CMSC 341
Lecture 5 Asymptotic Analysis

(Continued)

Based on slides from previous iterations at UMBC



Today’s Topics

More on Big O notation
o Examples

o Big Omega (Q)
0 Big Theta (©)
More detail on proof by induction

In-class bonus question
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First, an Explanation
from I.ast Class...




Big O: Example 4

Code:
sum2 = 0;
for (1 = 1; 1i <= n; i++) {
for (j =1; j <= 1i; j++) {
sum2++;

Complexity:
o Quadratic — O(n?)

But why???
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Big O: Example 4

Code:

sum2 = 0;
for (i = 1; i <= n; i++) {

for (jJ =1; j <= 1i; j++) {
sum2++;<<§—————J how many times do
} we execute this
} statement?

1+2+3+4+...+n-2+n-1+n

Complexity:
o Quadratic — O(n?)
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Expressing as a summation

Can we express this as a summation?
o Yes! n

Z o n(n2+1)

=1

Does this have a known formula?
o Yes!

What does this formula multiply out to?
a(n?+n)/2
a or O(n?)
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Other Geometric Formulas

L o n(n+1)(2n+ 1)
O(n%) i: 3 N+ 1y
1=1 +
n
O(c") Z ri = 1ir_(:+1) ,Where r #1
1=0
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Big O: Example 5

Code:

sum3 = 0;

for (i = 1; i <= n; i++) {
for (J =1; j <= 1i; j++) {

sum3++; }

}

for (k = 0; k < n; k++) {
al k ] = k;

}

Complexity:
o Quadratic — O(n?)
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Big O: Example 6

Code:

sumd4d = 0;
for (k = 1; k <= n; k *= 2)

for (j = 1; j <= n; j++) {
sumd++;

Complexity:
2 O(n log n)
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More Help with Summations

CodeTimeComplexityNotes.pdf
AsymptoticAnalysisNotes.pdf

Mat
Sim

NReviewNotes.pdf

nlifying functions for geometric series

Solving summations quickly
Mathematical series shortcuts
Reading sigma notation

And more!

UMBC CMSC 341 Asymptotic Analysis

10



Big Omega (€2) and Big Theta(®)
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“Big” Notation (words)

Big O describes an asymptotic upper bound
o The worst possible performance we can expect

Big Q) describes an asymptotic lower bound
o The best possible performance we can expect

Big © describes an asymptotically tight bound

o The best and worst running times can be
expressed with the same equation
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“Big” Notation (equations)

Big O describes an asymptotic upper bound
o f(n) is asymptotically less than or equal to g(n)

Big Q) describes an asymptotic lower bound
o f(n) Is asymptotically greater than or equal to g(n)

Big © describes an asymptotically tight bound
o f(n) is asymptotically equal to g(n)
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‘ Big O and Big Omega Example

Graph for 4*x"2+16*x+2, x4,

f(n) g(n) 4%*g(n)
4x°+16x+2 x4 X?
o(n?) Q(n?)
) 30 40 50 60 70
I
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'Big Theta Example

Graph for 4*x"2+16*x+2, 10*x"2,

f(n) 10*g(n) | | 4*g(n)
4x2+16x+2 NG X2

30 20 30 4 s | On°)
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A Simple Example

Say we write an algorithm that takes in an
array of numbers and returns the highest one
o What is the absolute fastest it can run?

Linear time — Q(n)
o What is the absolute slowest it can run?

Linear time — O(n)

o Can this algorithm be tightly asymptotically bound?
YES — so we can also say it's O(n)
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Proot by Induction
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Proof by Induction

The only way to prove that Big O will work
o As n becomes larger and larger numbers

To prove F(n) for any positive integer n
Base case: prove F(1) Is true

Hypothesis: Assume F(k) Is true for any
k>=1

Inductive: Prove the If F(k) Is true, then
F(k+1) Is true
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Induction Example (Step 1)

n .2 n(n+1)(2n+1)

Show that for all n > 7 ol T 6
Base case: L2 11420+
on=1 lel - 6
o (This is our ny) 5 2 _U2)3)

i=1 6
1 .2 6
==
=1 6
> =1
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Induction Example (Step 2)

Show that foralln >1:

Hypothesis:

o Assume that i = n(n+1)(en +1)

6

holds for any n >/
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Induction Example (Step 3)

n 1)(2n+1
Show thatforalln>17: 2. = n(n+ )6( n+d)

Inductive:

o Prove that if F(k) is true (assumed),
the F(k+1) is also true

o We've already proved F(1) is true

o So proving this step will prove F(2) from F(1),
and F(3) from F(2), ..., and F(k+1) from F(k)
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Induction Example (Step 3)

2 n(n+1)(2n+1)

2l KA oA

S =Y k)
Zk+1iz _ Kk +1)6(2k +1) | k11

=1

2 (K+D)(K(2K+1)+6(k +1)
i=1 o 6
Zk+1i2 _ (K +1)(2k* + 7k +6)

i=1 0
Zk+1i2 _ (k+D(k +2)(2k +3) Zk+1iz e+ +D +nlk +3+1)

=1 6 i=1 - 6
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Bonus Question!
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Announcements

Homework 2 is out
o Due Thursday, September 21st at 8:59:59 PM

Project 1 is out this week
o Due Tuesday, September 26th at 8:59:59 PM
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