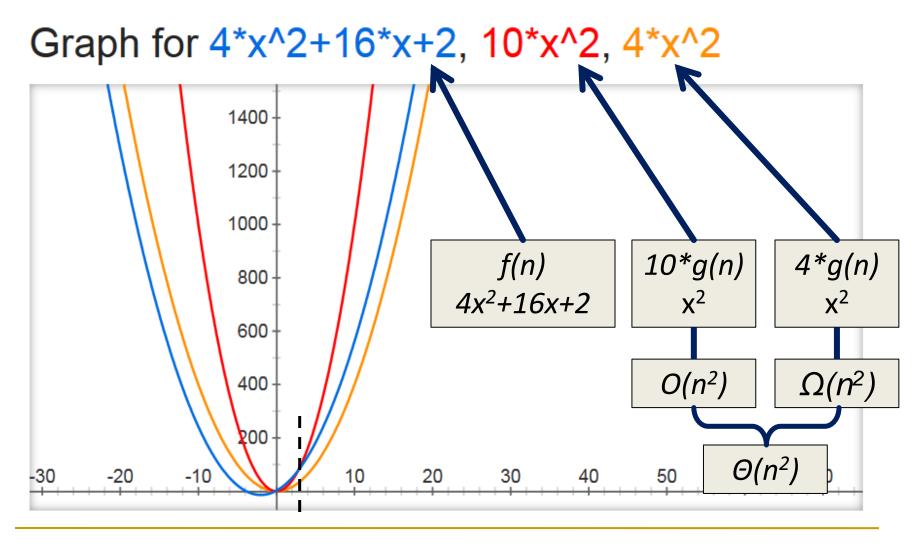
- Big Ω describes an asymptotic lower bound
 - $\neg f(n)$ is asymptotically **greater than or equal to** g(n)

- Big Θ describes an asymptotically tight bound
 - $\neg f(n)$ is asymptotically **equal to** g(n)

Big O and Big Omega Example



Big Theta Example



A Simple Example

- Say we write an algorithm that takes in an array of numbers and returns the highest one
 - What is the absolute fastest it can run?
 - Linear time Ω(n)
 - What is the absolute slowest it can run?
 - Linear time O(n)
 - Can this algorithm be tightly asymptotically bound?
 - YES so we can also say it's Θ(n)

Proof by Induction

Proof by Induction

- The only way to prove that Big O will work
 - As n becomes larger and larger numbers

- To prove F(n) for any positive integer n
 - 1. Base case: prove F(1) is true
 - 2. <u>Hypothesis</u>: Assume F(k) is true for any k >= 1
 - 3. Inductive: Prove the if F(k) is true, then F(k+1) is true

Induction Example (Step 1)

• Show that for all $n \ge 1$: $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

1. Base case:

- \square n=1
- \Box (This is our n_0)

$$\sum_{i=1}^{1} i^2 = \frac{1(1+1)(2(1)+1)}{6}$$

$$\sum_{i=1}^{1} i^2 = \frac{1(2)(3)}{6}$$

$$\sum_{i=1}^{1} i^2 = \frac{6}{6}$$

$$\sum_{i=1}^{1} i^2 = 1$$

Induction Example (Step 2)

• Show that for all $n \ge 1$:

2. Hypothesis:

□ Assume that $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

holds for any $n \ge 1$

Induction Example (Step 3)

• Show that for all $n \ge 1$: $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

3. Inductive:

- □ Prove that if F(k) is true (assumed), the F(k+1) is also true
- \square We've already proved F(1) is true
- So proving this step will prove F(2) from F(1), and F(3) from F(2), ..., and F(k+1) from F(k)

Induction Example (Step 3)

$$\sum_{i=1}^{k+1} i^{2} = \sum_{i=1}^{k} i^{2} + (k+1)^{2}$$

$$\sum_{i=1}^{k+1} i^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$\sum_{i=1}^{k+1} i^{2} = \frac{(k+1)(k(2k+1)+6(k+1))}{6}$$

$$\sum_{i=1}^{k+1} i^{2} = \frac{(k+1)(2k^{2}+7k+6)}{6}$$

$$\sum_{i=1}^{k+1} i^{2} = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$\sum_{i=1}^{k+1} i^{2} = \frac{(k+1)(k+2)(2k+3)}{6}$$

Bonus Question!

Announcements

- Homework 2 is out
 - Due Thursday, September 21st at 8:59:59 PM

- Project 1 is out this week
 - Due Tuesday, September 26th at 8:59:59 PM